ISPProtocol.c 17.6 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2011.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2011  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices.
 */

#include "ISPProtocol.h"

#if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)

/** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on
 *  the attached device, returning success or failure back to the host.
 */
void ISPProtocol_EnterISPMode(void)
{
	struct
	{
		uint8_t TimeoutMS;
		uint8_t PinStabDelayMS;
		uint8_t ExecutionDelayMS;
		uint8_t SynchLoops;
		uint8_t ByteDelay;
		uint8_t PollValue;
		uint8_t PollIndex;
		uint8_t EnterProgBytes[4];
55
	} Enter_ISP_Params;
56

57
	Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NULL);
58
59
60
61
62
63

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint8_t ResponseStatus = STATUS_CMD_FAILED;
64

65
	CurrentAddress = 0;
66

67
	/* Perform execution delay, initialize SPI bus */
68
	ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS);
69
	ISPTarget_EnableTargetISP();
70

71
72
	ISPTarget_ChangeTargetResetLine(true);

73
74
	/* Continuously attempt to synchronize with the target until either the number of attempts specified
	 * by the host has exceeded, or the the device sends back the expected response values */
75
	while (Enter_ISP_Params.SynchLoops-- && (ResponseStatus != STATUS_CMD_OK) && !(TimeoutExpired))
76
77
78
79
80
81
	{
		uint8_t ResponseBytes[4];

		for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
		{
			ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay);
82
			ResponseBytes[RByte] = ISPTarget_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]);
83
		}
84

85
86
87
88
89
90
91
92
93
		/* Check if polling disabled, or if the polled value matches the expected value */
		if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue))
		{
			ResponseStatus = STATUS_CMD_OK;
		}
		else
		{
			ISPTarget_ChangeTargetResetLine(false);
			ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
94
			ISPTarget_ChangeTargetResetLine(true);
95
96
97
		}
	}

98
99
	Endpoint_Write_8(CMD_ENTER_PROGMODE_ISP);
	Endpoint_Write_8(ResponseStatus);
100
101
102
103
104
105
106
107
108
109
	Endpoint_ClearIN();
}

/** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */
void ISPProtocol_LeaveISPMode(void)
{
	struct
	{
		uint8_t PreDelayMS;
		uint8_t PostDelayMS;
110
	} Leave_ISP_Params;
111

112
	Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NULL);
113

114
115
116
117
118
119
120
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	/* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */
	ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS);
	ISPTarget_ChangeTargetResetLine(false);
121
	ISPTarget_DisableTargetISP();
122
123
	ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS);

124
125
	Endpoint_Write_8(CMD_LEAVE_PROGMODE_ISP);
	Endpoint_Write_8(STATUS_CMD_OK);
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
	Endpoint_ClearIN();
}

/** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes,
 *  words or pages of data to the attached device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_ProgramMemory(uint8_t V2Command)
{
	struct
	{
		uint16_t BytesToWrite;
		uint8_t  ProgrammingMode;
		uint8_t  DelayMS;
		uint8_t  ProgrammingCommands[3];
		uint8_t  PollValue1;
		uint8_t  PollValue2;
144
145
		uint8_t  ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the
	} Write_Memory_Params;      // whole page and ACK the packet as fast as possible to prevent it from aborting
146

147
	Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) -
148
	                                               sizeof(Write_Memory_Params.ProgData)), NULL);
149
	Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite);
150
	
151
152
153
154
155
156
	if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData))
	{
		Endpoint_ClearOUT();
		Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
		Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

157
158
		Endpoint_Write_8(V2Command);
		Endpoint_Write_8(STATUS_CMD_FAILED);
159
160
161
		Endpoint_ClearIN();
		return;
	}
162

163
	Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NULL);
164

165
166
167
168
169
170
171
172
173
	// The driver will terminate transfers that are a round multiple of the endpoint bank in size with a ZLP, need
	// to catch this and discard it before continuing on with packet processing to prevent communication issues
	if (((sizeof(uint8_t) + sizeof(Write_Memory_Params) - sizeof(Write_Memory_Params.ProgData)) +
	    Write_Memory_Params.BytesToWrite) % AVRISP_DATA_EPSIZE == 0)
	{
		Endpoint_ClearOUT();
		Endpoint_WaitUntilReady();
	}

174
175
176
177
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

178
	uint8_t  ProgrammingStatus = STATUS_CMD_OK;
179
180
	uint8_t  PollValue         = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 :
	                                                                    Write_Memory_Params.PollValue2;
181
	uint16_t PollAddress       = 0;
182
	uint8_t* NextWriteByte     = Write_Memory_Params.ProgData;
183
	uint16_t PageStartAddress  = (CurrentAddress & 0xFFFF);
184

185
	for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
186
	{
187
188
		uint8_t ByteToWrite     = *(NextWriteByte++);
		uint8_t ProgrammingMode = Write_Memory_Params.ProgrammingMode;
189

190
191
192
193
194
195
196
		/* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
		if (MustLoadExtendedAddress)
		{
			ISPTarget_LoadExtendedAddress();
			MustLoadExtendedAddress = false;
		}

197
198
199
200
201
202
203
204
205
		ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
		ISPTarget_SendByte(CurrentAddress >> 8);
		ISPTarget_SendByte(CurrentAddress & 0xFF);
		ISPTarget_SendByte(ByteToWrite);

		/* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
		 * or low byte at the current word address */
		if (V2Command == CMD_PROGRAM_FLASH_ISP)
		  Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
206

207
208
		/* Check to see if we have a valid polling address */
		if (!(PollAddress) && (ByteToWrite != PollValue))
209
		{
210
211
212
213
			if ((CurrentByte & 0x01) && (V2Command == CMD_PROGRAM_FLASH_ISP))
			  Write_Memory_Params.ProgrammingCommands[2] |=  READ_WRITE_HIGH_BYTE_MASK;
			else
			  Write_Memory_Params.ProgrammingCommands[2] &= ~READ_WRITE_HIGH_BYTE_MASK;
214

215
			PollAddress = (CurrentAddress & 0xFFFF);
216
		}
217
218
219

		/* If in word programming mode, commit the byte to the target's memory */
		if (!(ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK))
220
		{
221
222
223
224
225
			/* If the current polling address is invalid, switch to timed delay write completion mode */
			if (!(PollAddress) && !(ProgrammingMode & PROG_MODE_WORD_READYBUSY_MASK))
			  ProgrammingMode = (ProgrammingMode & ~PROG_MODE_WORD_VALUE_MASK) | PROG_MODE_WORD_TIMEDELAY_MASK;

			ProgrammingStatus = ISPTarget_WaitForProgComplete(ProgrammingMode, PollAddress, PollValue,
226
227
			                                                  Write_Memory_Params.DelayMS,
			                                                  Write_Memory_Params.ProgrammingCommands[2]);
228

229
230
231
			/* Abort the programming loop early if the byte/word programming failed */
			if (ProgrammingStatus != STATUS_CMD_OK)
			  break;
232

233
234
235
236
237
238
239
240
241
242
			/* Must reset the polling address afterwards, so it is not erronously used for the next byte */
			PollAddress = 0;
		}
		
		/* EEPROM just increments the address each byte, flash needs to increment on each word and
		 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
		 * address boundary has been crossed */
		if ((CurrentByte & 0x01) || (V2Command == CMD_PROGRAM_EEPROM_ISP))
		{
			CurrentAddress++;
243

244
245
			if ((V2Command != CMD_PROGRAM_EEPROM_ISP) && !(CurrentAddress & 0xFFFF))
			  MustLoadExtendedAddress = true;
246
247
		}
	}
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
	
	/* If the current page must be committed, send the PROGRAM PAGE command to the target */
	if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK)
	{
		ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[1]);
		ISPTarget_SendByte(PageStartAddress >> 8);
		ISPTarget_SendByte(PageStartAddress & 0xFF);
		ISPTarget_SendByte(0x00);

		/* Check if polling is enabled and possible, if not switch to timed delay mode */
		if ((Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_VALUE_MASK) && !(PollAddress))
		{
			Write_Memory_Params.ProgrammingMode = (Write_Memory_Params.ProgrammingMode & ~PROG_MODE_PAGED_VALUE_MASK) |
												   PROG_MODE_PAGED_TIMEDELAY_MASK;
		}

		ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
		                                                  Write_Memory_Params.DelayMS,
		                                                  Write_Memory_Params.ProgrammingCommands[2]);

		/* Check to see if the FLASH address has crossed the extended address boundary */
		if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF))
		  MustLoadExtendedAddress = true;
	}	
272

273
274
	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(ProgrammingStatus);
275
276
277
278
279
280
281
282
283
284
285
286
287
288
	Endpoint_ClearIN();
}

/** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes,
 *  words or pages of data from the attached device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_ReadMemory(uint8_t V2Command)
{
	struct
	{
		uint16_t BytesToRead;
		uint8_t  ReadMemoryCommand;
289
	} Read_Memory_Params;
290

291
	Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NULL);
292
	Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead);
293
	
294
295
296
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
297

298
299
	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(STATUS_CMD_OK);
300
301
302
303

	/* Read each byte from the device and write them to the packet for the host */
	for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++)
	{
304
305
306
307
308
309
310
		/* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
		if (MustLoadExtendedAddress)
		{
			ISPTarget_LoadExtendedAddress();
			MustLoadExtendedAddress = false;
		}

311
		/* Read the next byte from the desired memory space in the device */
312
313
314
		ISPTarget_SendByte(Read_Memory_Params.ReadMemoryCommand);
		ISPTarget_SendByte(CurrentAddress >> 8);
		ISPTarget_SendByte(CurrentAddress & 0xFF);
315
		Endpoint_Write_8(ISPTarget_ReceiveByte());
316

317
318
319
320
321
322
		/* Check if the endpoint bank is currently full, if so send the packet */
		if (!(Endpoint_IsReadWriteAllowed()))
		{
			Endpoint_ClearIN();
			Endpoint_WaitUntilReady();
		}
323

324
325
326
327
		/* AVR FLASH addressing requires us to modify the read command based on if we are reading a high
		 * or low byte at the current word address */
		if (V2Command == CMD_READ_FLASH_ISP)
		  Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK;
328

329
330
331
		/* EEPROM just increments the address each byte, flash needs to increment on each word and
		 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
		 * address boundary has been crossed */
332
		if ((CurrentByte & 0x01) || (V2Command == CMD_READ_EEPROM_ISP))
333
334
		{
			CurrentAddress++;
335

336
			if ((V2Command != CMD_READ_EEPROM_ISP) && !(CurrentAddress & 0xFFFF))
337
			  MustLoadExtendedAddress = true;
338
		}
339
340
	}

341
	Endpoint_Write_8(STATUS_CMD_OK);
342
343
344

	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
	Endpoint_ClearIN();
345

346
347
348
	/* Ensure last packet is a short packet to terminate the transfer */
	if (IsEndpointFull)
	{
349
		Endpoint_WaitUntilReady();
350
		Endpoint_ClearIN();
351
		Endpoint_WaitUntilReady();
352
353
354
355
356
357
358
359
360
361
362
	}
}

/** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */
void ISPProtocol_ChipErase(void)
{
	struct
	{
		uint8_t EraseDelayMS;
		uint8_t PollMethod;
		uint8_t EraseCommandBytes[4];
363
	} Erase_Chip_Params;
364

365
	Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NULL);
366

367
368
369
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
370

371
	uint8_t ResponseStatus = STATUS_CMD_OK;
372

373
374
	/* Send the chip erase commands as given by the host to the device */
	for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++)
375
	  ISPTarget_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]);
376
377
378
379
380
381

	/* Use appropriate command completion check as given by the host (delay or busy polling) */
	if (!(Erase_Chip_Params.PollMethod))
	  ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS);
	else
	  ResponseStatus = ISPTarget_WaitWhileTargetBusy();
382

383
384
	Endpoint_Write_8(CMD_CHIP_ERASE_ISP);
	Endpoint_Write_8(ResponseStatus);
385
386
387
388
389
390
391
392
393
394
395
396
397
398
	Endpoint_ClearIN();
}

/** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands,
 *  reading the requested configuration byte from the device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command)
{
	struct
	{
		uint8_t RetByte;
		uint8_t ReadCommandBytes[4];
399
	} Read_FuseLockSigOSCCAL_Params;
400

401
	Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NULL);
402
403
404
405
406
407
408
409
410

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint8_t ResponseBytes[4];

	/* Send the Fuse or Lock byte read commands as given by the host to the device, store response */
	for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
411
	  ResponseBytes[RByte] = ISPTarget_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]);
412

413
414
415
416
	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_Write_8(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]);
	Endpoint_Write_8(STATUS_CMD_OK);
417
418
419
420
421
422
423
424
425
426
427
428
429
	Endpoint_ClearIN();
}

/** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration
 *  byte to the device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_WriteFuseLock(uint8_t V2Command)
{
	struct
	{
		uint8_t WriteCommandBytes[4];
430
	} Write_FuseLockSig_Params;
431

432
	Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NULL);
433
434
435
436
437
438
439

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	/* Send the Fuse or Lock byte program commands as given by the host to the device */
	for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++)
440
	  ISPTarget_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]);
441

442
443
444
	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_Write_8(STATUS_CMD_OK);
445
446
447
448
449
450
451
452
453
454
455
456
	Endpoint_ClearIN();
}

/** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */
void ISPProtocol_SPIMulti(void)
{
	struct
	{
		uint8_t TxBytes;
		uint8_t RxBytes;
		uint8_t RxStartAddr;
		uint8_t TxData[255];
457
	} SPI_Multi_Params;
458

459
460
	Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NULL);
	Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NULL);
461

462
463
464
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
465

466
467
	Endpoint_Write_8(CMD_SPI_MULTI);
	Endpoint_Write_8(STATUS_CMD_OK);
468
469
470
471
472
473
474
475

	uint8_t CurrTxPos = 0;
	uint8_t CurrRxPos = 0;

	/* Write out bytes to transmit until the start of the bytes to receive is met */
	while (CurrTxPos < SPI_Multi_Params.RxStartAddr)
	{
		if (CurrTxPos < SPI_Multi_Params.TxBytes)
476
		  ISPTarget_SendByte(SPI_Multi_Params.TxData[CurrTxPos]);
477
		else
478
		  ISPTarget_SendByte(0);
479

480
481
482
483
484
485
486
		CurrTxPos++;
	}

	/* Transmit remaining bytes with padding as needed, read in response bytes */
	while (CurrRxPos < SPI_Multi_Params.RxBytes)
	{
		if (CurrTxPos < SPI_Multi_Params.TxBytes)
487
		  Endpoint_Write_8(ISPTarget_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++]));
488
		else
489
		  Endpoint_Write_8(ISPTarget_ReceiveByte());
490

491
492
493
494
495
496
		/* Check to see if we have filled the endpoint bank and need to send the packet */
		if (!(Endpoint_IsReadWriteAllowed()))
		{
			Endpoint_ClearIN();
			Endpoint_WaitUntilReady();
		}
497

498
		CurrRxPos++;
499
500
	}

501
	Endpoint_Write_8(STATUS_CMD_OK);
502
503
504

	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
	Endpoint_ClearIN();
505

506
507
508
	/* Ensure last packet is a short packet to terminate the transfer */
	if (IsEndpointFull)
	{
509
		Endpoint_WaitUntilReady();
510
		Endpoint_ClearIN();
511
		Endpoint_WaitUntilReady();
512
513
514
515
516
517
518
519
520
	}
}

/** Blocking delay for a given number of milliseconds.
 *
 *  \param[in] DelayMS  Number of milliseconds to delay for
 */
void ISPProtocol_DelayMS(uint8_t DelayMS)
{
521
	while (DelayMS-- && !(TimeoutExpired))
522
	  Delay_MS(1);
523
524
}

525
#endif