BootloaderCDC.c 17.2 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2012.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2012  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
35

36
37
38
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

39
40
41
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
 *  operating systems will not open the port unless the settings can be set successfully.
 */
42
43
44
45
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
                                           .CharFormat  = CDC_LINEENCODING_OneStopBit,
                                           .ParityType  = CDC_PARITY_None,
                                           .DataBits    = 8                            };
46

47
48
49
50
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
51
static uint32_t CurrAddress;
52
53
54
55
56

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
 *  loop until the AVR restarts and the application runs.
 */
57
static bool RunBootloader = true;
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
 *  will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
 *  low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
 *  \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
 */
uint32_t MagicBootKey ATTR_NO_INIT;


/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
 *  start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
 *  this will force the user application to start via a software jump.
 */
void Application_Jump_Check(void)
{
	// If the reset source was the bootloader and the key is correct, clear it and jump to the application
	if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
	{
		MagicBootKey = 0;
		((void (*)(void))0x0000)();
	}
}
80

81
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
82
83
84
85
86
87
88
89
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

90
91
92
	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1);

93
94
95
96
97
98
99
100
	/* Enable global interrupts so that the USB stack can function */
	sei();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
101

102
103
	/* Disconnect from the host - USB interface will be reset later along with the AVR */
	USB_Detach();
104
105
106
	
	/* Unlock the forced application start mode of the bootloader if it is restarted */
	MagicBootKey = MAGIC_BOOT_KEY;
107
108
109
110
111
112
113
114

	/* Enable the watchdog and force a timeout to reset the AVR */
	wdt_enable(WDTO_250MS);

	for (;;);
}

/** Configures all hardware required for the bootloader. */
115
static void SetupHardware(void)
116
117
118
119
120
121
122
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
123

124
125
126
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
127

128
	/* Initialize the USB and other board hardware drivers */
129
	USB_Init();
130
	LEDs_Init();
131

132
133
	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
134
	TCCR1B = ((1 << CS11) | (1 << CS10));
135
136
137
138
139
140
}

/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
141
142
143
144
145
146
147
148
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
void EVENT_USB_Device_ConfigurationChanged(void)
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
149
150
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
	                           CDC_NOTIFICATION_EPSIZE, 1);
151

152
	Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
153

154
	Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
155
156
}

157
158
159
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
160
 */
161
void EVENT_USB_Device_ControlRequest(void)
162
{
163
164
165
166
167
168
169
	/* Ignore any requests that aren't directed to the CDC interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}

170
171
172
	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

173
174
175
	/* Process CDC specific control requests */
	switch (USB_ControlRequest.bRequest)
	{
176
		case CDC_REQ_GetLineEncoding:
177
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
178
			{
179
180
181
				Endpoint_ClearSETUP();

				/* Write the line coding data to the control endpoint */
182
				Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
183
184
				Endpoint_ClearOUT();
			}
185

186
			break;
187
		case CDC_REQ_SetLineEncoding:
188
189
190
191
192
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
			{
				Endpoint_ClearSETUP();

				/* Read the line coding data in from the host into the global struct */
193
				Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
194
195
				Endpoint_ClearIN();
			}
196

197
198
199
200
			break;
	}
}

201
#if !defined(NO_BLOCK_SUPPORT)
202
203
204
205
206
207
208
209
210
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
 */
static void ReadWriteMemoryBlock(const uint8_t Command)
{
	uint16_t BlockSize;
	char     MemoryType;
211

212
213
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
214

215
216
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
217

218
219
220
221
222
223
	MemoryType =  FetchNextCommandByte();

	if ((MemoryType != 'E') && (MemoryType != 'F'))
	{
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
		return;
	}

	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
			if (MemoryType == 'F')
			{
				/* Read the next FLASH byte from the current FLASH page */
				#if (FLASHEND > 0xFFFF)
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
242
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
243
				#endif
244

245
246
247
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
248

249
250
251
252
253
				HighByte = !HighByte;
			}
			else
			{
				/* Read the next EEPROM byte into the endpoint */
254
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
255
256
257

				/* Increment the address counter after use */
				CurrAddress += 2;
258
			}
259
260
261
262
263
264
265
266
267
268
269
		}
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
270

271
272
273
		while (BlockSize--)
		{
			if (MemoryType == 'F')
274
			{
275
276
277
278
279
280
281
282
283
284
285
286
287
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
				{
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));

					/* Increment the address counter after use */
					CurrAddress += 2;
				}
				else
				{
					LowByte = FetchNextCommandByte();
				}
288

289
				HighByte = !HighByte;
290
291
292
293
			}
			else
			{
				/* Write the next EEPROM byte from the endpoint */
294
				eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
295
296
297
298
299
300
301
302
303
304
305

				/* Increment the address counter after use */
				CurrAddress += 2;
			}
		}

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
306

307
308
309
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
310

311
		/* Send response byte back to the host */
312
		WriteNextResponseByte('\r');
313
314
	}
}
315
#endif
316
317
318
319
320
321
322
323
324

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
325
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
326

327
328
329
330
331
332
333
334
335
336
337
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
	while (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearOUT();

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
	}
338

339
	/* Fetch the next byte from the OUT endpoint */
340
	return Endpoint_Read_8();
341
342
343
344
345
346
347
348
349
350
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
 *  \param[in] Response  Next response byte to send to the host
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
351
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
352

353
354
355
356
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearIN();
357

358
		while (!(Endpoint_IsINReady()))
359
		{
360
361
362
363
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
	}
364

365
	/* Write the next byte to the IN endpoint */
366
	Endpoint_Write_8(Response);
367
368
369
370
371
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
372
static void CDC_Task(void)
373
374
{
	/* Select the OUT endpoint */
375
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
376

377
	/* Check if endpoint has a command in it sent from the host */
378
379
	if (!(Endpoint_IsOUTReceived()))
	  return;
380

381
382
	/* Read in the bootloader command (first byte sent from host) */
	uint8_t Command = FetchNextCommandByte();
383

384
385
386
	if (Command == 'E')
	{
		RunBootloader = false;
387

388
389
390
391
392
393
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'T')
	{
		FetchNextCommandByte();
394

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if ((Command == 'L') || (Command == 'P'))
	{
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 't')
	{
		/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
		WriteNextResponseByte(0x44);
		WriteNextResponseByte(0x00);
	}
	else if (Command == 'a')
	{
		/* Indicate auto-address increment is supported */
		WriteNextResponseByte('Y');
	}
	else if (Command == 'A')
	{
		/* Set the current address to that given by the host */
		CurrAddress   = (FetchNextCommandByte() << 9);
		CurrAddress  |= (FetchNextCommandByte() << 1);

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'p')
	{
		/* Indicate serial programmer back to the host */
		WriteNextResponseByte('S');
	}
	else if (Command == 'S')
	{
		/* Write the 7-byte software identifier to the endpoint */
		for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
		  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
	}
	else if (Command == 'V')
	{
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
	}
	else if (Command == 's')
	{
		WriteNextResponseByte(AVR_SIGNATURE_3);
		WriteNextResponseByte(AVR_SIGNATURE_2);
		WriteNextResponseByte(AVR_SIGNATURE_1);
	}
	else if (Command == 'e')
	{
		/* Clear the application section of flash */
		for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
449
		{
450
451
452
453
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();
454
		}
455

456
457
458
459
460
461
462
463
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
	else if (Command == 'l')
	{
		/* Set the lock bits to those given by the host */
		boot_lock_bits_set(FetchNextCommandByte());
464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#endif
	else if (Command == 'r')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
	}
	else if (Command == 'F')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
	}
	else if (Command == 'N')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
	}
	else if (Command == 'Q')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
	}
	#if !defined(NO_BLOCK_SUPPORT)
	else if (Command == 'b')
	{
		WriteNextResponseByte('Y');
489

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
		/* Send block size to the host */
		WriteNextResponseByte(SPM_PAGESIZE >> 8);
		WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
	}
	else if ((Command == 'B') || (Command == 'g'))
	{
		/* Delegate the block write/read to a separate function for clarity */
		ReadWriteMemoryBlock(Command);
	}
	#endif
	#if !defined(NO_FLASH_BYTE_SUPPORT)
	else if (Command == 'C')
	{
		/* Write the high byte to the current flash page */
		boot_page_fill(CurrAddress, FetchNextCommandByte());
505

506
507
508
509
510
511
512
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'c')
	{
		/* Write the low byte to the current flash page */
		boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
513

514
515
		/* Increment the address */
		CurrAddress += 2;
516

517
518
519
520
521
522
523
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'm')
	{
		/* Commit the flash page to memory */
		boot_page_write(CurrAddress);
524

525
526
		/* Wait until write operation has completed */
		boot_spm_busy_wait();
527

528
529
530
531
532
533
534
535
536
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'R')
	{
		#if (FLASHEND > 0xFFFF)
		uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
		#else
		uint16_t ProgramWord = pgm_read_word(CurrAddress);
537
		#endif
538

539
540
541
542
543
544
545
546
547
		WriteNextResponseByte(ProgramWord >> 8);
		WriteNextResponseByte(ProgramWord & 0xFF);
	}
	#endif
	#if !defined(NO_EEPROM_BYTE_SUPPORT)
	else if (Command == 'D')
	{
		/* Read the byte from the endpoint and write it to the EEPROM */
		eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
548

549
550
		/* Increment the address after use */
		CurrAddress += 2;
551

552
553
554
555
556
557
558
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'd')
	{
		/* Read the EEPROM byte and write it to the endpoint */
		WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
559

560
561
562
563
564
565
566
567
568
		/* Increment the address after use */
		CurrAddress += 2;
	}
	#endif
	else if (Command != 27)
	{
		/* Unknown (non-sync) command, return fail code */
		WriteNextResponseByte('?');
	}
569

570
	/* Select the IN endpoint */
571
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
572

573
574
	/* Remember if the endpoint is completely full before clearing it */
	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
575

576
577
	/* Send the endpoint data to the host */
	Endpoint_ClearIN();
578

579
580
581
	/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
	if (IsEndpointFull)
	{
582
		while (!(Endpoint_IsINReady()))
583
		{
584
585
586
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
587

588
589
		Endpoint_ClearIN();
	}
590

591
592
593
594
595
	/* Wait until the data has been sent to the host */
	while (!(Endpoint_IsINReady()))
	{
		if (USB_DeviceState == DEVICE_STATE_Unattached)
		  return;
596
	}
597
598

	/* Select the OUT endpoint */
599
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
600
601
602

	/* Acknowledge the command from the host */
	Endpoint_ClearOUT();
603
}
604