BootloaderCDC.c 18 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2012.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2012  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
35

36
37
38
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

39
40
41
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
 *  operating systems will not open the port unless the settings can be set successfully.
 */
42
43
44
45
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
                                           .CharFormat  = CDC_LINEENCODING_OneStopBit,
                                           .ParityType  = CDC_PARITY_None,
                                           .DataBits    = 8                            };
46

47
48
49
50
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
51
static uint32_t CurrAddress;
52
53
54
55
56

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
 *  loop until the AVR restarts and the application runs.
 */
57
static bool RunBootloader = true;
58

59
60
61
62
63
/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
 *  will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
 *  low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
 *  \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
 */
64
uint16_t MagicBootKey ATTR_NO_INIT;
65
66
67
68
69
70
71
72


/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
 *  start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
 *  this will force the user application to start via a software jump.
 */
void Application_Jump_Check(void)
{
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
	bool JumpToApplication = false;

	#if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
		/* Disable JTAG debugging */
		JTAG_DISABLE();

		/* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
		PORTF |= (1 << 4);
		Delay_MS(10);

		/* If the TCK pin is not jumpered to ground, start the user application instead */
		JumpToApplication |= ((PINF & (1 << 4)) != 0);

		/* Re-enable JTAG debugging */
		JTAG_ENABLE();
	#endif

90
	/* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
91
	if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
92
93
94
95
	  JumpToApplication |= true;

	/* If a request has been made to jump to the user application, honor it */
	if (JumpToApplication)
96
	{
97
98
99
100
101
		/* Turn off the watchdog */
		MCUSR &= ~(1<<WDRF);
		wdt_disable(); 

		/* Clear the boot key and jump to the user application */
102
		MagicBootKey = 0;
103

104
		// cppcheck-suppress constStatement
105
106
107
		((void (*)(void))0x0000)();
	}
}
108

109
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
110
111
112
113
114
115
116
117
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

118
119
120
	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1);

121
122
123
124
125
126
127
128
	/* Enable global interrupts so that the USB stack can function */
	sei();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
129

130
131
	/* Disconnect from the host - USB interface will be reset later along with the AVR */
	USB_Detach();
132
133
134
	
	/* Unlock the forced application start mode of the bootloader if it is restarted */
	MagicBootKey = MAGIC_BOOT_KEY;
135
136
137
138
139
140
141
142

	/* Enable the watchdog and force a timeout to reset the AVR */
	wdt_enable(WDTO_250MS);

	for (;;);
}

/** Configures all hardware required for the bootloader. */
143
static void SetupHardware(void)
144
145
146
147
148
149
150
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
151

152
153
154
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
155

156
	/* Initialize the USB and other board hardware drivers */
157
	USB_Init();
158
	LEDs_Init();
159

160
161
	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
162
	TCCR1B = ((1 << CS11) | (1 << CS10));
163
164
165
166
167
168
}

/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
169
170
171
172
173
174
175
176
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
void EVENT_USB_Device_ConfigurationChanged(void)
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
177
178
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
	                           CDC_NOTIFICATION_EPSIZE, 1);
179

180
	Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
181

182
	Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
183
184
}

185
186
187
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
188
 */
189
void EVENT_USB_Device_ControlRequest(void)
190
{
191
192
193
194
195
196
197
	/* Ignore any requests that aren't directed to the CDC interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}

198
199
200
	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

201
202
203
	/* Process CDC specific control requests */
	switch (USB_ControlRequest.bRequest)
	{
204
		case CDC_REQ_GetLineEncoding:
205
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
206
			{
207
208
209
				Endpoint_ClearSETUP();

				/* Write the line coding data to the control endpoint */
210
				Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
211
212
				Endpoint_ClearOUT();
			}
213

214
			break;
215
		case CDC_REQ_SetLineEncoding:
216
217
218
219
220
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
			{
				Endpoint_ClearSETUP();

				/* Read the line coding data in from the host into the global struct */
221
				Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
222
223
				Endpoint_ClearIN();
			}
224

225
226
227
228
			break;
	}
}

229
#if !defined(NO_BLOCK_SUPPORT)
230
231
232
233
234
235
236
237
238
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
 */
static void ReadWriteMemoryBlock(const uint8_t Command)
{
	uint16_t BlockSize;
	char     MemoryType;
239

240
241
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
242

243
244
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
245

246
247
248
249
250
251
	MemoryType =  FetchNextCommandByte();

	if ((MemoryType != 'E') && (MemoryType != 'F'))
	{
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
		return;
	}

	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
			if (MemoryType == 'F')
			{
				/* Read the next FLASH byte from the current FLASH page */
				#if (FLASHEND > 0xFFFF)
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
270
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
271
				#endif
272

273
274
275
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
276

277
278
279
280
281
				HighByte = !HighByte;
			}
			else
			{
				/* Read the next EEPROM byte into the endpoint */
282
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
283
284
285

				/* Increment the address counter after use */
				CurrAddress += 2;
286
			}
287
288
289
290
291
292
293
294
295
296
297
		}
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
298

299
300
301
		while (BlockSize--)
		{
			if (MemoryType == 'F')
302
			{
303
304
305
306
307
308
309
310
311
312
313
314
315
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
				{
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));

					/* Increment the address counter after use */
					CurrAddress += 2;
				}
				else
				{
					LowByte = FetchNextCommandByte();
				}
316

317
				HighByte = !HighByte;
318
319
320
321
			}
			else
			{
				/* Write the next EEPROM byte from the endpoint */
322
				eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
323
324
325
326
327
328
329
330
331
332
333

				/* Increment the address counter after use */
				CurrAddress += 2;
			}
		}

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
334

335
336
337
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
338

339
		/* Send response byte back to the host */
340
		WriteNextResponseByte('\r');
341
342
	}
}
343
#endif
344
345
346
347
348
349
350
351
352

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
353
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
354

355
356
357
358
359
360
361
362
363
364
365
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
	while (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearOUT();

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
	}
366

367
	/* Fetch the next byte from the OUT endpoint */
368
	return Endpoint_Read_8();
369
370
371
372
373
374
375
376
377
378
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
 *  \param[in] Response  Next response byte to send to the host
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
379
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
380

381
382
383
384
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearIN();
385

386
		while (!(Endpoint_IsINReady()))
387
		{
388
389
390
391
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
	}
392

393
	/* Write the next byte to the IN endpoint */
394
	Endpoint_Write_8(Response);
395
396
397
398
399
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
400
static void CDC_Task(void)
401
402
{
	/* Select the OUT endpoint */
403
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
404

405
	/* Check if endpoint has a command in it sent from the host */
406
407
	if (!(Endpoint_IsOUTReceived()))
	  return;
408

409
410
	/* Read in the bootloader command (first byte sent from host) */
	uint8_t Command = FetchNextCommandByte();
411

412
413
414
	if (Command == 'E')
	{
		RunBootloader = false;
415

416
417
418
419
420
421
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'T')
	{
		FetchNextCommandByte();
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if ((Command == 'L') || (Command == 'P'))
	{
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 't')
	{
		/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
		WriteNextResponseByte(0x44);
		WriteNextResponseByte(0x00);
	}
	else if (Command == 'a')
	{
		/* Indicate auto-address increment is supported */
		WriteNextResponseByte('Y');
	}
	else if (Command == 'A')
	{
		/* Set the current address to that given by the host */
		CurrAddress   = (FetchNextCommandByte() << 9);
		CurrAddress  |= (FetchNextCommandByte() << 1);

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'p')
	{
		/* Indicate serial programmer back to the host */
		WriteNextResponseByte('S');
	}
	else if (Command == 'S')
	{
		/* Write the 7-byte software identifier to the endpoint */
		for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
		  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
	}
	else if (Command == 'V')
	{
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
	}
	else if (Command == 's')
	{
		WriteNextResponseByte(AVR_SIGNATURE_3);
		WriteNextResponseByte(AVR_SIGNATURE_2);
		WriteNextResponseByte(AVR_SIGNATURE_1);
	}
	else if (Command == 'e')
	{
		/* Clear the application section of flash */
476
		for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
477
		{
478
479
480
481
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();
482
		}
483

484
485
486
487
488
489
490
491
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
	else if (Command == 'l')
	{
		/* Set the lock bits to those given by the host */
		boot_lock_bits_set(FetchNextCommandByte());
492

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#endif
	else if (Command == 'r')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
	}
	else if (Command == 'F')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
	}
	else if (Command == 'N')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
	}
	else if (Command == 'Q')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
	}
	#if !defined(NO_BLOCK_SUPPORT)
	else if (Command == 'b')
	{
		WriteNextResponseByte('Y');
517

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
		/* Send block size to the host */
		WriteNextResponseByte(SPM_PAGESIZE >> 8);
		WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
	}
	else if ((Command == 'B') || (Command == 'g'))
	{
		/* Delegate the block write/read to a separate function for clarity */
		ReadWriteMemoryBlock(Command);
	}
	#endif
	#if !defined(NO_FLASH_BYTE_SUPPORT)
	else if (Command == 'C')
	{
		/* Write the high byte to the current flash page */
		boot_page_fill(CurrAddress, FetchNextCommandByte());
533

534
535
536
537
538
539
540
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'c')
	{
		/* Write the low byte to the current flash page */
		boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
541

542
543
		/* Increment the address */
		CurrAddress += 2;
544

545
546
547
548
549
550
551
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'm')
	{
		/* Commit the flash page to memory */
		boot_page_write(CurrAddress);
552

553
554
		/* Wait until write operation has completed */
		boot_spm_busy_wait();
555

556
557
558
559
560
561
562
563
564
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'R')
	{
		#if (FLASHEND > 0xFFFF)
		uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
		#else
		uint16_t ProgramWord = pgm_read_word(CurrAddress);
565
		#endif
566

567
568
569
570
571
572
573
574
575
		WriteNextResponseByte(ProgramWord >> 8);
		WriteNextResponseByte(ProgramWord & 0xFF);
	}
	#endif
	#if !defined(NO_EEPROM_BYTE_SUPPORT)
	else if (Command == 'D')
	{
		/* Read the byte from the endpoint and write it to the EEPROM */
		eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
576

577
578
		/* Increment the address after use */
		CurrAddress += 2;
579

580
581
582
583
584
585
586
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'd')
	{
		/* Read the EEPROM byte and write it to the endpoint */
		WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
587

588
589
590
591
592
593
594
595
596
		/* Increment the address after use */
		CurrAddress += 2;
	}
	#endif
	else if (Command != 27)
	{
		/* Unknown (non-sync) command, return fail code */
		WriteNextResponseByte('?');
	}
597

598
	/* Select the IN endpoint */
599
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
600

601
602
	/* Remember if the endpoint is completely full before clearing it */
	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
603

604
605
	/* Send the endpoint data to the host */
	Endpoint_ClearIN();
606

607
608
609
	/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
	if (IsEndpointFull)
	{
610
		while (!(Endpoint_IsINReady()))
611
		{
612
613
614
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
615

616
617
		Endpoint_ClearIN();
	}
618

619
620
621
622
623
	/* Wait until the data has been sent to the host */
	while (!(Endpoint_IsINReady()))
	{
		if (USB_DeviceState == DEVICE_STATE_Unattached)
		  return;
624
	}
625
626

	/* Select the OUT endpoint */
627
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
628
629
630

	/* Acknowledge the command from the host */
	Endpoint_ClearOUT();
631
}
632