From 9b43d300c32807840b1be8d8586d06366c09d8cf Mon Sep 17 00:00:00 2001 From: amiraa <amiraa@mit.edu> Date: Thu, 5 May 2022 08:27:31 -0400 Subject: [PATCH] small fix structural mechanics model --- 03_Research/structureModel.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/03_Research/structureModel.md b/03_Research/structureModel.md index 22e5638..40b46b4 100644 --- a/03_Research/structureModel.md +++ b/03_Research/structureModel.md @@ -127,17 +127,17 @@ M_t= \sum_{b=1}^{b=n} \vec{M_b} --- ### Integration -Double euler integration is used from timestep $t_n$ to $t_{n+1}=t+dt$: +Double euler integration is used from timestep $`t_n`$ to $`t_{n+1}=t+dt`$: -$$ +```math \vec{P}_{t_{n+1}}=\vec{P}_{t_{n}}+F_tdt \\ \vec{D}_{t_{n+1}}=\vec{D}_{t_{n}}+\frac{\vec{P}_{t_{n+1}}}{m}dt \\ \vec{\phi}_{t_{n+1}}=\vec{\phi}_{t_{n}}+M_tdt \\ \vec{\theta}_{t_{n+1}}=\vec{\theta}_{t_{n}}+\frac{\vec{\phi}_{t_{n+1}}}{I}dt \\ -$$ +``` - where $\vec{D}$ is the three dimensional position vector, $\vec{\theta}$ is the three dimensional rotational, $\vec{P}$ is the three dimensional linear momentum, $\vec{\phi}$ is the rotational momentum. Finally, $m$ is the mass and $I$ is the rotational inertia. +where $`\vec{D}`$ is the three dimensional position vector, $`\vec{\theta}`$ is the three dimensional rotational, $`\vec{P}`$ is the three dimensional linear momentum, $`\vec{\phi}`$ is the rotational momentum. Finally, $`m`$ is the mass and $`I`$ is the rotational inertia. -- GitLab