BootloaderDFU.c 23.8 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2012.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2012  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
 */

#define  INCLUDE_FROM_BOOTLOADER_C
#include "BootloaderDFU.h"

/** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
 *  other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41
 *  once a memory erase has completed in a bootloader session.
42
 */
43
static bool IsSecure = SECURE_MODE;
44
45
46
47
48

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
 */
49
static bool RunBootloader = true;
50
51
52
53
54
55

/** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
 *  jump to the application address it specifies, it sends two sequential commands which must be properly
 *  acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
 *  causing the bootloader to wait for the final exit command before shutting down.
 */
56
static bool WaitForExit = false;
57
58

/** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59
static uint8_t DFU_State = dfuIDLE;
60
61
62
63

/** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
 *  each operation, and returned to the host when a Get Status DFU request is issued.
 */
64
static uint8_t DFU_Status = OK;
65
66

/** Data containing the DFU command sent from the host. */
67
static DFU_Command_t SentCommand;
68
69
70
71
72

/** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
 *  requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
 *  is issued by the host.
 */
73
static uint8_t ResponseByte;
74
75
76
77

/** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
 *  may specify an alternate address when issuing the application soft-start command.
 */
78
static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80
81
82

/** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
 *  64KB of flash memory.
 */
83
static uint8_t Flash64KBPage = 0;
84
85
86
87

/** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
 *  depending on the issued command from the host).
 */
88
static uint16_t StartAddr = 0x0000;
89

90
/** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91
92
 *  of EEPROM depending on the issued command from the host).
 */
93
static uint16_t EndAddr = 0x0000;
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
 *  will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
 *  low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
 *  \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
 */
uint32_t MagicBootKey ATTR_NO_INIT;


/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
 *  start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
 *  this will force the user application to start via a software jump.
 */
void Application_Jump_Check(void)
{
	// If the reset source was the bootloader and the key is correct, clear it and jump to the application
	if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
	{
		MagicBootKey = 0;
		AppStartPtr();
	}
}
116

117
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
118
119
120
121
122
123
124
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Configure hardware required by the bootloader */
	SetupHardware();
125

126
127
128
129
130
131
132
	#if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
	/* Disable JTAG debugging */
	MCUCR |= (1 << JTD);
	MCUCR |= (1 << JTD);

	/* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
	PORTF |= (1 << 4);
133
	Delay_MS(10);
134
135
136

	/* If the TCK pin is not jumpered to ground, start the user application instead */
	RunBootloader = (!(PINF & (1 << 4)));
137

138
139
	/* Re-enable JTAG debugging */
	MCUCR &= ~(1 << JTD);
140
	MCUCR &= ~(1 << JTD);
141
142
	#endif

143
144
145
	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1);

146
147
148
149
150
151
	/* Enable global interrupts so that the USB stack can function */
	sei();

	/* Run the USB management task while the bootloader is supposed to be running */
	while (RunBootloader || WaitForExit)
	  USB_USBTask();
152

153
154
	/* Reset configured hardware back to their original states for the user application */
	ResetHardware();
155

156
157
158
159
160
	/* Start the user application */
	AppStartPtr();
}

/** Configures all hardware required for the bootloader. */
161
static void SetupHardware(void)
162
163
164
165
166
167
168
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
169

170
171
172
173
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);

174
	/* Initialize the USB and other board hardware drivers */
175
	USB_Init();
176
	LEDs_Init();
177

178
179
180
	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
	TCCR1B = ((1 << CS11) | (1 << CS10));
181
182
183
}

/** Resets all configured hardware required for the bootloader back to their original states. */
184
static void ResetHardware(void)
185
{
186
	/* Shut down the USB and other board hardware drivers */
187
	USB_Disable();
188
	LEDs_Disable();
189

190
191
192
193
194
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;
}

195
196
197
198
199
200
/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
}

201
202
203
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
204
 */
205
void EVENT_USB_Device_ControlRequest(void)
206
{
207
208
209
210
211
212
	/* Ignore any requests that aren't directed to the DFU interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}
213

214
215
216
217
218
219
	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

	/* Get the size of the command and data from the wLength value */
	SentCommand.DataSize = USB_ControlRequest.wLength;

220
221
	switch (USB_ControlRequest.bRequest)
	{
222
		case DFU_REQ_DNLOAD:
223
			Endpoint_ClearSETUP();
224

225
226
227
228
229
			/* Check if bootloader is waiting to terminate */
			if (WaitForExit)
			{
				/* Bootloader is terminating - process last received command */
				ProcessBootloaderCommand();
230

231
232
233
				/* Indicate that the last command has now been processed - free to exit bootloader */
				WaitForExit = false;
			}
234

235
236
237
238
			/* If the request has a data stage, load it into the command struct */
			if (SentCommand.DataSize)
			{
				while (!(Endpoint_IsOUTReceived()))
239
				{
240
241
242
243
244
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}

				/* First byte of the data stage is the DNLOAD request's command */
245
				SentCommand.Command = Endpoint_Read_8();
246

247
248
				/* One byte of the data stage is the command, so subtract it from the total data bytes */
				SentCommand.DataSize--;
249

250
251
252
253
				/* Load in the rest of the data stage as command parameters */
				for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
				     Endpoint_BytesInEndpoint(); DataByte++)
				{
254
					SentCommand.Data[DataByte] = Endpoint_Read_8();
255
256
					SentCommand.DataSize--;
				}
257

258
259
260
				/* Process the command */
				ProcessBootloaderCommand();
			}
261

262
263
			/* Check if currently downloading firmware */
			if (DFU_State == dfuDNLOAD_IDLE)
264
			{
265
266
267
268
269
270
271
272
273
274
275
				if (!(SentCommand.DataSize))
				{
					DFU_State = dfuIDLE;
				}
				else
				{
					/* Throw away the filler bytes before the start of the firmware */
					DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);

					/* Throw away the packet alignment filler bytes before the start of the firmware */
					DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
276

277
278
					/* Calculate the number of bytes remaining to be written */
					uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
279

280
281
282
283
					if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))        // Write flash
					{
						/* Calculate the number of words to be written from the number of bytes to be written */
						uint16_t WordsRemaining = (BytesRemaining >> 1);
284

285
286
287
288
289
						union
						{
							uint16_t Words[2];
							uint32_t Long;
						} CurrFlashAddress                 = {.Words = {StartAddr, Flash64KBPage}};
290

291
292
293
294
295
296
297
298
299
300
301
						uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
						uint8_t  WordsInFlashPage          = 0;

						while (WordsRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
								Endpoint_ClearOUT();

								while (!(Endpoint_IsOUTReceived()))
302
								{
303
304
305
306
307
308
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
							}

							/* Write the next word into the current flash page */
309
							boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());
310
311
312
313
314
315
316
317
318
319
320

							/* Adjust counters */
							WordsInFlashPage      += 1;
							CurrFlashAddress.Long += 2;

							/* See if an entire page has been written to the flash page buffer */
							if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
							{
								/* Commit the flash page to memory */
								boot_page_write(CurrFlashPageStartAddress);
								boot_spm_busy_wait();
321

322
323
324
325
326
327
328
329
330
331
332
333
								/* Check if programming incomplete */
								if (WordsRemaining)
								{
									CurrFlashPageStartAddress = CurrFlashAddress.Long;
									WordsInFlashPage          = 0;

									/* Erase next page's temp buffer */
									boot_page_erase(CurrFlashAddress.Long);
									boot_spm_busy_wait();
								}
							}
						}
334

335
336
						/* Once programming complete, start address equals the end address */
						StartAddr = EndAddr;
337

338
339
340
341
342
343
344
345
346
347
348
349
350
						/* Re-enable the RWW section of flash */
						boot_rww_enable();
					}
					else                                                   // Write EEPROM
					{
						while (BytesRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
								Endpoint_ClearOUT();

								while (!(Endpoint_IsOUTReceived()))
351
								{
352
353
354
355
356
357
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
							}

							/* Read the byte from the USB interface and write to to the EEPROM */
358
							eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8());
359

360
361
362
363
							/* Adjust counters */
							StartAddr++;
						}
					}
364

365
366
367
368
369
370
371
372
373
374
					/* Throw away the currently unused DFU file suffix */
					DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
				}
			}

			Endpoint_ClearOUT();

			Endpoint_ClearStatusStage();

			break;
375
		case DFU_REQ_UPLOAD:
376
377
378
			Endpoint_ClearSETUP();

			while (!(Endpoint_IsINReady()))
379
			{
380
381
382
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}
383

384
385
386
387
388
389
			if (DFU_State != dfuUPLOAD_IDLE)
			{
				if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))       // Blank Check
				{
					/* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
					   that the memory isn't blank, and the host is requesting the first non-blank address */
390
					Endpoint_Write_16_LE(StartAddr);
391
392
393
394
				}
				else
				{
					/* Idle state upload - send response to last issued command */
395
					Endpoint_Write_8(ResponseByte);
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
				}
			}
			else
			{
				/* Determine the number of bytes remaining in the current block */
				uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);

				if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))            // Read FLASH
				{
					/* Calculate the number of words to be written from the number of bytes to be written */
					uint16_t WordsRemaining = (BytesRemaining >> 1);

					union
					{
						uint16_t Words[2];
						uint32_t Long;
					} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};

					while (WordsRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
							Endpoint_ClearIN();

							while (!(Endpoint_IsINReady()))
422
							{
423
424
425
426
427
428
429
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
						}

						/* Read the flash word and send it via USB to the host */
						#if (FLASHEND > 0xFFFF)
430
							Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
431
						#else
432
							Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
433
434
435
436
437
						#endif

						/* Adjust counters */
						CurrFlashAddress.Long += 2;
					}
438

439
440
441
442
443
444
445
446
447
448
449
					/* Once reading is complete, start address equals the end address */
					StartAddr = EndAddr;
				}
				else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))       // Read EEPROM
				{
					while (BytesRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
							Endpoint_ClearIN();
450

451
							while (!(Endpoint_IsINReady()))
452
							{
453
454
455
456
457
458
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
						}

						/* Read the EEPROM byte and send it via USB to the host */
459
						Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
460
461
462
463
464
465
466
467
468
469
470
471
472
473

						/* Adjust counters */
						StartAddr++;
					}
				}

				/* Return to idle state */
				DFU_State = dfuIDLE;
			}

			Endpoint_ClearIN();

			Endpoint_ClearStatusStage();
			break;
474
		case DFU_REQ_GETSTATUS:
475
			Endpoint_ClearSETUP();
476

477
			/* Write 8-bit status value */
478
			Endpoint_Write_8(DFU_Status);
479

480
			/* Write 24-bit poll timeout value */
481
482
			Endpoint_Write_8(0);
			Endpoint_Write_16_LE(0);
483

484
			/* Write 8-bit state value */
485
			Endpoint_Write_8(DFU_State);
486
487

			/* Write 8-bit state string ID number */
488
			Endpoint_Write_8(0);
489
490

			Endpoint_ClearIN();
491

492
			Endpoint_ClearStatusStage();
493
			break;
494
		case DFU_REQ_CLRSTATUS:
495
			Endpoint_ClearSETUP();
496

497
498
499
500
501
			/* Reset the status value variable to the default OK status */
			DFU_Status = OK;

			Endpoint_ClearStatusStage();
			break;
502
		case DFU_REQ_GETSTATE:
503
			Endpoint_ClearSETUP();
504

505
			/* Write the current device state to the endpoint */
506
			Endpoint_Write_8(DFU_State);
507

508
			Endpoint_ClearIN();
509

510
511
			Endpoint_ClearStatusStage();
			break;
512
		case DFU_REQ_ABORT:
513
			Endpoint_ClearSETUP();
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
			/* Reset the current state variable to the default idle state */
			DFU_State = dfuIDLE;

			Endpoint_ClearStatusStage();
			break;
	}
}

/** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
 *  discard unused bytes in the stream from the host, including the memory program block suffix.
 *
 *  \param[in] NumberOfBytes  Number of bytes to discard from the host from the control endpoint
 */
static void DiscardFillerBytes(uint8_t NumberOfBytes)
{
	while (NumberOfBytes--)
	{
		if (!(Endpoint_BytesInEndpoint()))
		{
			Endpoint_ClearOUT();

			/* Wait until next data packet received */
			while (!(Endpoint_IsOUTReceived()))
538
			{
539
540
541
542
543
544
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}
		}
		else
		{
545
			Endpoint_Discard_8();
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
		}
	}
}

/** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
 *  that the command is allowed based on the current secure mode flag value, and passes the command off to the
 *  appropriate handler function.
 */
static void ProcessBootloaderCommand(void)
{
	/* Check if device is in secure mode */
	if (IsSecure)
	{
		/* Don't process command unless it is a READ or chip erase command */
		if (!(((SentCommand.Command == COMMAND_WRITE)             &&
		        IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
			   (SentCommand.Command == COMMAND_READ)))
		{
			/* Set the state and status variables to indicate the error */
			DFU_State  = dfuERROR;
			DFU_Status = errWRITE;
567

568
569
			/* Stall command */
			Endpoint_StallTransaction();
570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
			/* Don't process the command */
			return;
		}
	}

	/* Dispatch the required command processing routine based on the command type */
	switch (SentCommand.Command)
	{
		case COMMAND_PROG_START:
			ProcessMemProgCommand();
			break;
		case COMMAND_DISP_DATA:
			ProcessMemReadCommand();
			break;
		case COMMAND_WRITE:
			ProcessWriteCommand();
			break;
		case COMMAND_READ:
			ProcessReadCommand();
			break;
		case COMMAND_CHANGE_BASE_ADDR:
			if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00))              // Set 64KB flash page command
			  Flash64KBPage = SentCommand.Data[2];

			break;
	}
}

/** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
 *  in the StartAddr and EndAddr global variables.
 */
static void LoadStartEndAddresses(void)
{
	union
	{
		uint8_t  Bytes[2];
		uint16_t Word;
	} Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
	                {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
610

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
	/* Load in the start and ending read addresses from the sent data packet */
	StartAddr = Address[0].Word;
	EndAddr   = Address[1].Word;
}

/** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
 *  to write subsequent data from the host into the specified memory.
 */
static void ProcessMemProgCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Write FLASH command
	    IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                            // Write EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();
626

627
628
629
630
631
632
633
634
		/* If FLASH is being written to, we need to pre-erase the first page to write to */
		if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
		{
			union
			{
				uint16_t Words[2];
				uint32_t Long;
			} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
635

636
637
638
639
			/* Erase the current page's temp buffer */
			boot_page_erase(CurrFlashAddress.Long);
			boot_spm_busy_wait();
		}
640

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
		/* Set the state so that the next DNLOAD requests reads in the firmware */
		DFU_State = dfuDNLOAD_IDLE;
	}
}

/** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
 *  to read subsequent data from the specified memory out to the host, as well as implementing the memory
 *  blank check command.
 */
static void ProcessMemReadCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Read FLASH command
        IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))                            // Read EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();

		/* Set the state so that the next UPLOAD requests read out the firmware */
		DFU_State = dfuUPLOAD_IDLE;
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                       // Blank check FLASH command
	{
		uint32_t CurrFlashAddress = 0;

		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			/* Check if the current byte is not blank */
			#if (FLASHEND > 0xFFFF)
			if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
			#else
			if (pgm_read_byte(CurrFlashAddress) != 0xFF)
			#endif
			{
				/* Save the location of the first non-blank byte for response back to the host */
				Flash64KBPage = (CurrFlashAddress >> 16);
				StartAddr     = CurrFlashAddress;
677

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
				/* Set state and status variables to the appropriate error values */
				DFU_State  = dfuERROR;
				DFU_Status = errCHECK_ERASED;

				break;
			}

			CurrFlashAddress++;
		}
	}
}

/** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
 *  bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
 */
static void ProcessWriteCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03))                            // Start application
	{
		/* Indicate that the bootloader is terminating */
		WaitForExit = true;

700
701
		/* Check if data supplied for the Start Program command - no data executes the program */
		if (SentCommand.DataSize)
702
		{
703
			if (SentCommand.Data[1] == 0x01)                                   // Start via jump
704
705
706
707
708
709
710
			{
				union
				{
					uint8_t  Bytes[2];
					AppPtr_t FuncPtr;
				} Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};

711
				/* Load in the jump address into the application start address pointer */
712
				AppStartPtr = Address.FuncPtr;
713
714
715
716
717
718
			}
		}
		else
		{
			if (SentCommand.Data[1] == 0x00)                                   // Start via watchdog
			{
719
720
721
				/* Unlock the forced application start mode of the bootloader if it is restarted */
				MagicBootKey = MAGIC_BOOT_KEY;

722
723
724
725
726
				/* Start the watchdog to reset the AVR once the communications are finalized */
				wdt_enable(WDTO_250MS);
			}
			else                                                               // Start via jump
			{
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
				/* Set the flag to terminate the bootloader at next opportunity */
				RunBootloader = false;
			}
		}
	}
	else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF))                 // Erase flash
	{
		uint32_t CurrFlashAddress = 0;

		/* Clear the application section of flash */
		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();

			CurrFlashAddress += SPM_PAGESIZE;
		}

		/* Re-enable the RWW section of flash as writing to the flash locks it out */
		boot_rww_enable();
749

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
		/* Memory has been erased, reset the security bit so that programming/reading is allowed */
		IsSecure = false;
	}
}

/** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
 *  commands such as device signature and bootloader version retrieval.
 */
static void ProcessReadCommand(void)
{
	const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
	const uint8_t SignatureInfo[3]  = {AVR_SIGNATURE_1,    AVR_SIGNATURE_2,     AVR_SIGNATURE_3};

	uint8_t DataIndexToRead = SentCommand.Data[1];

	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))                         // Read bootloader info
	  ResponseByte = BootloaderInfo[DataIndexToRead];
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                    // Read signature byte
	  ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
}
770