BootloaderCDC.c 16.3 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2012.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2011  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
35

36
37
38
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

39
40
41
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
 *  operating systems will not open the port unless the settings can be set successfully.
 */
42
43
44
45
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
                                           .CharFormat  = CDC_LINEENCODING_OneStopBit,
                                           .ParityType  = CDC_PARITY_None,
                                           .DataBits    = 8                            };
46

47
48
49
50
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
51
static uint32_t CurrAddress;
52
53
54
55
56

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
 *  loop until the AVR restarts and the application runs.
 */
57
static bool RunBootloader = true;
58
59


60
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
61
62
63
64
65
66
67
68
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

69
70
71
	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1);

72
73
74
75
76
77
78
79
	/* Enable global interrupts so that the USB stack can function */
	sei();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
80

81
82
83
84
85
86
87
88
89
90
	/* Disconnect from the host - USB interface will be reset later along with the AVR */
	USB_Detach();

	/* Enable the watchdog and force a timeout to reset the AVR */
	wdt_enable(WDTO_250MS);

	for (;;);
}

/** Configures all hardware required for the bootloader. */
91
static void SetupHardware(void)
92
93
94
95
96
97
98
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
99

100
101
102
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
103

104
	/* Initialize the USB and other board hardware drivers */
105
	USB_Init();
106
	LEDs_Init();
107

108
109
	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
110
	TCCR1B = ((1 << CS11) | (1 << CS10));
111
112
113
114
115
116
}

/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
117
118
119
120
121
122
123
124
125
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
void EVENT_USB_Device_ConfigurationChanged(void)
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
126
	                           ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
127
128
129
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
130
	                           ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
131
132
133
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
134
	                           ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
135
136
137
	                           ENDPOINT_BANK_SINGLE);
}

138
139
140
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
141
 */
142
void EVENT_USB_Device_ControlRequest(void)
143
{
144
145
146
147
148
149
150
	/* Ignore any requests that aren't directed to the CDC interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}

151
152
153
	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

154
155
156
	/* Process CDC specific control requests */
	switch (USB_ControlRequest.bRequest)
	{
157
		case CDC_REQ_GetLineEncoding:
158
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
159
			{
160
161
162
				Endpoint_ClearSETUP();

				/* Write the line coding data to the control endpoint */
163
				Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
164
165
				Endpoint_ClearOUT();
			}
166

167
			break;
168
		case CDC_REQ_SetLineEncoding:
169
170
171
172
173
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
			{
				Endpoint_ClearSETUP();

				/* Read the line coding data in from the host into the global struct */
174
				Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
175
176
				Endpoint_ClearIN();
			}
177

178
179
180
181
			break;
	}
}

182
#if !defined(NO_BLOCK_SUPPORT)
183
184
185
186
187
188
189
190
191
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
 */
static void ReadWriteMemoryBlock(const uint8_t Command)
{
	uint16_t BlockSize;
	char     MemoryType;
192

193
194
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
195

196
197
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
198

199
200
201
202
203
204
	MemoryType =  FetchNextCommandByte();

	if ((MemoryType != 'E') && (MemoryType != 'F'))
	{
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
205

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
		return;
	}

	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
			if (MemoryType == 'F')
			{
				/* Read the next FLASH byte from the current FLASH page */
				#if (FLASHEND > 0xFFFF)
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
223
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
224
				#endif
225

226
227
228
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
229

230
231
232
233
234
				HighByte = !HighByte;
			}
			else
			{
				/* Read the next EEPROM byte into the endpoint */
235
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
236
237
238

				/* Increment the address counter after use */
				CurrAddress += 2;
239
			}
240
241
242
243
244
245
246
247
248
249
250
		}
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
251

252
253
254
		while (BlockSize--)
		{
			if (MemoryType == 'F')
255
			{
256
257
258
259
260
261
262
263
264
265
266
267
268
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
				{
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));

					/* Increment the address counter after use */
					CurrAddress += 2;
				}
				else
				{
					LowByte = FetchNextCommandByte();
				}
269

270
				HighByte = !HighByte;
271
272
273
274
			}
			else
			{
				/* Write the next EEPROM byte from the endpoint */
275
				eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
276
277
278
279
280
281
282
283
284
285
286

				/* Increment the address counter after use */
				CurrAddress += 2;
			}
		}

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
287

288
289
290
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
291

292
		/* Send response byte back to the host */
293
		WriteNextResponseByte('\r');
294
295
	}
}
296
#endif
297
298
299
300
301
302
303
304
305
306

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
307

308
309
310
311
312
313
314
315
316
317
318
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
	while (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearOUT();

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
	}
319

320
	/* Fetch the next byte from the OUT endpoint */
321
	return Endpoint_Read_8();
322
323
324
325
326
327
328
329
330
331
332
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
 *  \param[in] Response  Next response byte to send to the host
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
333

334
335
336
337
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearIN();
338

339
		while (!(Endpoint_IsINReady()))
340
		{
341
342
343
344
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
	}
345

346
	/* Write the next byte to the IN endpoint */
347
	Endpoint_Write_8(Response);
348
349
350
351
352
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
353
static void CDC_Task(void)
354
355
356
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
357

358
	/* Check if endpoint has a command in it sent from the host */
359
360
	if (!(Endpoint_IsOUTReceived()))
	  return;
361

362
363
	/* Read in the bootloader command (first byte sent from host) */
	uint8_t Command = FetchNextCommandByte();
364

365
366
367
	if (Command == 'E')
	{
		RunBootloader = false;
368

369
370
371
372
373
374
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'T')
	{
		FetchNextCommandByte();
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if ((Command == 'L') || (Command == 'P'))
	{
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 't')
	{
		/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
		WriteNextResponseByte(0x44);
		WriteNextResponseByte(0x00);
	}
	else if (Command == 'a')
	{
		/* Indicate auto-address increment is supported */
		WriteNextResponseByte('Y');
	}
	else if (Command == 'A')
	{
		/* Set the current address to that given by the host */
		CurrAddress   = (FetchNextCommandByte() << 9);
		CurrAddress  |= (FetchNextCommandByte() << 1);

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'p')
	{
		/* Indicate serial programmer back to the host */
		WriteNextResponseByte('S');
	}
	else if (Command == 'S')
	{
		/* Write the 7-byte software identifier to the endpoint */
		for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
		  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
	}
	else if (Command == 'V')
	{
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
	}
	else if (Command == 's')
	{
		WriteNextResponseByte(AVR_SIGNATURE_3);
		WriteNextResponseByte(AVR_SIGNATURE_2);
		WriteNextResponseByte(AVR_SIGNATURE_1);
	}
	else if (Command == 'e')
	{
		/* Clear the application section of flash */
		for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
430
		{
431
432
433
434
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();
435
		}
436

437
438
439
440
441
442
443
444
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
	else if (Command == 'l')
	{
		/* Set the lock bits to those given by the host */
		boot_lock_bits_set(FetchNextCommandByte());
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#endif
	else if (Command == 'r')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
	}
	else if (Command == 'F')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
	}
	else if (Command == 'N')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
	}
	else if (Command == 'Q')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
	}
	#if !defined(NO_BLOCK_SUPPORT)
	else if (Command == 'b')
	{
		WriteNextResponseByte('Y');
470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
		/* Send block size to the host */
		WriteNextResponseByte(SPM_PAGESIZE >> 8);
		WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
	}
	else if ((Command == 'B') || (Command == 'g'))
	{
		/* Delegate the block write/read to a separate function for clarity */
		ReadWriteMemoryBlock(Command);
	}
	#endif
	#if !defined(NO_FLASH_BYTE_SUPPORT)
	else if (Command == 'C')
	{
		/* Write the high byte to the current flash page */
		boot_page_fill(CurrAddress, FetchNextCommandByte());
486

487
488
489
490
491
492
493
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'c')
	{
		/* Write the low byte to the current flash page */
		boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
494

495
496
		/* Increment the address */
		CurrAddress += 2;
497

498
499
500
501
502
503
504
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'm')
	{
		/* Commit the flash page to memory */
		boot_page_write(CurrAddress);
505

506
507
		/* Wait until write operation has completed */
		boot_spm_busy_wait();
508

509
510
511
512
513
514
515
516
517
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'R')
	{
		#if (FLASHEND > 0xFFFF)
		uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
		#else
		uint16_t ProgramWord = pgm_read_word(CurrAddress);
518
		#endif
519

520
521
522
523
524
525
526
527
528
		WriteNextResponseByte(ProgramWord >> 8);
		WriteNextResponseByte(ProgramWord & 0xFF);
	}
	#endif
	#if !defined(NO_EEPROM_BYTE_SUPPORT)
	else if (Command == 'D')
	{
		/* Read the byte from the endpoint and write it to the EEPROM */
		eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
529

530
531
		/* Increment the address after use */
		CurrAddress += 2;
532

533
534
535
536
537
538
539
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'd')
	{
		/* Read the EEPROM byte and write it to the endpoint */
		WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
540

541
542
543
544
545
546
547
548
549
		/* Increment the address after use */
		CurrAddress += 2;
	}
	#endif
	else if (Command != 27)
	{
		/* Unknown (non-sync) command, return fail code */
		WriteNextResponseByte('?');
	}
550

551
552
	/* Select the IN endpoint */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
553

554
555
	/* Remember if the endpoint is completely full before clearing it */
	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
556

557
558
	/* Send the endpoint data to the host */
	Endpoint_ClearIN();
559

560
561
562
	/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
	if (IsEndpointFull)
	{
563
		while (!(Endpoint_IsINReady()))
564
		{
565
566
567
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
568

569
570
		Endpoint_ClearIN();
	}
571

572
573
574
575
576
	/* Wait until the data has been sent to the host */
	while (!(Endpoint_IsINReady()))
	{
		if (USB_DeviceState == DEVICE_STATE_Unattached)
		  return;
577
	}
578
579
580
581
582
583

	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);

	/* Acknowledge the command from the host */
	Endpoint_ClearOUT();
584
}
585