Commit dac26064 authored by amandaghassaei's avatar amandaghassaei

verlet integration in gpu

parent 147f2aba
......@@ -116,6 +116,17 @@ define(['glBoilerplate'], function(glBoilerplate){
this.frameBuffers[texture2Name] = temp;
};
GPUMath.prototype.swap3Textures = function(texture1Name, texture2Name, texture3Name){
var temp = this.textures[texture3Name];
this.textures[texture3Name] = this.textures[texture2Name];
this.textures[texture2Name] = this.textures[texture1Name];
this.textures[texture1Name] = temp;
temp = this.frameBuffers[texture3Name];
this.frameBuffers[texture3Name] = this.frameBuffers[texture2Name];
this.frameBuffers[texture2Name] = this.frameBuffers[texture1Name];
this.frameBuffers[texture1Name] = temp;
};
GPUMath.prototype.readyToRead = function(){
return gl.checkFramebufferStatus(gl.FRAMEBUFFER) == gl.FRAMEBUFFER_COMPLETE;
};
......
This diff is collapsed.
#define M_PI 3.1415926535897932384626433832795
precision mediump float;
uniform vec2 u_textureDim;
uniform vec3 u_gravity;
uniform float u_multiplier;
uniform vec3 u_latticePitch;
uniform float u_wiresMetaLength;
uniform float u_time;
uniform float u_groundHeight;
uniform float u_friction;
uniform sampler2D u_lastVelocity;
uniform sampler2D u_lastTranslation;
uniform sampler2D u_mass;
uniform sampler2D u_neighborsXMapping;
uniform sampler2D u_neighborsYMapping;
uniform sampler2D u_compositeKs;
uniform sampler2D u_compositeDs;
uniform sampler2D u_originalPosition;
uniform sampler2D u_lastQuaternion;
uniform sampler2D u_wires;
uniform sampler2D u_wiresMeta;
vec3 applyQuaternion(vec3 vector, vec4 quaternion) {
float x = vector[0];
float y = vector[1];
float z = vector[2];
float qx = quaternion[0];
float qy = quaternion[1];
float qz = quaternion[2];
float qw = quaternion[3];
// calculate quat * vector
float ix = qw * x + qy * z - qz * y;
float iy = qw * y + qz * x - qx * z;
float iz = qw * z + qx * y - qy * x;
float iw = - qx * x - qy * y - qz * z;
// calculate result * inverse quat
return vec3(ix * qw + iw * - qx + iy * - qz - iz * - qy, iy * qw + iw * - qy + iz * - qx - ix * - qz,
iz * qw + iw * - qz + ix * - qy - iy * - qx);
}
float neighborSign(float i){
if (mod(i+0.001,2.0) < 0.5) return -1.0;
return 1.0;
}
vec3 neighborOffset(float i){
vec3 offset = vec3(0);
int neighborAxis = int(floor(i/2.0+0.001));
if (neighborAxis == 0) offset[0] = neighborSign(i)*u_latticePitch[0];
else if (neighborAxis == 1) offset[1] = neighborSign(i)*u_latticePitch[1];
else if (neighborAxis == 2) offset[2] = neighborSign(i)*u_latticePitch[2];
return offset;
}
int calcNeighborAxis(float i){
return int(floor(i/2.0+0.001));
}
int convertToInt(float num){
return int(floor(num+0.001));
}
float getActuatorVoltage(float wireIndex){
vec2 wireCoord = vec2(0.5, (floor(wireIndex+0.001)+0.5)/u_wiresMetaLength);
vec4 wireMeta = texture2D(u_wiresMeta, wireCoord);
int type = convertToInt(wireMeta[0]);
if (type == -1) {
//no signal connected
return 0.0;
}
float frequency = wireMeta[1];
float period = 1.0/frequency;
float phase = wireMeta[2];
float currentPhase = mod(u_time+phase*period, period)/period;
if (type == 0){
return 0.5*sin(2.0*M_PI*currentPhase);
}
if (type == 1){
float pwm = wireMeta[3];
if (currentPhase < pwm) return 0.5;
return -0.5;
}
if (type == 2){
if (wireMeta[3]>0.5) return 0.5-currentPhase;
return currentPhase-0.5;
}
if (type == 3){
if (currentPhase < 0.5) return currentPhase*2.0-0.5;
return 0.5-(currentPhase-0.5)*2.0;
}
return 0.0;
}
vec4 averageQuaternions(vec4 quaternion1, vec4 quaternion2){
float x = quaternion1[0], y = quaternion1[1], z = quaternion1[2], w = quaternion1[3];
float _x1 = quaternion1[0], _y1 = quaternion1[1], _z1 = quaternion1[2], _w1 = quaternion1[3];
float _x2 = quaternion2[0], _y2 = quaternion2[1], _z2 = quaternion2[2], _w2 = quaternion2[3];
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
float cosHalfTheta = w * _w2 + x * _x2 + y * _y2 + z * _z2;
if ( cosHalfTheta < 0.0 ) {
_w1 = - _w2;
_x1 = - _x2;
_y1 = - _y2;
_z1 = - _z2;
cosHalfTheta = - cosHalfTheta;
} else {
_w1 = _w2;
_x1 = _x2;
_y1 = _y2;
_z1 = _z2;
}
if ( cosHalfTheta >= 1.0 ) {
_w1 = w;
_x1 = x;
_y1 = y;
_z1 = z;
return vec4(_x1, _y1, _z1, _w1);
}
float halfTheta = acos( cosHalfTheta );
float sinHalfTheta = sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
if ( abs( sinHalfTheta ) < 0.001 ) {
_w1 = 0.5 * ( w + _w1 );
_x1 = 0.5 * ( x + _x1 );
_y1 = 0.5 * ( y + _y1 );
_z1 = 0.5 * ( z + _z1 );
return vec4(_x1, _y1, _z1, _w1);
}
float ratioA = sin( ( 0.5 ) * halfTheta ) / sinHalfTheta,
ratioB = sin( 0.5 * halfTheta ) / sinHalfTheta;
_w1 = ( w * ratioA + _w1 * ratioB );
_x1 = ( x * ratioA + _x1 * ratioB );
_y1 = ( y * ratioA + _y1 * ratioB );
_z1 = ( z * ratioA + _z1 * ratioB );
return vec4(_x1, _y1, _z1, _w1);
}
vec4 normalize4D(vec4 vector){
float length = sqrt(vector[0]*vector[0] + vector[1]*vector[1] + vector[2]*vector[2] + vector[3]*vector[3]);
return vec4(vector[0]/length, vector[1]/length, vector[2]/length, vector[3]/length);
}
vec4 invertQuaternion (vec4 quaternion){
return normalize4D(vec4(quaternion[0]*-1.0, quaternion[1]*-1.0, quaternion[2]*-1.0, quaternion[3]));
}
void main(){
vec2 fragCoord = gl_FragCoord.xy;
vec2 scaledFragCoord = fragCoord/u_textureDim;
vec3 massData = texture2D(u_mass, scaledFragCoord).xyz;
float isFixed = massData.y;
if (isFixed < 0.0 || isFixed == 1.0){//no cell or is fixed
gl_FragColor = vec4(0, 0, 0, 0);
return;
}
float mass = massData.x;
vec3 force = u_gravity*mass;
vec3 translation = texture2D(u_lastTranslation, scaledFragCoord).xyz;
vec3 velocity = texture2D(u_lastVelocity, scaledFragCoord).xyz;
vec4 quaternion = texture2D(u_lastQuaternion, scaledFragCoord);
vec4 wiring = texture2D(u_wires, scaledFragCoord);
bool isActuator = wiring[0] < -0.5;//-1
//simple collision
float zPosition = texture2D(u_originalPosition, scaledFragCoord).z + translation.z*u_multiplier - u_groundHeight;
float collisionK = 1.0;
if (zPosition < 0.0) {
float normalForce = -zPosition*collisionK-velocity.z*collisionK/10.0;
force.z += normalForce;
if (u_friction > 0.5){
float mu = 10.0;
if (velocity.x > 0.0) force.x -= mu * normalForce;
else if (velocity.x < 0.0) force.x += mu * normalForce;
if (velocity.y > 0.0) force.y -= mu * normalForce;
else if (velocity.y < 0.0) force.y += mu * normalForce;
}
}
for (float i=0.0;i<2.0;i+=1.0){
float xIndex = 2.0*(fragCoord.x-0.5) + 0.5;
if (i>0.0) xIndex += 1.0;
vec2 mappingIndex = vec2(xIndex/(u_textureDim.x*2.0), scaledFragCoord.y);
vec3 neighborsXMapping = texture2D(u_neighborsXMapping, mappingIndex).xyz;
vec3 neighborsYMapping = texture2D(u_neighborsYMapping, mappingIndex).xyz;
for (int j=0;j<3;j++){
if (neighborsXMapping[j] < 0.0) continue;//no neighbor
int neighborAxis = calcNeighborAxis(i*3.0+float(j));
vec2 neighborIndex = vec2(neighborsXMapping[j], neighborsYMapping[j]);
neighborIndex.x += 0.5;
neighborIndex.y += 0.5;
vec2 scaledNeighborIndex = neighborIndex/u_textureDim;
vec3 neighborTranslation = texture2D(u_lastTranslation, scaledNeighborIndex).xyz;
vec3 neighborVelocity = texture2D(u_lastVelocity, scaledNeighborIndex).xyz;
vec4 neighborQuaternion = texture2D(u_lastQuaternion, scaledNeighborIndex);
vec3 nominalD = neighborOffset(i*3.0+float(j));
vec3 halfNominalD = nominalD/2.0;
vec3 cellHalfNominalD = applyQuaternion(halfNominalD, quaternion);//halfNominalD in cell's reference frame
vec3 neighborHalfNominalD = applyQuaternion(halfNominalD, neighborQuaternion);//halfNominalD in neighbor's reference frame
//vec3 actuatedD = vec3(nominalD[0], nominalD[1], nominalD[2]);
//float actuation = 0.0;
//if (isActuator){
// if (neighborAxis == 0 && wiring[1]>0.1){//>0
// actuation += 0.3*getActuatorVoltage(wiring[1]-1.0);
// } else if (neighborAxis == 1 && wiring[2]>0.1){
// actuation += 0.3*getActuatorVoltage(wiring[2]-1.0);
// } else if (neighborAxis == 2 && wiring[3]>0.1){
// actuation += 0.3*getActuatorVoltage(wiring[3]-1.0);
// }
//}
//vec4 neighborWiring = texture2D(u_wires, scaledNeighborIndex);
//if (neighborWiring[0] < -0.5){
// if (neighborAxis == 0 && neighborWiring[1]>0.1){
// actuation += 0.3*getActuatorVoltage(neighborWiring[1]-1.0);
// } else if (neighborAxis == 1 && neighborWiring[2]>0.1){
// actuation += 0.3*getActuatorVoltage(neighborWiring[2]-1.0);
// } else if (neighborAxis == 2 && neighborWiring[3]>0.1){
// actuation += 0.3*getActuatorVoltage(neighborWiring[3]-1.0);
// }
//}
//if (neighborAxis == 0) actuatedD[0] *= 1.0+actuation;
//else if (neighborAxis == 1) actuatedD[1] *= 1.0+actuation;
//else if (neighborAxis == 2) actuatedD[2] *= 1.0+actuation;
vec2 kIndex = vec2(((fragCoord.x-0.5)*12.0 + 2.0*(i*3.0+float(j)) + 0.5)/(u_textureDim.x*12.0), scaledFragCoord.y);
vec3 translationalK = texture2D(u_compositeKs, kIndex).xyz;
vec3 translationalD = texture2D(u_compositeDs, kIndex).xyz;
vec4 averageQuaternion = averageQuaternions(quaternion, neighborQuaternion);
vec4 averageQuaternionInverse = invertQuaternion(averageQuaternion);
vec3 translationalDelta = neighborTranslation - translation + nominalD - cellHalfNominalD - neighborHalfNominalD;
vec3 translationalDeltaXYZ = applyQuaternion(translationalDelta, averageQuaternionInverse);
vec3 velocityDelta = neighborVelocity-velocity;
vec3 velocityDeltaXYZ = applyQuaternion(velocityDelta, averageQuaternionInverse);
vec3 _force = translationalK*translationalDeltaXYZ + translationalD*velocityDeltaXYZ;
//convert _force vector back into world reference frame
_force = applyQuaternion(_force, averageQuaternion);
force += _force;
}
}
gl_FragColor = vec4(force/mass, 0);
}
\ No newline at end of file
......@@ -3,8 +3,9 @@ precision highp float;
uniform vec2 u_textureDim;
uniform float u_dt;
uniform sampler2D u_velocity;
uniform sampler2D u_acceleration;
uniform sampler2D u_lastTranslation;
uniform sampler2D u_lastLastTranslation;
uniform sampler2D u_mass;
void main(){
......@@ -18,9 +19,10 @@ void main(){
}
vec3 lastTranslation = texture2D(u_lastTranslation, scaledFragCoord).xyz;
vec3 velocity = texture2D(u_velocity, scaledFragCoord).xyz;
vec3 lastLastTranslation = texture2D(u_lastLastTranslation, scaledFragCoord).xyz;
vec3 acceleration = texture2D(u_acceleration, scaledFragCoord).xyz;
vec3 translation = lastTranslation + velocity*u_dt;
vec3 translation = 2.0*lastTranslation - lastLastTranslation + acceleration*u_dt*u_dt;
gl_FragColor = vec4(translation, 0);
}
\ No newline at end of file
#define M_PI 3.1415926535897932384626433832795
precision mediump float;
precision highp float;
uniform vec2 u_textureDim;
uniform vec3 u_gravity;
uniform float u_dt;
uniform float u_multiplier;
uniform vec3 u_latticePitch;
uniform float u_wiresMetaLength;
uniform float u_time;
uniform float u_groundHeight;
uniform float u_friction;
uniform sampler2D u_lastVelocity;
uniform sampler2D u_translation;
uniform sampler2D u_lastTranslation;
uniform sampler2D u_mass;
uniform sampler2D u_neighborsXMapping;
uniform sampler2D u_neighborsYMapping;
uniform sampler2D u_compositeKs;
uniform sampler2D u_compositeDs;
uniform sampler2D u_originalPosition;
uniform sampler2D u_lastQuaternion;
uniform sampler2D u_wires;
uniform sampler2D u_wiresMeta;
vec3 applyQuaternion(vec3 vector, vec4 quaternion) {
float x = vector[0];
float y = vector[1];
float z = vector[2];
float qx = quaternion[0];
float qy = quaternion[1];
float qz = quaternion[2];
float qw = quaternion[3];
// calculate quat * vector
float ix = qw * x + qy * z - qz * y;
float iy = qw * y + qz * x - qx * z;
float iz = qw * z + qx * y - qy * x;
float iw = - qx * x - qy * y - qz * z;
// calculate result * inverse quat
return vec3(ix * qw + iw * - qx + iy * - qz - iz * - qy, iy * qw + iw * - qy + iz * - qx - ix * - qz,
iz * qw + iw * - qz + ix * - qy - iy * - qx);
}
float neighborSign(float i){
if (mod(i+0.001,2.0) < 0.5) return -1.0;
return 1.0;
}
vec3 neighborOffset(float i){
vec3 offset = vec3(0);
int neighborAxis = int(floor(i/2.0+0.001));
if (neighborAxis == 0) offset[0] = neighborSign(i)*u_latticePitch[0];
else if (neighborAxis == 1) offset[1] = neighborSign(i)*u_latticePitch[1];
else if (neighborAxis == 2) offset[2] = neighborSign(i)*u_latticePitch[2];
return offset;
}
int calcNeighborAxis(float i){
return int(floor(i/2.0+0.001));
}
int convertToInt(float num){
return int(floor(num+0.001));
}
float getActuatorVoltage(float wireIndex){
vec2 wireCoord = vec2(0.5, (floor(wireIndex+0.001)+0.5)/u_wiresMetaLength);
vec4 wireMeta = texture2D(u_wiresMeta, wireCoord);
int type = convertToInt(wireMeta[0]);
if (type == -1) {
//no signal connected
return 0.0;
}
float frequency = wireMeta[1];
float period = 1.0/frequency;
float phase = wireMeta[2];
float currentPhase = mod(u_time+phase*period, period)/period;
if (type == 0){
return 0.5*sin(2.0*M_PI*currentPhase);
}
if (type == 1){
float pwm = wireMeta[3];
if (currentPhase < pwm) return 0.5;
return -0.5;
}
if (type == 2){
if (wireMeta[3]>0.5) return 0.5-currentPhase;
return currentPhase-0.5;
}
if (type == 3){
if (currentPhase < 0.5) return currentPhase*2.0-0.5;
return 0.5-(currentPhase-0.5)*2.0;
}
return 0.0;
}
vec4 averageQuaternions(vec4 quaternion1, vec4 quaternion2){
float x = quaternion1[0], y = quaternion1[1], z = quaternion1[2], w = quaternion1[3];
float _x1 = quaternion1[0], _y1 = quaternion1[1], _z1 = quaternion1[2], _w1 = quaternion1[3];
float _x2 = quaternion2[0], _y2 = quaternion2[1], _z2 = quaternion2[2], _w2 = quaternion2[3];
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
float cosHalfTheta = w * _w2 + x * _x2 + y * _y2 + z * _z2;
if ( cosHalfTheta < 0.0 ) {
_w1 = - _w2;
_x1 = - _x2;
_y1 = - _y2;
_z1 = - _z2;
cosHalfTheta = - cosHalfTheta;
} else {
_w1 = _w2;
_x1 = _x2;
_y1 = _y2;
_z1 = _z2;
}
if ( cosHalfTheta >= 1.0 ) {
_w1 = w;
_x1 = x;
_y1 = y;
_z1 = z;
return vec4(_x1, _y1, _z1, _w1);
}
float halfTheta = acos( cosHalfTheta );
float sinHalfTheta = sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
if ( abs( sinHalfTheta ) < 0.001 ) {
_w1 = 0.5 * ( w + _w1 );
_x1 = 0.5 * ( x + _x1 );
_y1 = 0.5 * ( y + _y1 );
_z1 = 0.5 * ( z + _z1 );
return vec4(_x1, _y1, _z1, _w1);
}
float ratioA = sin( ( 0.5 ) * halfTheta ) / sinHalfTheta,
ratioB = sin( 0.5 * halfTheta ) / sinHalfTheta;
_w1 = ( w * ratioA + _w1 * ratioB );
_x1 = ( x * ratioA + _x1 * ratioB );
_y1 = ( y * ratioA + _y1 * ratioB );
_z1 = ( z * ratioA + _z1 * ratioB );
return vec4(_x1, _y1, _z1, _w1);
}
vec4 normalize4D(vec4 vector){
float length = sqrt(vector[0]*vector[0] + vector[1]*vector[1] + vector[2]*vector[2] + vector[3]*vector[3]);
return vec4(vector[0]/length, vector[1]/length, vector[2]/length, vector[3]/length);
}
vec4 invertQuaternion (vec4 quaternion){
return normalize4D(vec4(quaternion[0]*-1.0, quaternion[1]*-1.0, quaternion[2]*-1.0, quaternion[3]));
}
void main(){
vec2 fragCoord = gl_FragCoord.xy;
vec2 scaledFragCoord = fragCoord/u_textureDim;
vec3 massData = texture2D(u_mass, scaledFragCoord).xyz;
float isFixed = massData.y;
float isFixed = texture2D(u_mass, scaledFragCoord).y;
if (isFixed < 0.0 || isFixed == 1.0){//no cell or is fixed
gl_FragColor = vec4(0, 0, 0, 0);
return;
}
float mass = massData.x;
vec3 force = u_gravity*mass;
vec3 translation = texture2D(u_lastTranslation, scaledFragCoord).xyz;
vec3 velocity = texture2D(u_lastVelocity, scaledFragCoord).xyz;
vec4 quaternion = texture2D(u_lastQuaternion, scaledFragCoord);
vec3 lastTranslation = texture2D(u_lastTranslation, scaledFragCoord).xyz;
vec3 translation = texture2D(u_translation, scaledFragCoord).xyz;
vec4 wiring = texture2D(u_wires, scaledFragCoord);
bool isActuator = wiring[0] < -0.5;//-1
//simple collision
float zPosition = texture2D(u_originalPosition, scaledFragCoord).z + translation.z*u_multiplier - u_groundHeight;
float collisionK = 1.0;
if (zPosition < 0.0) {
float normalForce = -zPosition*collisionK-velocity.z*collisionK/10.0;
force.z += normalForce;
if (u_friction > 0.5){
float mu = 10.0;
if (velocity.x > 0.0) force.x -= mu * normalForce;
else if (velocity.x < 0.0) force.x += mu * normalForce;
if (velocity.y > 0.0) force.y -= mu * normalForce;
else if (velocity.y < 0.0) force.y += mu * normalForce;
}
}
for (float i=0.0;i<2.0;i+=1.0){
float xIndex = 2.0*(fragCoord.x-0.5) + 0.5;
if (i>0.0) xIndex += 1.0;
vec2 mappingIndex = vec2(xIndex/(u_textureDim.x*2.0), scaledFragCoord.y);
vec3 neighborsXMapping = texture2D(u_neighborsXMapping, mappingIndex).xyz;
vec3 neighborsYMapping = texture2D(u_neighborsYMapping, mappingIndex).xyz;
for (int j=0;j<3;j++){
if (neighborsXMapping[j] < 0.0) continue;//no neighbor
int neighborAxis = calcNeighborAxis(i*3.0+float(j));
vec2 neighborIndex = vec2(neighborsXMapping[j], neighborsYMapping[j]);
neighborIndex.x += 0.5;
neighborIndex.y += 0.5;
vec2 scaledNeighborIndex = neighborIndex/u_textureDim;
vec3 neighborTranslation = texture2D(u_lastTranslation, scaledNeighborIndex).xyz;
vec3 neighborVelocity = texture2D(u_lastVelocity, scaledNeighborIndex).xyz;
vec4 neighborQuaternion = texture2D(u_lastQuaternion, scaledNeighborIndex);
vec3 nominalD = neighborOffset(i*3.0+float(j));
vec3 halfNominalD = nominalD/2.0;
vec3 cellHalfNominalD = applyQuaternion(halfNominalD, quaternion);//halfNominalD in cell's reference frame
vec3 neighborHalfNominalD = applyQuaternion(halfNominalD, neighborQuaternion);//halfNominalD in neighbor's reference frame
//vec3 actuatedD = vec3(nominalD[0], nominalD[1], nominalD[2]);
//float actuation = 0.0;
//if (isActuator){
// if (neighborAxis == 0 && wiring[1]>0.1){//>0
// actuation += 0.3*getActuatorVoltage(wiring[1]-1.0);
// } else if (neighborAxis == 1 && wiring[2]>0.1){
// actuation += 0.3*getActuatorVoltage(wiring[2]-1.0);
// } else if (neighborAxis == 2 && wiring[3]>0.1){
// actuation += 0.3*getActuatorVoltage(wiring[3]-1.0);
// }
//}
//vec4 neighborWiring = texture2D(u_wires, scaledNeighborIndex);
//if (neighborWiring[0] < -0.5){
// if (neighborAxis == 0 && neighborWiring[1]>0.1){
// actuation += 0.3*getActuatorVoltage(neighborWiring[1]-1.0);
// } else if (neighborAxis == 1 && neighborWiring[2]>0.1){
// actuation += 0.3*getActuatorVoltage(neighborWiring[2]-1.0);
// } else if (neighborAxis == 2 && neighborWiring[3]>0.1){
// actuation += 0.3*getActuatorVoltage(neighborWiring[3]-1.0);
// }
//}