ISPProtocol.c 17.9 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2012.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2012  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices.
 */

#include "ISPProtocol.h"

#if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)

/** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on
 *  the attached device, returning success or failure back to the host.
 */
void ISPProtocol_EnterISPMode(void)
{
	struct
	{
		uint8_t TimeoutMS;
		uint8_t PinStabDelayMS;
		uint8_t ExecutionDelayMS;
		uint8_t SynchLoops;
		uint8_t ByteDelay;
		uint8_t PollValue;
		uint8_t PollIndex;
		uint8_t EnterProgBytes[4];
55
	} Enter_ISP_Params;
56

57
	Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NULL);
58
59
60
61
62
63

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint8_t ResponseStatus = STATUS_CMD_FAILED;
64

65
	CurrentAddress = 0;
66

67
	/* Perform execution delay, initialize SPI bus */
68
	ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS);
69
	ISPTarget_EnableTargetISP();
70

71
	ISPTarget_ChangeTargetResetLine(true);
72
	ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
73

74
75
	/* Continuously attempt to synchronize with the target until either the number of attempts specified
	 * by the host has exceeded, or the the device sends back the expected response values */
76
	while (Enter_ISP_Params.SynchLoops-- && TimeoutTicksRemaining)
77
78
79
80
81
82
	{
		uint8_t ResponseBytes[4];

		for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
		{
			ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay);
83
			ResponseBytes[RByte] = ISPTarget_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]);
84
		}
85

86
87
88
89
		/* Check if polling disabled, or if the polled value matches the expected value */
		if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue))
		{
			ResponseStatus = STATUS_CMD_OK;
90
			break;
91
92
93
94
95
		}
		else
		{
			ISPTarget_ChangeTargetResetLine(false);
			ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
96
			ISPTarget_ChangeTargetResetLine(true);
97
			ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
98
99
100
		}
	}

101
102
	Endpoint_Write_8(CMD_ENTER_PROGMODE_ISP);
	Endpoint_Write_8(ResponseStatus);
103
104
105
106
107
108
109
110
111
112
	Endpoint_ClearIN();
}

/** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */
void ISPProtocol_LeaveISPMode(void)
{
	struct
	{
		uint8_t PreDelayMS;
		uint8_t PostDelayMS;
113
	} Leave_ISP_Params;
114

115
	Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NULL);
116

117
118
119
120
121
122
123
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	/* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */
	ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS);
	ISPTarget_ChangeTargetResetLine(false);
124
	ISPTarget_DisableTargetISP();
125
126
	ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS);

127
128
	Endpoint_Write_8(CMD_LEAVE_PROGMODE_ISP);
	Endpoint_Write_8(STATUS_CMD_OK);
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
	Endpoint_ClearIN();
}

/** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes,
 *  words or pages of data to the attached device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_ProgramMemory(uint8_t V2Command)
{
	struct
	{
		uint16_t BytesToWrite;
		uint8_t  ProgrammingMode;
		uint8_t  DelayMS;
		uint8_t  ProgrammingCommands[3];
		uint8_t  PollValue1;
		uint8_t  PollValue2;
147
148
		uint8_t  ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the
	} Write_Memory_Params;      // whole page and ACK the packet as fast as possible to prevent it from aborting
149

150
	Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) -
151
	                                               sizeof(Write_Memory_Params.ProgData)), NULL);
152
	Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite);
153

154
155
156
157
158
159
	if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData))
	{
		Endpoint_ClearOUT();
		Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
		Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

160
161
		Endpoint_Write_8(V2Command);
		Endpoint_Write_8(STATUS_CMD_FAILED);
162
163
164
		Endpoint_ClearIN();
		return;
	}
165

166
	Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NULL);
167

168
169
170
171
172
173
174
175
176
	// The driver will terminate transfers that are a round multiple of the endpoint bank in size with a ZLP, need
	// to catch this and discard it before continuing on with packet processing to prevent communication issues
	if (((sizeof(uint8_t) + sizeof(Write_Memory_Params) - sizeof(Write_Memory_Params.ProgData)) +
	    Write_Memory_Params.BytesToWrite) % AVRISP_DATA_EPSIZE == 0)
	{
		Endpoint_ClearOUT();
		Endpoint_WaitUntilReady();
	}

177
178
179
180
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

181
	uint8_t  ProgrammingStatus = STATUS_CMD_OK;
182
183
	uint8_t  PollValue         = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 :
	                                                                    Write_Memory_Params.PollValue2;
184
	uint16_t PollAddress       = 0;
185
	uint8_t* NextWriteByte     = Write_Memory_Params.ProgData;
186
	uint16_t PageStartAddress  = (CurrentAddress & 0xFFFF);
187

188
	for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
189
	{
190
191
		uint8_t ByteToWrite     = *(NextWriteByte++);
		uint8_t ProgrammingMode = Write_Memory_Params.ProgrammingMode;
192

193
194
195
196
197
198
199
		/* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
		if (MustLoadExtendedAddress)
		{
			ISPTarget_LoadExtendedAddress();
			MustLoadExtendedAddress = false;
		}

200
201
202
203
204
205
206
207
208
		ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
		ISPTarget_SendByte(CurrentAddress >> 8);
		ISPTarget_SendByte(CurrentAddress & 0xFF);
		ISPTarget_SendByte(ByteToWrite);

		/* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
		 * or low byte at the current word address */
		if (V2Command == CMD_PROGRAM_FLASH_ISP)
		  Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
209

210
211
		/* Check to see if we have a valid polling address */
		if (!(PollAddress) && (ByteToWrite != PollValue))
212
		{
213
214
215
216
			if ((CurrentByte & 0x01) && (V2Command == CMD_PROGRAM_FLASH_ISP))
			  Write_Memory_Params.ProgrammingCommands[2] |=  READ_WRITE_HIGH_BYTE_MASK;
			else
			  Write_Memory_Params.ProgrammingCommands[2] &= ~READ_WRITE_HIGH_BYTE_MASK;
217

218
			PollAddress = (CurrentAddress & 0xFFFF);
219
		}
220
221
222

		/* If in word programming mode, commit the byte to the target's memory */
		if (!(ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK))
223
		{
224
225
226
227
228
			/* If the current polling address is invalid, switch to timed delay write completion mode */
			if (!(PollAddress) && !(ProgrammingMode & PROG_MODE_WORD_READYBUSY_MASK))
			  ProgrammingMode = (ProgrammingMode & ~PROG_MODE_WORD_VALUE_MASK) | PROG_MODE_WORD_TIMEDELAY_MASK;

			ProgrammingStatus = ISPTarget_WaitForProgComplete(ProgrammingMode, PollAddress, PollValue,
229
230
			                                                  Write_Memory_Params.DelayMS,
			                                                  Write_Memory_Params.ProgrammingCommands[2]);
231

232
233
234
			/* Abort the programming loop early if the byte/word programming failed */
			if (ProgrammingStatus != STATUS_CMD_OK)
			  break;
235

236
			/* Must reset the polling address afterwards, so it is not erroneously used for the next byte */
237
238
			PollAddress = 0;
		}
239

240
241
		/* EEPROM just increments the address each byte, flash needs to increment on each word and
		 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
242
		 * address boundary has been crossed during FLASH memory programming */
243
244
245
		if ((CurrentByte & 0x01) || (V2Command == CMD_PROGRAM_EEPROM_ISP))
		{
			CurrentAddress++;
246

247
			if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF))
248
			  MustLoadExtendedAddress = true;
249
250
		}
	}
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
	/* If the current page must be committed, send the PROGRAM PAGE command to the target */
	if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK)
	{
		ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[1]);
		ISPTarget_SendByte(PageStartAddress >> 8);
		ISPTarget_SendByte(PageStartAddress & 0xFF);
		ISPTarget_SendByte(0x00);

		/* Check if polling is enabled and possible, if not switch to timed delay mode */
		if ((Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_VALUE_MASK) && !(PollAddress))
		{
			Write_Memory_Params.ProgrammingMode = (Write_Memory_Params.ProgrammingMode & ~PROG_MODE_PAGED_VALUE_MASK) |
												   PROG_MODE_PAGED_TIMEDELAY_MASK;
		}

		ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
		                                                  Write_Memory_Params.DelayMS,
		                                                  Write_Memory_Params.ProgrammingCommands[2]);

		/* Check to see if the FLASH address has crossed the extended address boundary */
		if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF))
		  MustLoadExtendedAddress = true;
274
	}
275

276
277
	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(ProgrammingStatus);
278
279
280
281
282
283
284
285
286
287
288
289
290
291
	Endpoint_ClearIN();
}

/** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes,
 *  words or pages of data from the attached device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_ReadMemory(uint8_t V2Command)
{
	struct
	{
		uint16_t BytesToRead;
		uint8_t  ReadMemoryCommand;
292
	} Read_Memory_Params;
293

294
	Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NULL);
295
	Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead);
296

297
298
299
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
300

301
302
	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(STATUS_CMD_OK);
303
304
305
306

	/* Read each byte from the device and write them to the packet for the host */
	for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++)
	{
307
308
309
310
311
312
313
		/* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
		if (MustLoadExtendedAddress)
		{
			ISPTarget_LoadExtendedAddress();
			MustLoadExtendedAddress = false;
		}

314
		/* Read the next byte from the desired memory space in the device */
315
316
317
		ISPTarget_SendByte(Read_Memory_Params.ReadMemoryCommand);
		ISPTarget_SendByte(CurrentAddress >> 8);
		ISPTarget_SendByte(CurrentAddress & 0xFF);
318
		Endpoint_Write_8(ISPTarget_ReceiveByte());
319

320
321
322
323
324
325
		/* Check if the endpoint bank is currently full, if so send the packet */
		if (!(Endpoint_IsReadWriteAllowed()))
		{
			Endpoint_ClearIN();
			Endpoint_WaitUntilReady();
		}
326

327
328
329
330
		/* AVR FLASH addressing requires us to modify the read command based on if we are reading a high
		 * or low byte at the current word address */
		if (V2Command == CMD_READ_FLASH_ISP)
		  Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK;
331

332
333
334
		/* EEPROM just increments the address each byte, flash needs to increment on each word and
		 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
		 * address boundary has been crossed */
335
		if ((CurrentByte & 0x01) || (V2Command == CMD_READ_EEPROM_ISP))
336
337
		{
			CurrentAddress++;
338

339
			if ((V2Command != CMD_READ_EEPROM_ISP) && !(CurrentAddress & 0xFFFF))
340
			  MustLoadExtendedAddress = true;
341
		}
342
343
	}

344
	Endpoint_Write_8(STATUS_CMD_OK);
345
346
347

	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
	Endpoint_ClearIN();
348

349
350
351
	/* Ensure last packet is a short packet to terminate the transfer */
	if (IsEndpointFull)
	{
352
		Endpoint_WaitUntilReady();
353
		Endpoint_ClearIN();
354
		Endpoint_WaitUntilReady();
355
356
357
358
359
360
361
362
363
364
365
	}
}

/** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */
void ISPProtocol_ChipErase(void)
{
	struct
	{
		uint8_t EraseDelayMS;
		uint8_t PollMethod;
		uint8_t EraseCommandBytes[4];
366
	} Erase_Chip_Params;
367

368
	Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NULL);
369

370
371
372
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
373

374
	uint8_t ResponseStatus = STATUS_CMD_OK;
375

376
377
	/* Send the chip erase commands as given by the host to the device */
	for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++)
378
	  ISPTarget_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]);
379
380
381
382
383
384

	/* Use appropriate command completion check as given by the host (delay or busy polling) */
	if (!(Erase_Chip_Params.PollMethod))
	  ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS);
	else
	  ResponseStatus = ISPTarget_WaitWhileTargetBusy();
385

386
387
	Endpoint_Write_8(CMD_CHIP_ERASE_ISP);
	Endpoint_Write_8(ResponseStatus);
388
389
390
391
392
393
394
395
396
397
398
399
400
401
	Endpoint_ClearIN();
}

/** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands,
 *  reading the requested configuration byte from the device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command)
{
	struct
	{
		uint8_t RetByte;
		uint8_t ReadCommandBytes[4];
402
	} Read_FuseLockSigOSCCAL_Params;
403

404
	Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NULL);
405
406
407
408
409
410
411
412
413

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint8_t ResponseBytes[4];

	/* Send the Fuse or Lock byte read commands as given by the host to the device, store response */
	for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
414
	  ResponseBytes[RByte] = ISPTarget_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]);
415

416
417
418
419
	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_Write_8(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]);
	Endpoint_Write_8(STATUS_CMD_OK);
420
421
422
423
424
425
426
427
428
429
430
431
432
	Endpoint_ClearIN();
}

/** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration
 *  byte to the device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_WriteFuseLock(uint8_t V2Command)
{
	struct
	{
		uint8_t WriteCommandBytes[4];
433
	} Write_FuseLockSig_Params;
434

435
	Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NULL);
436
437
438
439
440
441
442

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	/* Send the Fuse or Lock byte program commands as given by the host to the device */
	for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++)
443
	  ISPTarget_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]);
444

445
446
447
	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_Write_8(STATUS_CMD_OK);
448
449
450
451
452
453
454
455
456
457
458
459
	Endpoint_ClearIN();
}

/** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */
void ISPProtocol_SPIMulti(void)
{
	struct
	{
		uint8_t TxBytes;
		uint8_t RxBytes;
		uint8_t RxStartAddr;
		uint8_t TxData[255];
460
	} SPI_Multi_Params;
461

462
463
	Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NULL);
	Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NULL);
464

465
466
467
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
468

469
470
	Endpoint_Write_8(CMD_SPI_MULTI);
	Endpoint_Write_8(STATUS_CMD_OK);
471
472
473
474
475
476
477
478

	uint8_t CurrTxPos = 0;
	uint8_t CurrRxPos = 0;

	/* Write out bytes to transmit until the start of the bytes to receive is met */
	while (CurrTxPos < SPI_Multi_Params.RxStartAddr)
	{
		if (CurrTxPos < SPI_Multi_Params.TxBytes)
479
		  ISPTarget_SendByte(SPI_Multi_Params.TxData[CurrTxPos]);
480
		else
481
		  ISPTarget_SendByte(0);
482

483
484
485
486
487
488
489
		CurrTxPos++;
	}

	/* Transmit remaining bytes with padding as needed, read in response bytes */
	while (CurrRxPos < SPI_Multi_Params.RxBytes)
	{
		if (CurrTxPos < SPI_Multi_Params.TxBytes)
490
		  Endpoint_Write_8(ISPTarget_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++]));
491
		else
492
		  Endpoint_Write_8(ISPTarget_ReceiveByte());
493

494
495
496
497
498
499
		/* Check to see if we have filled the endpoint bank and need to send the packet */
		if (!(Endpoint_IsReadWriteAllowed()))
		{
			Endpoint_ClearIN();
			Endpoint_WaitUntilReady();
		}
500

501
		CurrRxPos++;
502
503
	}

504
	Endpoint_Write_8(STATUS_CMD_OK);
505
506
507

	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
	Endpoint_ClearIN();
508

509
510
511
	/* Ensure last packet is a short packet to terminate the transfer */
	if (IsEndpointFull)
	{
512
		Endpoint_WaitUntilReady();
513
		Endpoint_ClearIN();
514
		Endpoint_WaitUntilReady();
515
516
517
	}
}

518
519
520
/** Blocking delay for a given number of milliseconds. This provides a simple wrapper around
 *  the avr-libc provided delay function, so that the delay function can be called with a
 *  constant value (to prevent run-time floating point operations being required).
521
522
523
524
525
 *
 *  \param[in] DelayMS  Number of milliseconds to delay for
 */
void ISPProtocol_DelayMS(uint8_t DelayMS)
{
526
	while (DelayMS-- && TimeoutTicksRemaining)
527
	  Delay_MS(1);
528
529
}

530
#endif
531