Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Amanda Ghassaei
AMOEBA
Commits
5121a394
Commit
5121a394
authored
Jul 09, 2016
by
amandaghassaei
Browse files
added ang velocity calc
parent
05477888
Changes
3
Hide whitespace changes
Inline
Side-by-side
js/simulation/function/EM/emSimLattice.js
View file @
5121a394
...
...
@@ -5,9 +5,9 @@
define
([
'
underscore
'
,
'
backbone
'
,
'
threeModel
'
,
'
lattice
'
,
'
plist
'
,
'
emWire
'
,
'
GPUMath
'
,
"
text!simulation/shaders/vertexShader.js
"
,
"
text!simulation/function/EM/shaders/velocityCalcShader.js
"
,
"
text!simulation/shaders/packToBytesShader.js
"
,
"
text!simulation/function/EM/shaders/positionCalcShader.js
"
,
"
text!simulation/function/EM/shaders/
quaternion
CalcShader.js
"
,
'
emSimCell
'
],
"
text!simulation/function/EM/shaders/
angVelocity
CalcShader.js
"
,
'
emSimCell
'
],
function
(
_
,
Backbone
,
three
,
lattice
,
plist
,
EMWire
,
gpuMath
,
vertexShader
,
velocityCalcShader
,
packToBytesShader
,
positionCalcShader
,
quaternion
CalcShader
)
{
positionCalcShader
,
angVelocity
CalcShader
)
{
var
EMSimLattice
=
Backbone
.
Model
.
extend
({
...
...
@@ -59,7 +59,6 @@ define(['underscore', 'backbone', 'threeModel', 'lattice', 'plist', 'emWire', 'G
this
.
cellsArrayMapping
=
new
Int16Array
(
textureSize
*
4
);
//holds lattice index of cell (for rendering from texture)
//todo add moment of inertia
this
.
mass
=
new
Float32Array
(
textureSize
*
4
);
//first element is mass, second element in fixed, third element is moment of inertia
this
.
neighborsXMapping
=
new
Float32Array
(
textureSize
*
8
);
//-1 equals no neighb
...
...
@@ -101,6 +100,8 @@ define(['underscore', 'backbone', 'threeModel', 'lattice', 'plist', 'emWire', 'G
self
.
mass
[
rgbaIndex
]
=
self
.
_calcCellMass
(
cell
);
self
.
mass
[
rgbaIndex
+
1
]
=
0
;
//indicated a cell is present
var
latticePitch
=
lattice
.
getPitch
();
self
.
mass
[
rgbaIndex
+
2
]
=
1
/
6
*
self
.
mass
[
rgbaIndex
]
*
latticePitch
.
x
*
latticePitch
.
x
;
//moment of inertia for a cube
self
.
cellsIndexMapping
[
x
][
y
][
z
]
=
index
;
...
...
@@ -279,6 +280,7 @@ define(['underscore', 'backbone', 'threeModel', 'lattice', 'plist', 'emWire', 'G
//programs
//gpuMath.createProgram("quaternionCalc", vertexShader, quaternionCalcShader);
//gpuMath.createProgram("angVelocityCalc", vertexShader, quaternionCalcShader);
//gpuMath.setUniformForProgram("angVelocityCalc", "u_lastTranslation", 0, "1i");
//gpuMath.setUniformForProgram("angVelocityCalc", "u_lastQuaternion", 1, "1i");
...
...
@@ -293,19 +295,25 @@ define(['underscore', 'backbone', 'threeModel', 'lattice', 'plist', 'emWire', 'G
//gpuMath.setUniformForProgram("angVelocityCalc", "u_wiresMetaLength", this.wiresMeta.length/4, "1f");
//gpuMath.setUniformForProgram("angVelocityCalc", "u_time", 0, "1f");
//
//gpuMath.createProgram("quaternionCalc", vertexShader, quaternionCalcShader);
//gpuMath.setUniformForProgram("quaternionCalc", "u_lastTranslation", 0, "1i");
//gpuMath.setUniformForProgram("quaternionCalc", "u_lastQuaternion", 1, "1i");
//gpuMath.setUniformForProgram("quaternionCalc", "u_mass", 2, "1i");
//gpuMath.setUniformForProgram("quaternionCalc", "u_neighborsXMapping", 3, "1i");
//gpuMath.setUniformForProgram("quaternionCalc", "u_neighborsYMapping", 4, "1i");
//gpuMath.setUniformForProgram("quaternionCalc", "u_compositeKs", 5, "1i");
//gpuMath.setUniformForProgram("quaternionCalc", "u_wires", 6, "1i");
//gpuMath.setUniformForProgram("quaternionCalc", "u_wiresMeta", 7, "1i");
//gpuMath.setUniformForProgram("quaternionCalc", "u_textureDim", [textureDim, textureDim], "2f");
//gpuMath.setUniformForProgram("quaternionCalc", "u_latticePitch", [latticePitch.x, latticePitch.y, latticePitch.z], "3f");
//gpuMath.setUniformForProgram("quaternionCalc", "u_wiresMetaLength", this.wiresMeta.length/4, "1f");
//gpuMath.setUniformForProgram("quaternionCalc", "u_time", 0, "1f");
gpuMath
.
createProgram
(
"
angVelocityCalc
"
,
vertexShader
,
angVelocityCalcShader
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_lastAngVelocity
"
,
0
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_lastVelocity
"
,
1
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_lastTranslation
"
,
2
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_mass
"
,
3
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_neighborsXMapping
"
,
4
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_neighborsYMapping
"
,
5
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_compositeKs
"
,
6
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_compositeDs
"
,
7
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_lastQuaternion
"
,
8
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_wires
"
,
9
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_wiresMeta
"
,
10
,
"
1i
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_textureDim
"
,
[
textureDim
,
textureDim
],
"
2f
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_multiplier
"
,
1
/
(
plist
.
allUnitTypes
[
lattice
.
getUnits
()].
multiplier
),
"
1f
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_latticePitch
"
,
[
latticePitch
.
x
,
latticePitch
.
y
,
latticePitch
.
z
],
"
3f
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_wiresMetaLength
"
,
this
.
wiresMeta
.
length
/
4
,
"
1f
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_time
"
,
0
,
"
1f
"
);
gpuMath
.
createProgram
(
"
velocityCalc
"
,
vertexShader
,
velocityCalcShader
);
gpuMath
.
setUniformForProgram
(
"
velocityCalc
"
,
"
u_lastVelocity
"
,
0
,
"
1i
"
);
...
...
@@ -551,6 +559,10 @@ define(['underscore', 'backbone', 'threeModel', 'lattice', 'plist', 'emWire', 'G
gpuMath
.
setUniformForProgram
(
"
velocityCalc
"
,
"
u_friction
"
,
friction
,
"
1f
"
);
gpuMath
.
setProgram
(
"
positionCalc
"
);
gpuMath
.
setUniformForProgram
(
"
positionCalc
"
,
"
u_dt
"
,
dt
,
"
1f
"
);
gpuMath
.
setProgram
(
"
angVelocityCalc
"
);
gpuMath
.
setUniformForProgram
(
"
angVelocityCalc
"
,
"
u_dt
"
,
dt
,
"
1f
"
);
//gpuMath.setProgram("quaternionCalc");
//gpuMath.setUniformForProgram("quaternionCalc", "u_dt", dt, "1f");
},
iter
:
function
(
time
,
runConstants
,
shouldRender
){
...
...
@@ -639,7 +651,7 @@ define(['underscore', 'backbone', 'threeModel', 'lattice', 'plist', 'emWire', 'G
var
mass
=
this
.
mass
[
rgbaIndex
];
if
(
mass
==
0
)
continue
;
var
force
=
[
mass
*
gravity
.
x
,
mass
*
gravity
.
y
,
mass
*
gravity
.
z
];
//translational force
var
I
=
1
/
6
*
mass
*
latticePitch
[
0
]
*
latticePitch
[
0
];
//moment of iner
tia for a cube
var
I
=
this
.
mass
[
rgbaIndex
+
2
];
//moment of iner
ita
var
rForce
=
[
0
,
0
,
0
];
//rotational force
...
...
js/simulation/function/EM/shaders/
force
CalcShader.js
→
js/simulation/function/EM/shaders/
angVelocity
CalcShader.js
View file @
5121a394
...
...
@@ -9,10 +9,9 @@ uniform float u_multiplier;
uniform
vec3
u_latticePitch
;
uniform
float
u_wiresMetaLength
;
uniform
float
u_time
;
uniform
float
u_groundHeight
;
uniform
float
u_friction
;
uniform
sampler2D
u_angularVelocity
;
uniform
sampler2D
u_lastVelocity
;
uniform
sampler2D
u_lastTranslation
;
uniform
sampler2D
u_mass
;
...
...
@@ -20,11 +19,12 @@ uniform sampler2D u_neighborsXMapping;
uniform
sampler2D
u_neighborsYMapping
;
uniform
sampler2D
u_compositeKs
;
uniform
sampler2D
u_compositeDs
;
uniform
sampler2D
u_originalPosition
;
uniform
sampler2D
u_lastQuaternion
;
uniform
sampler2D
u_wires
;
uniform
sampler2D
u_wiresMeta
;
vec3
applyQuaternion
(
vec3
vector
,
vec4
quaternion
)
{
float
x
=
vector
[
0
];
...
...
@@ -44,8 +44,99 @@ vec3 applyQuaternion(vec3 vector, vec4 quaternion) {
float
iw
=
-
qx
*
x
-
qy
*
y
-
qz
*
z
;
// calculate result * inverse quat
return
vec3
(
ix
*
qw
+
iw
*
-
qx
+
iy
*
-
qz
-
iz
*
-
qy
,
iy
*
qw
+
iw
*
-
qy
+
iz
*
-
qx
-
ix
*
-
qz
,
iz
*
qw
+
iw
*
-
qz
+
ix
*
-
qy
-
iy
*
-
qx
);
return
vec3
(
ix
*
qw
+
iw
*
-
qx
+
iy
*
-
qz
-
iz
*
-
qy
,
iy
*
qw
+
iw
*
-
qy
+
iz
*
-
qx
-
ix
*
-
qz
,
iz
*
qw
+
iw
*
-
qz
+
ix
*
-
qy
-
iy
*
-
qx
);
}
vec4
quaternionFromUnitVectors
(
vec3
vFrom
,
vec3
vTo
)
{
vec3
v1
=
vec3
(
0
);
float
r
=
dot
(
vFrom
,
vTo
)
+
1.0
;
if
(
r
<
0.000001
)
{
r
=
0.0
;
if
(
abs
(
vFrom
[
0
])
>
abs
(
vFrom
[
2
]))
v1
=
vec3
(
-
vFrom
[
1
],
vFrom
[
0
],
0.0
);
else
v1
=
vec3
(
0.0
,
-
vFrom
[
2
],
vFrom
[
1
]);
}
else
v1
=
cross
(
vFrom
,
vTo
);
return
normalize
(
vec4
(
v1
,
r
));
}
mat4
makeRotationMatrixFromQuaternion
(
vec4
q
)
{
mat4
te
;
float
x
=
q
[
0
];
float
y
=
q
[
1
];
float
z
=
q
[
2
];
float
w
=
q
[
3
];
float
x2
=
x
+
x
;
float
y2
=
y
+
y
;
float
z2
=
z
+
z
;
float
xx
=
x
*
x2
;
float
xy
=
x
*
y2
;
float
xz
=
x
*
z2
;
float
yy
=
y
*
y2
;
float
yz
=
y
*
z2
;
float
zz
=
z
*
z2
;
float
wx
=
w
*
x2
;
float
wy
=
w
*
y2
;
float
wz
=
w
*
z2
;
te
[
0
]
=
vec4
(
1.0
-
(
yy
+
zz
),
xy
-
wz
,
xz
+
wy
,
0
);
te
[
1
]
=
vec4
(
xy
+
wz
,
1.0
-
(
xx
+
zz
),
yz
-
wx
,
0
);
te
[
2
]
=
vec4
(
xz
-
wy
,
yz
+
wx
,
1.0
-
(
xx
+
yy
),
0
);
te
[
3
]
=
vec4
(
0
,
0
,
0
,
1
);
return
te
;
}
vec3
setFromRotationMatrix
(
mat4
te
)
{
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
float
m11
=
te
[
0
][
0
];
float
m12
=
te
[
0
][
1
];
float
m13
=
te
[
0
][
2
];
float
m21
=
te
[
1
][
0
];
float
m22
=
te
[
1
][
1
];
float
m23
=
te
[
1
][
2
];
float
m31
=
te
[
2
][
0
];
float
m32
=
te
[
2
][
1
];
float
m33
=
te
[
2
][
2
];
if
(
abs
(
m13
)
<
0.99999
){
return
vec3
(
atan
(
-
m23
,
m33
),
asin
(
clamp
(
m13
,
-
1.0
,
1.0
)),
atan
(
-
m12
,
m11
));
}
return
vec3
(
atan
(
m32
,
m22
),
asin
(
clamp
(
m13
,
-
1.0
,
1.0
)),
0
);
}
vec3
eulerFromQuaternion
(
vec4
q
){
return
setFromRotationMatrix
(
makeRotationMatrixFromQuaternion
(
q
));
}
vec4
quaternionFromEuler
(
vec3
euler
)
{
float
c1
=
cos
(
euler
[
0
]
/
2.0
);
float
c2
=
cos
(
euler
[
1
]
/
2.0
);
float
c3
=
cos
(
euler
[
2
]
/
2.0
);
float
s1
=
sin
(
euler
[
0
]
/
2.0
);
float
s2
=
sin
(
euler
[
1
]
/
2.0
);
float
s3
=
sin
(
euler
[
2
]
/
2.0
);
return
vec4
(
s1
*
c2
*
c3
+
c1
*
s2
*
s3
,
c1
*
s2
*
c3
-
s1
*
c2
*
s3
,
c1
*
c2
*
s3
+
s1
*
s2
*
c3
,
c1
*
c2
*
c3
-
s1
*
s2
*
s3
);
}
vec4
quaternionFromAxisAngle
(
vec3
axis
,
float
angle
)
{
float
halfAngle
=
angle
/
2.0
;
float
s
=
sin
(
halfAngle
);
return
vec4
(
s
*
axis
,
cos
(
halfAngle
));
}
vec4
multiplyQuaternions
(
vec4
a
,
vec4
b
){
float
qax
=
a
[
0
];
float
qay
=
a
[
1
];
float
qaz
=
a
[
2
];
float
qaw
=
a
[
3
];
float
qbx
=
b
[
0
];
float
qby
=
b
[
1
];
float
qbz
=
b
[
2
];
float
qbw
=
b
[
3
];
return
vec4
(
qax
*
qbw
+
qaw
*
qbx
+
qay
*
qbz
-
qaz
*
qby
,
qay
*
qbw
+
qaw
*
qby
+
qaz
*
qbx
-
qax
*
qbz
,
qaz
*
qbw
+
qaw
*
qbz
+
qax
*
qby
-
qay
*
qbx
,
qaw
*
qbw
-
qax
*
qbx
-
qay
*
qby
-
qaz
*
qbz
);
}
float
neighborSign
(
float
i
){
...
...
@@ -81,7 +172,7 @@ float getActuatorVoltage(float wireIndex){
float
frequency
=
wireMeta
[
1
];
float
period
=
1.0
/
frequency
;
float
phase
=
wireMeta
[
2
];
float
currentPhase
=
mod
(
u_time
+
phase
*
period
,
period
)
/
period
;
float
currentPhase
=
mod
(
u_time
+
phase
*
period
,
period
)
/
period
;
if
(
type
==
0
){
return
0.5
*
sin
(
2.0
*
M_PI
*
currentPhase
);
}
...
...
@@ -178,37 +269,26 @@ void main(){
vec2
fragCoord
=
gl_FragCoord
.
xy
;
vec2
scaledFragCoord
=
fragCoord
/
u_textureDim
;
float
isFixed
=
texture2D
(
u_mass
,
scaledFragCoord
).
y
;
vec3
massData
=
texture2D
(
u_mass
,
scaledFragCoord
).
xyz
;
float
isFixed
=
massData
.
y
;
if
(
isFixed
<
0.0
||
isFixed
==
1.0
){
//no cell or is fixed
gl_FragColor
=
vec4
(
0
,
0
,
0
,
0
);
return
;
}
float
mass
=
texture2D
(
u_mass
,
scaledFragCoord
).
x
;
vec3
force
=
u_gravity
*
mass
;
float
mass
=
massData
.
x
;
float
momOfInertia
=
massData
.
z
;
vec3
torque
=
vec3
(
0.0
,
0.0
,
0.0
);
vec3
translation
=
texture2D
(
u_lastTranslation
,
scaledFragCoord
).
xyz
;
vec3
velocity
=
texture2D
(
u_lastVelocity
,
scaledFragCoord
).
xyz
;
vec4
quaternion
=
texture2D
(
u_lastQuaternion
,
scaledFragCoord
);
vec3
angVelocity
=
texture2D
(
u_angularVelocity
,
scaledFragCoord
).
xyz
;
vec4
wiring
=
texture2D
(
u_wires
,
scaledFragCoord
);
bool
isActuator
=
wiring
[
0
]
<
-
0.5
;
//-1
//simple collision
float
zPosition
=
texture2D
(
u_originalPosition
,
scaledFragCoord
).
z
+
translation
.
z
*
u_multiplier
-
u_groundHeight
;
float
collisionK
=
1.0
;
if
(
zPosition
<
0.0
)
{
float
normalForce
=
-
zPosition
*
collisionK
-
velocity
.
z
*
collisionK
/
10.0
;
force
.
z
+=
normalForce
;
if
(
u_friction
>
0.5
){
float
mu
=
10.0
;
if
(
velocity
.
x
>
0.0
)
force
.
x
-=
mu
*
normalForce
;
else
if
(
velocity
.
x
<
0.0
)
force
.
x
+=
mu
*
normalForce
;
if
(
velocity
.
y
>
0.0
)
force
.
y
-=
mu
*
normalForce
;
else
if
(
velocity
.
y
<
0.0
)
force
.
y
+=
mu
*
normalForce
;
}
}
for
(
float
i
=
0.0
;
i
<
2.0
;
i
+=
1.0
){
float
xIndex
=
2.0
*
(
fragCoord
.
x
-
0.5
)
+
0.5
;
...
...
@@ -261,9 +341,13 @@ void main(){
//else if (neighborAxis == 1) actuatedD[1] *= 1.0+actuation;
//else if (neighborAxis == 2) actuatedD[2] *= 1.0+actuation;
vec2
kIndex
=
vec2
(((
fragCoord
.
x
-
0.5
)
*
12.0
+
2.0
*
(
i
*
3.0
+
float
(
j
))
+
0.5
)
/
(
u_textureDim
.
x
*
12.0
),
scaledFragCoord
.
y
);
float
kPosition
=
((
fragCoord
.
x
-
0.5
)
*
12.0
+
2.0
*
(
i
*
3.0
+
float
(
j
))
+
0.5
);
vec2
kIndex
=
vec2
(
kPosition
/
(
u_textureDim
.
x
*
12.0
),
scaledFragCoord
.
y
);
vec3
translationalK
=
texture2D
(
u_compositeKs
,
kIndex
).
xyz
;
vec3
translationalD
=
texture2D
(
u_compositeDs
,
kIndex
).
xyz
;
kIndex
.
x
=
(
kPosition
+
1.0
)
/
(
u_textureDim
.
x
*
12.0
);
vec3
rotationalK
=
texture2D
(
u_compositeKs
,
kIndex
).
xyz
;
vec3
rotationalD
=
texture2D
(
u_compositeDs
,
kIndex
).
xyz
;
vec4
averageQuaternion
=
averageQuaternions
(
quaternion
,
neighborQuaternion
);
vec4
averageQuaternionInverse
=
invertQuaternion
(
averageQuaternion
);
...
...
@@ -276,9 +360,18 @@ void main(){
vec3
_force
=
translationalK
*
translationalDeltaXYZ
+
translationalD
*
velocityDeltaXYZ
;
//convert _force vector back into world reference frame
_force
=
applyQuaternion
(
_force
,
averageQuaternion
);
force
+=
_force
;
////translational forces cause rotation in cell - convert to cell reference frame
torque
+=
cross
(
halfNominalD
,
applyQuaternion
(
_force
,
invertQuaternion
(
quaternion
)));
//cellHalfNominalD = lever arm
//bending and torsion
vec4
quaternionDiff
=
multiplyQuaternions
(
invertQuaternion
(
quaternion
),
neighborQuaternion
);
vec3
diffEuler
=
eulerFromQuaternion
(
quaternionDiff
);
torque
+=
0.00001
*
rotationalK
*
diffEuler
;
// + rotationalD*(neighborAngVelocity[_axis]-angVelocity[_axis]);
}
}
gl_FragColor
=
vec4
(
force
,
0
);
angVelocity
+=
torque
/
momOfInertia
;
gl_FragColor
=
vec4
(
angVelocity
,
0
);
}
\ No newline at end of file
js/simulation/function/EM/shaders/quaternionCalcShader.js
deleted
100644 → 0
View file @
05477888
#
define
M_PI
3.1415926535897932384626433832795
precision
mediump
float
;
uniform
vec2
u_textureDim
;
uniform
vec3
u_latticePitch
;
uniform
float
u_wiresMetaLength
;
uniform
float
u_time
;
uniform
sampler2D
u_lastTranslation
;
uniform
sampler2D
u_fixed
;
uniform
sampler2D
u_neighborsXMapping
;
uniform
sampler2D
u_neighborsYMapping
;
uniform
sampler2D
u_lastQuaternion
;
uniform
sampler2D
u_compositeKs
;
uniform
sampler2D
u_wires
;
uniform
sampler2D
u_wiresMeta
;
vec3
applyQuaternion
(
vec3
vector
,
vec4
quaternion
)
{
float
x
=
vector
[
0
];
float
y
=
vector
[
1
];
float
z
=
vector
[
2
];
float
qx
=
quaternion
[
0
];
float
qy
=
quaternion
[
1
];
float
qz
=
quaternion
[
2
];
float
qw
=
quaternion
[
3
];
// calculate quat * vector
float
ix
=
qw
*
x
+
qy
*
z
-
qz
*
y
;
float
iy
=
qw
*
y
+
qz
*
x
-
qx
*
z
;
float
iz
=
qw
*
z
+
qx
*
y
-
qy
*
x
;
float
iw
=
-
qx
*
x
-
qy
*
y
-
qz
*
z
;
// calculate result * inverse quat
return
vec3
(
ix
*
qw
+
iw
*
-
qx
+
iy
*
-
qz
-
iz
*
-
qy
,
iy
*
qw
+
iw
*
-
qy
+
iz
*
-
qx
-
ix
*
-
qz
,
iz
*
qw
+
iw
*
-
qz
+
ix
*
-
qy
-
iy
*
-
qx
);
}
vec4
quaternionFromUnitVectors
(
vec3
vFrom
,
vec3
vTo
)
{
vec3
v1
=
vec3
(
0
);
float
r
=
dot
(
vFrom
,
vTo
)
+
1.0
;
if
(
r
<
0.000001
)
{
r
=
0.0
;
if
(
abs
(
vFrom
[
0
])
>
abs
(
vFrom
[
2
]))
v1
=
vec3
(
-
vFrom
[
1
],
vFrom
[
0
],
0.0
);
else
v1
=
vec3
(
0.0
,
-
vFrom
[
2
],
vFrom
[
1
]);
}
else
v1
=
cross
(
vFrom
,
vTo
);
return
normalize
(
vec4
(
v1
,
r
));
}
mat4
makeRotationMatrixFromQuaternion
(
vec4
q
)
{
mat4
te
;
float
x
=
q
[
0
];
float
y
=
q
[
1
];
float
z
=
q
[
2
];
float
w
=
q
[
3
];
float
x2
=
x
+
x
;
float
y2
=
y
+
y
;
float
z2
=
z
+
z
;
float
xx
=
x
*
x2
;
float
xy
=
x
*
y2
;
float
xz
=
x
*
z2
;
float
yy
=
y
*
y2
;
float
yz
=
y
*
z2
;
float
zz
=
z
*
z2
;
float
wx
=
w
*
x2
;
float
wy
=
w
*
y2
;
float
wz
=
w
*
z2
;
te
[
0
]
=
vec4
(
1.0
-
(
yy
+
zz
),
xy
-
wz
,
xz
+
wy
,
0
);
te
[
1
]
=
vec4
(
xy
+
wz
,
1.0
-
(
xx
+
zz
),
yz
-
wx
,
0
);
te
[
2
]
=
vec4
(
xz
-
wy
,
yz
+
wx
,
1.0
-
(
xx
+
yy
),
0
);
te
[
3
]
=
vec4
(
0
,
0
,
0
,
1
);
return
te
;
}
vec3
setFromRotationMatrix
(
mat4
te
)
{
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
float
m11
=
te
[
0
][
0
];
float
m12
=
te
[
0
][
1
];
float
m13
=
te
[
0
][
2
];
float
m21
=
te
[
1
][
0
];
float
m22
=
te
[
1
][
1
];
float
m23
=
te
[
1
][
2
];
float
m31
=
te
[
2
][
0
];
float
m32
=
te
[
2
][
1
];
float
m33
=
te
[
2
][
2
];
if
(
abs
(
m13
)
<
0.99999
){
return
vec3
(
atan
(
-
m23
,
m33
),
asin
(
clamp
(
m13
,
-
1.0
,
1.0
)),
atan
(
-
m12
,
m11
));
}
return
vec3
(
atan
(
m32
,
m22
),
asin
(
clamp
(
m13
,
-
1.0
,
1.0
)),
0
);
}
vec3
eulerFromQuaternion
(
vec4
q
){
return
setFromRotationMatrix
(
makeRotationMatrixFromQuaternion
(
q
));
}
vec4
quaternionFromEuler
(
vec3
euler
)
{
float
c1
=
cos
(
euler
[
0
]
/
2.0
);
float
c2
=
cos
(
euler
[
1
]
/
2.0
);
float
c3
=
cos
(
euler
[
2
]
/
2.0
);
float
s1
=
sin
(
euler
[
0
]
/
2.0
);
float
s2
=
sin
(
euler
[
1
]
/
2.0
);
float
s3
=
sin
(
euler
[
2
]
/
2.0
);
return
vec4
(
s1
*
c2
*
c3
+
c1
*
s2
*
s3
,
c1
*
s2
*
c3
-
s1
*
c2
*
s3
,
c1
*
c2
*
s3
+
s1
*
s2
*
c3
,
c1
*
c2
*
c3
-
s1
*
s2
*
s3
);
}
vec4
quaternionFromAxisAngle
(
vec3
axis
,
float
angle
)
{
float
halfAngle
=
angle
/
2.0
;
float
s
=
sin
(
halfAngle
);
return
vec4
(
s
*
axis
,
cos
(
halfAngle
));
}
vec4
multiplyQuaternions
(
vec4
a
,
vec4
b
){
float
qax
=
a
[
0
];
float
qay
=
a
[
1
];
float
qaz
=
a
[
2
];
float
qaw
=
a
[
3
];
float
qbx
=
b
[
0
];
float
qby
=
b
[
1
];
float
qbz
=
b
[
2
];
float
qbw
=
b
[
3
];
return
vec4
(
qax
*
qbw
+
qaw
*
qbx
+
qay
*
qbz
-
qaz
*
qby
,
qay
*
qbw
+
qaw
*
qby
+
qaz
*
qbx
-
qax
*
qbz
,
qaz
*
qbw
+
qaw
*
qbz
+
qax
*
qby
-
qay
*
qbx
,
qaw
*
qbw
-
qax
*
qbx
-
qay
*
qby
-
qaz
*
qbz
);
}
float
neighborSign
(
float
i
){
if
(
mod
(
i
+
0.001
,
2.0
)
<
0.5
)
return
-
1.0
;
return
1.0
;
}
vec3
neighborOffset
(
float
i
,
int
neighborAxis
){
vec3
offset
=
vec3
(
0
);
if
(
neighborAxis
==
0
)
offset
[
0
]
=
neighborSign
(
i
)
*
u_latticePitch
[
0
];
else
if
(
neighborAxis
==
1
)
offset
[
1
]
=
neighborSign
(
i
)
*
u_latticePitch
[
1
];
else
if
(
neighborAxis
==
2
)
offset
[
2
]
=
neighborSign
(
i
)
*
u_latticePitch
[
2
];
return
offset
;
}
int
calcNeighborAxis
(
float
i
){
return
int
(
floor
(
i
/
2.0
+
0.001
));
}
int
convertToInt
(
float
num
){
return
int
(
floor
(
num
+
0.001
));
}
float
getActuatorVoltage
(
float
wireIndex
){
vec2
wireCoord
=
vec2
(
0.5
,
(
floor
(
wireIndex
+
0.001
)
+
0.5
)
/
u_wiresMetaLength
);
vec4
wireMeta
=
texture2D
(
u_wiresMeta
,
wireCoord
);
int
type
=
convertToInt
(
wireMeta
[
0
]);
if
(
type
==
-
1
)
{
//no signal connected
return
0.0
;
}
float
frequency
=
wireMeta
[
1
];
float
period
=
1.0
/
frequency
;
float
phase
=
wireMeta
[
2
];
float
currentPhase
=
mod
(
u_time
+
phase
*
period
,
period
)
/
period
;
if
(
type
==
0
){
return
0.5
*
sin
(
2.0
*
M_PI
*
currentPhase
);
}
if
(
type
==
1
){
float
pwm
=
wireMeta
[
3
];
if
(
currentPhase
<
pwm
)
return
0.5
;
return
-
0.5
;
}
if
(
type
==
2
){
if
(
wireMeta
[
3
]
>
0.5
)
return
0.5
-
currentPhase
;
return
currentPhase
-
0.5
;
}
if
(
type
==
3
){
if
(
currentPhase
<
0.5
)
return
currentPhase
*
2.0
-
0.5
;
return
0.5
-
(
currentPhase
-
0.5
)
*
2.0
;
}
return
0.0
;
}
void
main
(){
vec2
fragCoord
=
gl_FragCoord
.
xy
;
vec2
scaledFragCoord
=
fragCoord
/
u_textureDim
;
float
isFixed
=
texture2D
(
u_fixed
,
scaledFragCoord
).
x
;
if
(
isFixed
<
0.0
||
isFixed
==
1.0
){
//no cell or is fixed
gl_FragColor
=
vec4
(
0
,
0
,
0
,
1
);
return
;
}
vec3
translation
=
texture2D
(
u_lastTranslation
,
scaledFragCoord
).
xyz
;
vec4
quaternion
=
texture2D
(
u_lastQuaternion
,
scaledFragCoord
);
vec4
wiring
=
texture2D
(
u_wires
,
scaledFragCoord
);
bool
isActuator
=
wiring
.
x
<
-
0.5
;
//-1
vec3
rTotal
=
vec3
(
0
);
float
rContrib
=
0.0
;
for
(
float
i
=
0.0
;
i
<
2.0
;
i
+=
1.0
){
float
xIndex
=
2.0
*
(
fragCoord
.
x
-
0.5
)
+
0.5
;
if
(
i
>
0.0
)
xIndex
+=
1.0
;
vec2
mappingIndex
=
vec2
(
xIndex
/
(
u_textureDim
.
x
*
2.0
),
scaledFragCoord
.
y
);
vec3
neighborsXMapping
=
texture2D
(
u_neighborsXMapping
,
mappingIndex
).
xyz
;
vec3
neighborsYMapping
=
texture2D
(
u_neighborsYMapping
,
mappingIndex
).
xyz
;
vec3
compositeKs
=
texture2D
(
u_compositeKs
,
mappingIndex
).
xyz
;
for
(
int
j
=
0
;
j
<
3
;
j
++
){
if
(
neighborsXMapping
[
j
]
<
0.0
)
continue
;
//no neighbor
int
neighborAxis
=
calcNeighborAxis
(
i
*
3.0
+
float
(
j
));
vec2
neighborIndex
=
vec2
(
neighborsXMapping
[
j
],
neighborsYMapping
[
j
]);
neighborIndex
.
x
+=
0.5
;
neighborIndex
.
y
+=
0.5
;
vec2
scaledNeighborIndex
=
neighborIndex
/
u_textureDim
;
vec3
neighborTranslation
=
texture2D
(
u_lastTranslation
,
scaledNeighborIndex
).
xyz
;
vec4
neighborQuaternion
=
texture2D
(
u_lastQuaternion
,
scaledNeighborIndex
);
vec3
neighborEuler
=
eulerFromQuaternion
(
neighborQuaternion
);
vec3
nominalD
=
neighborOffset
(
i
*
3.0
+
float
(
j
),
neighborAxis
);
vec3
actuatedD
=
vec3
(
nominalD
[
0
],
nominalD
[
1
],
nominalD
[
2
]);
float
actuation
=
0.0
;
if
(
isActuator
){
if
(
neighborAxis
==
0
&&
wiring
[
1
]
>
0.1
){
//>0
actuation
+=
0.3
*
getActuatorVoltage
(
wiring
[
1
]
-
1.0
);
}
else
if
(
neighborAxis
==
1
&&
wiring
[
2
]
>
0.1
){
actuation
+=
0.3
*
getActuatorVoltage
(
wiring
[
2
]
-
1.0
);
}
else
if
(
neighborAxis
==
2
&&
wiring
[
3
]
>
0.1
){
actuation
+=
0.3
*
getActuatorVoltage
(
wiring
[
3
]
-
1.0
);
}
}
vec4
neighborWiring
=
texture2D
(
u_wires
,
scaledNeighborIndex
);
if
(
neighborWiring
[
0
]
<
-
0.5
){
if
(
neighborAxis
==
0
&&
neighborWiring
[
1
]
>
0.1
){
actuation
+=
0.3
*
getActuatorVoltage
(
neighborWiring
[
1
]
-
1.0
);
}
else
if
(
neighborAxis
==
1
&&
neighborWiring
[
2
]
>
0.1
){
actuation
+=
0.3
*
getActuatorVoltage
(
neighborWiring
[
2
]
-
1.0
);
}
else
if
(
neighborAxis
==
2
&&
neighborWiring
[
3
]
>
0.1
){
actuation
+=
0.3
*
getActuatorVoltage
(
neighborWiring
[
3
]
-
1.0
);
}
}
if
(
neighborAxis
==
0
)
actuatedD
[
0
]
*=
1.0
+
actuation
;
else
if
(
neighborAxis
==
1
)
actuatedD
[
1
]
*=
1.0
+
actuation
;
else
if
(
neighborAxis
==
2
)
actuatedD
[
2
]
*=
1.0
+
actuation
;