BootloaderCDC.c 15.8 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2011.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2011  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
35

36
37
38
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

39
40
41
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
 *  operating systems will not open the port unless the settings can be set successfully.
 */
42
43
44
45
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
                                           .CharFormat  = CDC_LINEENCODING_OneStopBit,
                                           .ParityType  = CDC_PARITY_None,
                                           .DataBits    = 8                            };
46

47
48
49
50
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
51
static uint32_t CurrAddress;
52
53
54
55
56

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
 *  loop until the AVR restarts and the application runs.
 */
57
static bool RunBootloader = true;
58
59


60
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

	/* Enable global interrupts so that the USB stack can function */
	sei();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
	/* Disconnect from the host - USB interface will be reset later along with the AVR */
	USB_Detach();

	/* Enable the watchdog and force a timeout to reset the AVR */
	wdt_enable(WDTO_250MS);

	for (;;);
}

/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
96

97
98
99
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
100

101
102
103
104
105
106
107
108
109
110
111
	/* Initialize USB Subsystem */
	USB_Init();
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
void EVENT_USB_Device_ConfigurationChanged(void)
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
112
	                           ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
113
114
115
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
116
	                           ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
117
118
119
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
120
	                           ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
121
122
123
	                           ENDPOINT_BANK_SINGLE);
}

124
125
126
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
127
 */
128
void EVENT_USB_Device_ControlRequest(void)
129
{
130
131
132
133
134
135
136
	/* Ignore any requests that aren't directed to the CDC interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}

137
138
139
	/* Process CDC specific control requests */
	switch (USB_ControlRequest.bRequest)
	{
140
		case CDC_REQ_GetLineEncoding:
141
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
142
			{
143
144
145
				Endpoint_ClearSETUP();

				/* Write the line coding data to the control endpoint */
146
				Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
147
148
				Endpoint_ClearOUT();
			}
149

150
			break;
151
		case CDC_REQ_SetLineEncoding:
152
153
154
155
156
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
			{
				Endpoint_ClearSETUP();

				/* Read the line coding data in from the host into the global struct */
157
				Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
158
159
				Endpoint_ClearIN();
			}
160

161
162
163
164
			break;
	}
}

165
#if !defined(NO_BLOCK_SUPPORT)
166
167
168
169
170
171
172
173
174
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
 */
static void ReadWriteMemoryBlock(const uint8_t Command)
{
	uint16_t BlockSize;
	char     MemoryType;
175

176
177
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
178

179
180
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
181

182
183
184
185
186
187
	MemoryType =  FetchNextCommandByte();

	if ((MemoryType != 'E') && (MemoryType != 'F'))
	{
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
		return;
	}

	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
			if (MemoryType == 'F')
			{
				/* Read the next FLASH byte from the current FLASH page */
				#if (FLASHEND > 0xFFFF)
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
206
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
207
				#endif
208

209
210
211
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
212

213
214
215
216
217
				HighByte = !HighByte;
			}
			else
			{
				/* Read the next EEPROM byte into the endpoint */
218
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
219
220
221

				/* Increment the address counter after use */
				CurrAddress += 2;
222
			}
223
224
225
226
227
228
229
230
231
232
233
		}
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
234

235
236
237
		while (BlockSize--)
		{
			if (MemoryType == 'F')
238
			{
239
240
241
242
243
244
245
246
247
248
249
250
251
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
				{
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));

					/* Increment the address counter after use */
					CurrAddress += 2;
				}
				else
				{
					LowByte = FetchNextCommandByte();
				}
252
253
				
				HighByte = !HighByte;
254
255
256
257
			}
			else
			{
				/* Write the next EEPROM byte from the endpoint */
258
				eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
259
260
261
262
263
264
265
266
267
268
269

				/* Increment the address counter after use */
				CurrAddress += 2;
			}
		}

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
270

271
272
273
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
274

275
		/* Send response byte back to the host */
276
		WriteNextResponseByte('\r');
277
278
	}
}
279
#endif
280
281
282
283
284
285
286
287
288
289

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
290

291
292
293
294
295
296
297
298
299
300
301
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
	while (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearOUT();

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
	}
302

303
	/* Fetch the next byte from the OUT endpoint */
304
	return Endpoint_Read_8();
305
306
307
308
309
310
311
312
313
314
315
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
 *  \param[in] Response  Next response byte to send to the host
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
316

317
318
319
320
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearIN();
321

322
		while (!(Endpoint_IsINReady()))
323
		{
324
325
326
327
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
	}
328

329
	/* Write the next byte to the IN endpoint */
330
	Endpoint_Write_8(Response);
331
332
333
334
335
336
337
338
339
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
void CDC_Task(void)
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
340

341
	/* Check if endpoint has a command in it sent from the host */
342
343
	if (!(Endpoint_IsOUTReceived()))
	  return;
344

345
346
	/* Read in the bootloader command (first byte sent from host) */
	uint8_t Command = FetchNextCommandByte();
347

348
349
350
351
352
353
354
355
356
357
	if (Command == 'E')
	{
		RunBootloader = false;
	
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'T')
	{
		FetchNextCommandByte();
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if ((Command == 'L') || (Command == 'P'))
	{
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 't')
	{
		/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
		WriteNextResponseByte(0x44);
		WriteNextResponseByte(0x00);
	}
	else if (Command == 'a')
	{
		/* Indicate auto-address increment is supported */
		WriteNextResponseByte('Y');
	}
	else if (Command == 'A')
	{
		/* Set the current address to that given by the host */
		CurrAddress   = (FetchNextCommandByte() << 9);
		CurrAddress  |= (FetchNextCommandByte() << 1);

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'p')
	{
		/* Indicate serial programmer back to the host */
		WriteNextResponseByte('S');
	}
	else if (Command == 'S')
	{
		/* Write the 7-byte software identifier to the endpoint */
		for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
		  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
	}
	else if (Command == 'V')
	{
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
	}
	else if (Command == 's')
	{
		WriteNextResponseByte(AVR_SIGNATURE_3);
		WriteNextResponseByte(AVR_SIGNATURE_2);
		WriteNextResponseByte(AVR_SIGNATURE_1);
	}
	else if (Command == 'e')
	{
		/* Clear the application section of flash */
		for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
413
		{
414
415
416
417
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();
418
		}
419

420
421
422
423
424
425
426
427
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
	else if (Command == 'l')
	{
		/* Set the lock bits to those given by the host */
		boot_lock_bits_set(FetchNextCommandByte());
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#endif
	else if (Command == 'r')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
	}
	else if (Command == 'F')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
	}
	else if (Command == 'N')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
	}
	else if (Command == 'Q')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
	}
	#if !defined(NO_BLOCK_SUPPORT)
	else if (Command == 'b')
	{
		WriteNextResponseByte('Y');
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
		/* Send block size to the host */
		WriteNextResponseByte(SPM_PAGESIZE >> 8);
		WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
	}
	else if ((Command == 'B') || (Command == 'g'))
	{
		/* Delegate the block write/read to a separate function for clarity */
		ReadWriteMemoryBlock(Command);
	}
	#endif
	#if !defined(NO_FLASH_BYTE_SUPPORT)
	else if (Command == 'C')
	{
		/* Write the high byte to the current flash page */
		boot_page_fill(CurrAddress, FetchNextCommandByte());
469

470
471
472
473
474
475
476
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'c')
	{
		/* Write the low byte to the current flash page */
		boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
477

478
479
		/* Increment the address */
		CurrAddress += 2;
480

481
482
483
484
485
486
487
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'm')
	{
		/* Commit the flash page to memory */
		boot_page_write(CurrAddress);
488

489
490
		/* Wait until write operation has completed */
		boot_spm_busy_wait();
491

492
493
494
495
496
497
498
499
500
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'R')
	{
		#if (FLASHEND > 0xFFFF)
		uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
		#else
		uint16_t ProgramWord = pgm_read_word(CurrAddress);
501
		#endif
502

503
504
505
506
507
508
509
510
511
		WriteNextResponseByte(ProgramWord >> 8);
		WriteNextResponseByte(ProgramWord & 0xFF);
	}
	#endif
	#if !defined(NO_EEPROM_BYTE_SUPPORT)
	else if (Command == 'D')
	{
		/* Read the byte from the endpoint and write it to the EEPROM */
		eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
512

513
514
		/* Increment the address after use */
		CurrAddress += 2;
515

516
517
518
519
520
521
522
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'd')
	{
		/* Read the EEPROM byte and write it to the endpoint */
		WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
523

524
525
526
527
528
529
530
531
532
		/* Increment the address after use */
		CurrAddress += 2;
	}
	#endif
	else if (Command != 27)
	{
		/* Unknown (non-sync) command, return fail code */
		WriteNextResponseByte('?');
	}
533

534
535
	/* Select the IN endpoint */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
536

537
538
	/* Remember if the endpoint is completely full before clearing it */
	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
539

540
541
	/* Send the endpoint data to the host */
	Endpoint_ClearIN();
542

543
544
545
	/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
	if (IsEndpointFull)
	{
546
		while (!(Endpoint_IsINReady()))
547
		{
548
549
550
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
551

552
553
		Endpoint_ClearIN();
	}
554

555
556
557
558
559
	/* Wait until the data has been sent to the host */
	while (!(Endpoint_IsINReady()))
	{
		if (USB_DeviceState == DEVICE_STATE_Unattached)
		  return;
560
	}
561
562
563
564
565
566

	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);

	/* Acknowledge the command from the host */
	Endpoint_ClearOUT();
567
}
568