From 9b43d300c32807840b1be8d8586d06366c09d8cf Mon Sep 17 00:00:00 2001
From: amiraa <amiraa@mit.edu>
Date: Thu, 5 May 2022 08:27:31 -0400
Subject: [PATCH] small fix structural mechanics model

---
 03_Research/structureModel.md | 8 ++++----
 1 file changed, 4 insertions(+), 4 deletions(-)

diff --git a/03_Research/structureModel.md b/03_Research/structureModel.md
index 22e5638..40b46b4 100644
--- a/03_Research/structureModel.md
+++ b/03_Research/structureModel.md
@@ -127,17 +127,17 @@ M_t= \sum_{b=1}^{b=n} \vec{M_b}
 ---
 ### Integration
 
-Double euler integration is used from timestep $t_n$ to $t_{n+1}=t+dt$:
+Double euler integration is used from timestep $`t_n`$ to $`t_{n+1}=t+dt`$:
 
-$$
+```math
 \vec{P}_{t_{n+1}}=\vec{P}_{t_{n}}+F_tdt \\
 \vec{D}_{t_{n+1}}=\vec{D}_{t_{n}}+\frac{\vec{P}_{t_{n+1}}}{m}dt \\
 \vec{\phi}_{t_{n+1}}=\vec{\phi}_{t_{n}}+M_tdt \\
 \vec{\theta}_{t_{n+1}}=\vec{\theta}_{t_{n}}+\frac{\vec{\phi}_{t_{n+1}}}{I}dt \\
 
-$$
+```
 
- where $\vec{D}$ is the three dimensional position vector, $\vec{\theta}$ is the three dimensional rotational, $\vec{P}$ is the three dimensional linear momentum, $\vec{\phi}$ is the rotational momentum. Finally, $m$ is the mass and $I$ is the rotational inertia.
+where $`\vec{D}`$ is the three dimensional position vector, $`\vec{\theta}`$ is the three dimensional rotational, $`\vec{P}`$ is the three dimensional linear momentum, $`\vec{\phi}`$ is the rotational momentum. Finally, $`m`$ is the mass and $`I`$ is the rotational inertia.
 
 
 
-- 
GitLab