BootloaderDFU.c 22.6 KB
Newer Older
1 2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2011.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7 8 9
*/

/*
10
  Copyright 2011  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16 17 18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
 */

#define  INCLUDE_FROM_BOOTLOADER_C
#include "BootloaderDFU.h"

/** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
 *  other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41
 *  once a memory erase has completed in a bootloader session.
42
 */
43
static bool IsSecure = SECURE_MODE;
44 45 46 47 48

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
 */
49
static bool RunBootloader = true;
50 51 52 53 54 55

/** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
 *  jump to the application address it specifies, it sends two sequential commands which must be properly
 *  acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
 *  causing the bootloader to wait for the final exit command before shutting down.
 */
56
static bool WaitForExit = false;
57 58

/** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59
static uint8_t DFU_State = dfuIDLE;
60 61 62 63

/** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
 *  each operation, and returned to the host when a Get Status DFU request is issued.
 */
64
static uint8_t DFU_Status = OK;
65 66

/** Data containing the DFU command sent from the host. */
67
static DFU_Command_t SentCommand;
68 69 70 71 72

/** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
 *  requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
 *  is issued by the host.
 */
73
static uint8_t ResponseByte;
74 75 76 77

/** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
 *  may specify an alternate address when issuing the application soft-start command.
 */
78
static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79 80 81 82

/** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
 *  64KB of flash memory.
 */
83
static uint8_t Flash64KBPage = 0;
84 85 86 87

/** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
 *  depending on the issued command from the host).
 */
88
static uint16_t StartAddr = 0x0000;
89

90
/** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 92
 *  of EEPROM depending on the issued command from the host).
 */
93
static uint16_t EndAddr = 0x0000;
94 95


96
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
97 98 99 100 101 102 103
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Configure hardware required by the bootloader */
	SetupHardware();
104

105 106 107 108 109 110 111
	#if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
	/* Disable JTAG debugging */
	MCUCR |= (1 << JTD);
	MCUCR |= (1 << JTD);

	/* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
	PORTF |= (1 << 4);
112
	Delay_MS(10);
113 114 115 116 117 118 119 120 121

	/* If the TCK pin is not jumpered to ground, start the user application instead */
	RunBootloader = (!(PINF & (1 << 4)));
	
	/* Re-enable JTAG debugging */
	MCUCR &= ~(1 << JTD);
	MCUCR &= ~(1 << JTD);	
	#endif

122 123 124
	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1);

125 126 127 128 129 130
	/* Enable global interrupts so that the USB stack can function */
	sei();

	/* Run the USB management task while the bootloader is supposed to be running */
	while (RunBootloader || WaitForExit)
	  USB_USBTask();
131

132 133
	/* Reset configured hardware back to their original states for the user application */
	ResetHardware();
134

135 136 137 138 139 140 141 142 143 144 145 146 147
	/* Start the user application */
	AppStartPtr();
}

/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
148

149 150 151 152 153 154
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);

	/* Initialize the USB subsystem */
	USB_Init();
155 156 157 158 159
	LEDs_Init();
	
	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
	TCCR1B = ((1 << CS11) | (1 << CS10));
160 161 162 163 164 165
}

/** Resets all configured hardware required for the bootloader back to their original states. */
void ResetHardware(void)
{
	/* Shut down the USB subsystem */
166
	USB_Disable();
167

168 169 170 171 172
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;
}

173 174 175 176 177 178
/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
}

179 180 181
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
182
 */
183
void EVENT_USB_Device_ControlRequest(void)
184
{	
185 186 187 188 189 190
	/* Ignore any requests that aren't directed to the DFU interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}
191

192 193 194 195 196 197
	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

	/* Get the size of the command and data from the wLength value */
	SentCommand.DataSize = USB_ControlRequest.wLength;

198 199
	switch (USB_ControlRequest.bRequest)
	{
200
		case DFU_REQ_DNLOAD:
201
			Endpoint_ClearSETUP();
202

203 204 205 206 207
			/* Check if bootloader is waiting to terminate */
			if (WaitForExit)
			{
				/* Bootloader is terminating - process last received command */
				ProcessBootloaderCommand();
208

209 210 211
				/* Indicate that the last command has now been processed - free to exit bootloader */
				WaitForExit = false;
			}
212

213 214 215 216
			/* If the request has a data stage, load it into the command struct */
			if (SentCommand.DataSize)
			{
				while (!(Endpoint_IsOUTReceived()))
217
				{
218 219 220 221 222
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}

				/* First byte of the data stage is the DNLOAD request's command */
223
				SentCommand.Command = Endpoint_Read_8();
224

225 226
				/* One byte of the data stage is the command, so subtract it from the total data bytes */
				SentCommand.DataSize--;
227

228 229 230 231
				/* Load in the rest of the data stage as command parameters */
				for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
				     Endpoint_BytesInEndpoint(); DataByte++)
				{
232
					SentCommand.Data[DataByte] = Endpoint_Read_8();
233 234
					SentCommand.DataSize--;
				}
235

236 237 238
				/* Process the command */
				ProcessBootloaderCommand();
			}
239

240 241
			/* Check if currently downloading firmware */
			if (DFU_State == dfuDNLOAD_IDLE)
242
			{
243 244 245 246 247 248 249 250 251 252 253
				if (!(SentCommand.DataSize))
				{
					DFU_State = dfuIDLE;
				}
				else
				{
					/* Throw away the filler bytes before the start of the firmware */
					DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);

					/* Throw away the packet alignment filler bytes before the start of the firmware */
					DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
254

255 256
					/* Calculate the number of bytes remaining to be written */
					uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
257

258 259 260 261
					if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))        // Write flash
					{
						/* Calculate the number of words to be written from the number of bytes to be written */
						uint16_t WordsRemaining = (BytesRemaining >> 1);
262

263 264 265 266 267
						union
						{
							uint16_t Words[2];
							uint32_t Long;
						} CurrFlashAddress                 = {.Words = {StartAddr, Flash64KBPage}};
268

269 270 271 272 273 274 275 276 277 278 279
						uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
						uint8_t  WordsInFlashPage          = 0;

						while (WordsRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
								Endpoint_ClearOUT();

								while (!(Endpoint_IsOUTReceived()))
280
								{
281 282 283 284 285 286
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
							}

							/* Write the next word into the current flash page */
287
							boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());
288 289 290 291 292 293 294 295 296 297 298

							/* Adjust counters */
							WordsInFlashPage      += 1;
							CurrFlashAddress.Long += 2;

							/* See if an entire page has been written to the flash page buffer */
							if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
							{
								/* Commit the flash page to memory */
								boot_page_write(CurrFlashPageStartAddress);
								boot_spm_busy_wait();
299

300 301 302 303 304 305 306 307 308 309 310 311
								/* Check if programming incomplete */
								if (WordsRemaining)
								{
									CurrFlashPageStartAddress = CurrFlashAddress.Long;
									WordsInFlashPage          = 0;

									/* Erase next page's temp buffer */
									boot_page_erase(CurrFlashAddress.Long);
									boot_spm_busy_wait();
								}
							}
						}
312

313 314
						/* Once programming complete, start address equals the end address */
						StartAddr = EndAddr;
315

316 317 318 319 320 321 322 323 324 325 326 327 328
						/* Re-enable the RWW section of flash */
						boot_rww_enable();
					}
					else                                                   // Write EEPROM
					{
						while (BytesRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
								Endpoint_ClearOUT();

								while (!(Endpoint_IsOUTReceived()))
329
								{
330 331 332 333 334 335
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
							}

							/* Read the byte from the USB interface and write to to the EEPROM */
336
							eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8());
337

338 339 340 341
							/* Adjust counters */
							StartAddr++;
						}
					}
342

343 344 345 346 347 348 349 350 351 352
					/* Throw away the currently unused DFU file suffix */
					DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
				}
			}

			Endpoint_ClearOUT();

			Endpoint_ClearStatusStage();

			break;
353
		case DFU_REQ_UPLOAD:
354 355 356
			Endpoint_ClearSETUP();

			while (!(Endpoint_IsINReady()))
357
			{
358 359 360
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}
361

362 363 364 365 366 367
			if (DFU_State != dfuUPLOAD_IDLE)
			{
				if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))       // Blank Check
				{
					/* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
					   that the memory isn't blank, and the host is requesting the first non-blank address */
368
					Endpoint_Write_16_LE(StartAddr);
369 370 371 372
				}
				else
				{
					/* Idle state upload - send response to last issued command */
373
					Endpoint_Write_8(ResponseByte);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
				}
			}
			else
			{
				/* Determine the number of bytes remaining in the current block */
				uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);

				if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))            // Read FLASH
				{
					/* Calculate the number of words to be written from the number of bytes to be written */
					uint16_t WordsRemaining = (BytesRemaining >> 1);

					union
					{
						uint16_t Words[2];
						uint32_t Long;
					} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};

					while (WordsRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
							Endpoint_ClearIN();

							while (!(Endpoint_IsINReady()))
400
							{
401 402 403 404 405 406 407
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
						}

						/* Read the flash word and send it via USB to the host */
						#if (FLASHEND > 0xFFFF)
408
							Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
409
						#else
410
							Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
411 412 413 414 415
						#endif

						/* Adjust counters */
						CurrFlashAddress.Long += 2;
					}
416

417 418 419 420 421 422 423 424 425 426 427
					/* Once reading is complete, start address equals the end address */
					StartAddr = EndAddr;
				}
				else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))       // Read EEPROM
				{
					while (BytesRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
							Endpoint_ClearIN();
428

429
							while (!(Endpoint_IsINReady()))
430
							{
431 432 433 434 435 436
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
						}

						/* Read the EEPROM byte and send it via USB to the host */
437
						Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
438 439 440 441 442 443 444 445 446 447 448 449 450 451

						/* Adjust counters */
						StartAddr++;
					}
				}

				/* Return to idle state */
				DFU_State = dfuIDLE;
			}

			Endpoint_ClearIN();

			Endpoint_ClearStatusStage();
			break;
452
		case DFU_REQ_GETSTATUS:
453
			Endpoint_ClearSETUP();
454

455
			/* Write 8-bit status value */
456
			Endpoint_Write_8(DFU_Status);
457

458
			/* Write 24-bit poll timeout value */
459 460
			Endpoint_Write_8(0);
			Endpoint_Write_16_LE(0);
461

462
			/* Write 8-bit state value */
463
			Endpoint_Write_8(DFU_State);
464 465

			/* Write 8-bit state string ID number */
466
			Endpoint_Write_8(0);
467 468

			Endpoint_ClearIN();
469

470
			Endpoint_ClearStatusStage();
471
			break;
472
		case DFU_REQ_CLRSTATUS:
473
			Endpoint_ClearSETUP();
474

475 476 477 478 479
			/* Reset the status value variable to the default OK status */
			DFU_Status = OK;

			Endpoint_ClearStatusStage();
			break;
480
		case DFU_REQ_GETSTATE:
481
			Endpoint_ClearSETUP();
482

483
			/* Write the current device state to the endpoint */
484
			Endpoint_Write_8(DFU_State);
485

486
			Endpoint_ClearIN();
487

488 489
			Endpoint_ClearStatusStage();
			break;
490
		case DFU_REQ_ABORT:
491
			Endpoint_ClearSETUP();
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
			/* Reset the current state variable to the default idle state */
			DFU_State = dfuIDLE;

			Endpoint_ClearStatusStage();
			break;
	}
}

/** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
 *  discard unused bytes in the stream from the host, including the memory program block suffix.
 *
 *  \param[in] NumberOfBytes  Number of bytes to discard from the host from the control endpoint
 */
static void DiscardFillerBytes(uint8_t NumberOfBytes)
{
	while (NumberOfBytes--)
	{
		if (!(Endpoint_BytesInEndpoint()))
		{
			Endpoint_ClearOUT();

			/* Wait until next data packet received */
			while (!(Endpoint_IsOUTReceived()))
516
			{
517 518 519 520 521 522
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}
		}
		else
		{
523
			Endpoint_Discard_8();
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		}
	}
}

/** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
 *  that the command is allowed based on the current secure mode flag value, and passes the command off to the
 *  appropriate handler function.
 */
static void ProcessBootloaderCommand(void)
{
	/* Check if device is in secure mode */
	if (IsSecure)
	{
		/* Don't process command unless it is a READ or chip erase command */
		if (!(((SentCommand.Command == COMMAND_WRITE)             &&
		        IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
			   (SentCommand.Command == COMMAND_READ)))
		{
			/* Set the state and status variables to indicate the error */
			DFU_State  = dfuERROR;
			DFU_Status = errWRITE;
545

546 547
			/* Stall command */
			Endpoint_StallTransaction();
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
			/* Don't process the command */
			return;
		}
	}

	/* Dispatch the required command processing routine based on the command type */
	switch (SentCommand.Command)
	{
		case COMMAND_PROG_START:
			ProcessMemProgCommand();
			break;
		case COMMAND_DISP_DATA:
			ProcessMemReadCommand();
			break;
		case COMMAND_WRITE:
			ProcessWriteCommand();
			break;
		case COMMAND_READ:
			ProcessReadCommand();
			break;
		case COMMAND_CHANGE_BASE_ADDR:
			if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00))              // Set 64KB flash page command
			  Flash64KBPage = SentCommand.Data[2];

			break;
	}
}

/** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
 *  in the StartAddr and EndAddr global variables.
 */
static void LoadStartEndAddresses(void)
{
	union
	{
		uint8_t  Bytes[2];
		uint16_t Word;
	} Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
	                {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
588

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	/* Load in the start and ending read addresses from the sent data packet */
	StartAddr = Address[0].Word;
	EndAddr   = Address[1].Word;
}

/** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
 *  to write subsequent data from the host into the specified memory.
 */
static void ProcessMemProgCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Write FLASH command
	    IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                            // Write EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();
604

605 606 607 608 609 610 611 612
		/* If FLASH is being written to, we need to pre-erase the first page to write to */
		if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
		{
			union
			{
				uint16_t Words[2];
				uint32_t Long;
			} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
613

614 615 616 617
			/* Erase the current page's temp buffer */
			boot_page_erase(CurrFlashAddress.Long);
			boot_spm_busy_wait();
		}
618

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		/* Set the state so that the next DNLOAD requests reads in the firmware */
		DFU_State = dfuDNLOAD_IDLE;
	}
}

/** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
 *  to read subsequent data from the specified memory out to the host, as well as implementing the memory
 *  blank check command.
 */
static void ProcessMemReadCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Read FLASH command
        IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))                            // Read EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();

		/* Set the state so that the next UPLOAD requests read out the firmware */
		DFU_State = dfuUPLOAD_IDLE;
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                       // Blank check FLASH command
	{
		uint32_t CurrFlashAddress = 0;

		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			/* Check if the current byte is not blank */
			#if (FLASHEND > 0xFFFF)
			if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
			#else
			if (pgm_read_byte(CurrFlashAddress) != 0xFF)
			#endif
			{
				/* Save the location of the first non-blank byte for response back to the host */
				Flash64KBPage = (CurrFlashAddress >> 16);
				StartAddr     = CurrFlashAddress;
655

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
				/* Set state and status variables to the appropriate error values */
				DFU_State  = dfuERROR;
				DFU_Status = errCHECK_ERASED;

				break;
			}

			CurrFlashAddress++;
		}
	}
}

/** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
 *  bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
 */
static void ProcessWriteCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03))                            // Start application
	{
		/* Indicate that the bootloader is terminating */
		WaitForExit = true;

678 679
		/* Check if data supplied for the Start Program command - no data executes the program */
		if (SentCommand.DataSize)
680
		{
681
			if (SentCommand.Data[1] == 0x01)                                   // Start via jump
682 683 684 685 686 687 688
			{
				union
				{
					uint8_t  Bytes[2];
					AppPtr_t FuncPtr;
				} Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};

689
				/* Load in the jump address into the application start address pointer */
690
				AppStartPtr = Address.FuncPtr;
691 692 693 694 695 696 697 698 699 700 701
			}
		}
		else
		{
			if (SentCommand.Data[1] == 0x00)                                   // Start via watchdog
			{
				/* Start the watchdog to reset the AVR once the communications are finalized */
				wdt_enable(WDTO_250MS);
			}
			else                                                               // Start via jump
			{
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
				/* Set the flag to terminate the bootloader at next opportunity */
				RunBootloader = false;
			}
		}
	}
	else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF))                 // Erase flash
	{
		uint32_t CurrFlashAddress = 0;

		/* Clear the application section of flash */
		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();

			CurrFlashAddress += SPM_PAGESIZE;
		}

		/* Re-enable the RWW section of flash as writing to the flash locks it out */
		boot_rww_enable();
724

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		/* Memory has been erased, reset the security bit so that programming/reading is allowed */
		IsSecure = false;
	}
}

/** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
 *  commands such as device signature and bootloader version retrieval.
 */
static void ProcessReadCommand(void)
{
	const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
	const uint8_t SignatureInfo[3]  = {AVR_SIGNATURE_1,    AVR_SIGNATURE_2,     AVR_SIGNATURE_3};

	uint8_t DataIndexToRead = SentCommand.Data[1];

	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))                         // Read bootloader info
	  ResponseByte = BootloaderInfo[DataIndexToRead];
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                    // Read signature byte
	  ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
}