BootloaderDFU.c 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
             LUFA Library
     Copyright (C) Dean Camera, 2009.
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
  Copyright 2009  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, and distribute this software
  and its documentation for any purpose and without fee is hereby
  granted, provided that the above copyright notice appear in all
  copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
 */

#define  INCLUDE_FROM_BOOTLOADER_C
#include "BootloaderDFU.h"

/** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
 *  other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
 *  once a memory erase has completed.
 */
bool IsSecure      = SECURE_MODE;

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
 */
bool RunBootloader = true;

/** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
 *  jump to the application address it specifies, it sends two sequential commands which must be properly
53
 *  acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
 *  causing the bootloader to wait for the final exit command before shutting down.
 */
bool WaitForExit = false;

/** Current DFU state machine state, one of the values in the DFU_State_t enum. */
uint8_t DFU_State = dfuIDLE;

/** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
 *  each operation, and returned to the host when a Get Status DFU request is issued.
 */
uint8_t DFU_Status = OK;

/** Data containing the DFU command sent from the host. */
DFU_Command_t SentCommand;

/** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
 *  requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
 *  is issued by the host.
 */
uint8_t ResponseByte;

/** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
 *  may specify an alternate address when issuing the application soft-start command.
 */
AppPtr_t AppStartPtr = (AppPtr_t)0x0000;

/** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
 *  64KB of flash memory.
 */
uint8_t Flash64KBPage = 0;

/** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
 *  depending on the issued command from the host).
 */
uint16_t StartAddr = 0x0000;

/** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
 *  of EEPROM depending on the issued command from the host).
 */
uint16_t EndAddr = 0x0000;

/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously 
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main (void)
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

105 106
	/* Disable clock division */
	clock_prescale_set(clock_div_1);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);

	/* Initialize the USB subsystem */
	USB_Init();

	/* Run the USB management task while the bootloader is supposed to be running */
	while (RunBootloader || WaitForExit)
	  USB_USBTask();
	
	/* Shut down the USB subsystem */
	USB_ShutDown();
	
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;

	/* Reset any used hardware ports back to their defaults */
	PORTD = 0;
	DDRD  = 0;
	
	#if defined(PORTE)
	PORTE = 0;
	DDRE  = 0;
	#endif
	
	/* Start the user application */
	AppStartPtr();
}

/** Event handler for the USB_Disconnect event. This indicates that the bootloader should exit and the user
 *  application started.
 */
EVENT_HANDLER(USB_Disconnect)
{
	/* Upon disconnection, run user application */
	RunBootloader = false;
}

/** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
 *  control requests that are not handled internally by the USB library (including the DFU commands, which are
 *  all issued via the control endpoint), so that they can be handled appropriately for the application.
 */
EVENT_HANDLER(USB_UnhandledControlPacket)
{
	/* Discard unused wIndex value */
	Endpoint_Discard_Word();
	
	/* Discard unused wValue value */
	Endpoint_Discard_Word();

	/* Get the size of the command and data from the wLength value */
	SentCommand.DataSize = Endpoint_Read_Word_LE();

	switch (bRequest)
	{
		case DFU_DNLOAD:
166
			Endpoint_ClearControlSETUP();
167 168 169 170 171 172 173 174 175 176 177 178 179 180
			
			/* Check if bootloader is waiting to terminate */
			if (WaitForExit)
			{
				/* Bootloader is terminating - process last received command */
				ProcessBootloaderCommand();
				
				/* Indicate that the last command has now been processed - free to exit bootloader */
				WaitForExit = false;
			}
			  
			/* If the request has a data stage, load it into the command struct */
			if (SentCommand.DataSize)
			{
181
				while (!(Endpoint_IsOUTReceived()));
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

				/* First byte of the data stage is the DNLOAD request's command */
				SentCommand.Command = Endpoint_Read_Byte();
					
				/* One byte of the data stage is the command, so subtract it from the total data bytes */
				SentCommand.DataSize--;
				
				/* Load in the rest of the data stage as command parameters */
				for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
				     Endpoint_BytesInEndpoint(); DataByte++)
				{
					SentCommand.Data[DataByte] = Endpoint_Read_Byte();
					SentCommand.DataSize--;
				}
				
				/* Process the command */
				ProcessBootloaderCommand();
			}
			
			/* Check if currently downloading firmware */
			if (DFU_State == dfuDNLOAD_IDLE)
			{									
				if (!(SentCommand.DataSize))
				{
					DFU_State = dfuIDLE;
				}
				else
				{
					/* Throw away the filler bytes before the start of the firmware */
					DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);

					/* Throw away the page alignment filler bytes before the start of the firmware */
					DiscardFillerBytes(StartAddr % SPM_PAGESIZE);
					
					/* Calculate the number of bytes remaining to be written */
					uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
					
					if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))        // Write flash
					{
						/* Calculate the number of words to be written from the number of bytes to be written */
						uint16_t WordsRemaining = (BytesRemaining >> 1);
					
						union
						{
							uint16_t Words[2];
							uint32_t Long;
228
						} CurrFlashAddress                 = {.Words = {StartAddr, Flash64KBPage}};
229 230 231 232 233 234 235 236 237
						
						uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
						uint8_t  WordsInFlashPage          = 0;

						while (WordsRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
238 239
								Endpoint_ClearControlOUT();
								while (!(Endpoint_IsOUTReceived()));
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
							}

							/* Write the next word into the current flash page */
							boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());

							/* Adjust counters */
							WordsInFlashPage      += 1;
							CurrFlashAddress.Long += 2;

							/* See if an entire page has been written to the flash page buffer */
							if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
							{
								/* Commit the flash page to memory */
								boot_page_write(CurrFlashPageStartAddress);
								boot_spm_busy_wait();
								
								/* Check if programming incomplete */
								if (WordsRemaining)
								{
									CurrFlashPageStartAddress = CurrFlashAddress.Long;
									WordsInFlashPage          = 0;

									/* Erase next page's temp buffer */
									boot_page_erase(CurrFlashAddress.Long);
									boot_spm_busy_wait();
								}
							}
						}
					
						/* Once programming complete, start address equals the end address */
						StartAddr = EndAddr;
					
						/* Re-enable the RWW section of flash */
						boot_rww_enable();
					}
					else                                                   // Write EEPROM
					{
						while (BytesRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
282 283
								Endpoint_ClearControlOUT();
								while (!(Endpoint_IsOUTReceived()));
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
							}

							/* Read the byte from the USB interface and write to to the EEPROM */
							eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
							
							/* Adjust counters */
							StartAddr++;
						}
					}
					
					/* Throw away the currently unused DFU file suffix */
					DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
				}
			}

299
			Endpoint_ClearControlOUT();
300

301
			/* Acknowledge status stage */
302 303
			while (!(Endpoint_IsINReady()));
			Endpoint_ClearControlIN();
304 305 306
				
			break;
		case DFU_UPLOAD:
307
			Endpoint_ClearControlSETUP();
308

309
			while (!(Endpoint_IsINReady()));
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

			if (DFU_State != dfuUPLOAD_IDLE)
			{
				if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))       // Blank Check
				{
					/* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
					   that the memory isn't blank, and the host is requesting the first non-blank address */
					Endpoint_Write_Word_LE(StartAddr);
				}
				else
				{
					/* Idle state upload - send response to last issued command */
					Endpoint_Write_Byte(ResponseByte);
				}
			}
			else
			{
				/* Determine the number of bytes remaining in the current block */
				uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);

				if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))            // Read FLASH
				{
					/* Calculate the number of words to be written from the number of bytes to be written */
					uint16_t WordsRemaining = (BytesRemaining >> 1);

					union
					{
						uint16_t Words[2];
						uint32_t Long;
339
					} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
340 341 342 343 344 345

					while (WordsRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
346 347
							Endpoint_ClearControlIN();
							while (!(Endpoint_IsINReady()));
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
						}

						/* Read the flash word and send it via USB to the host */
						#if defined(RAMPZ)
							Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
						#else
							Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));							
						#endif

						/* Adjust counters */
						CurrFlashAddress.Long += 2;
					}
					
					/* Once reading is complete, start address equals the end address */
					StartAddr = EndAddr;
				}
				else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))       // Read EEPROM
				{
					while (BytesRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
371 372
							Endpoint_ClearControlIN();
							while (!(Endpoint_IsINReady()));
373 374 375 376 377 378 379 380 381 382 383 384 385 386
						}

						/* Read the EEPROM byte and send it via USB to the host */
						Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));

						/* Adjust counters */
						StartAddr++;
					}
				}

				/* Return to idle state */
				DFU_State = dfuIDLE;
			}

387
			Endpoint_ClearControlIN();
388

389
			/* Acknowledge status stage */
390 391
			while (!(Endpoint_IsOUTReceived()));
			Endpoint_ClearControlOUT();
392 393 394

			break;
		case DFU_GETSTATUS:
395
			Endpoint_ClearControlSETUP();
396 397 398 399 400 401 402 403 404 405 406 407 408 409
			
			/* Write 8-bit status value */
			Endpoint_Write_Byte(DFU_Status);
			
			/* Write 24-bit poll timeout value */
			Endpoint_Write_Byte(0);
			Endpoint_Write_Word_LE(0);
			
			/* Write 8-bit state value */
			Endpoint_Write_Byte(DFU_State);

			/* Write 8-bit state string ID number */
			Endpoint_Write_Byte(0);

410
			Endpoint_ClearControlIN();
411
			
412
			/* Acknowledge status stage */
413 414
			while (!(Endpoint_IsOUTReceived()));
			Endpoint_ClearControlOUT();
415 416 417
	
			break;		
		case DFU_CLRSTATUS:
418
			Endpoint_ClearControlSETUP();
419 420 421 422
			
			/* Reset the status value variable to the default OK status */
			DFU_Status = OK;

423
			/* Acknowledge status stage */
424 425
			while (!(Endpoint_IsINReady()));
			Endpoint_ClearControlIN();
426
			
427 428
			break;
		case DFU_GETSTATE:
429
			Endpoint_ClearControlSETUP();
430 431 432 433
			
			/* Write the current device state to the endpoint */
			Endpoint_Write_Byte(DFU_State);
		
434
			Endpoint_ClearControlIN();
435
			
436
			/* Acknowledge status stage */
437 438
			while (!(Endpoint_IsOUTReceived()));
			Endpoint_ClearControlOUT();
439 440 441

			break;
		case DFU_ABORT:
442
			Endpoint_ClearControlSETUP();
443 444 445 446
			
			/* Reset the current state variable to the default idle state */
			DFU_State = dfuIDLE;
			
447
			/* Acknowledge status stage */
448 449
			while (!(Endpoint_IsINReady()));
			Endpoint_ClearControlIN();
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

			break;
	}
}

/** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
 *  discard unused bytes in the stream from the host, including the memory program block suffix.
 *
 *  \param NumberOfBytes  Number of bytes to discard from the host from the control endpoint
 */
static void DiscardFillerBytes(uint8_t NumberOfBytes)
{
	while (NumberOfBytes--)
	{
		if (!(Endpoint_BytesInEndpoint()))
		{
466
			Endpoint_ClearControlOUT();
467 468

			/* Wait until next data packet received */
469
			while (!(Endpoint_IsOUTReceived()));
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
		}

		Endpoint_Discard_Byte();						
	}
}

/** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
 *  that the command is allowed based on the current secure mode flag value, and passes the command off to the
 *  appropriate handler function.
 */
static void ProcessBootloaderCommand(void)
{
	/* Check if device is in secure mode */
	if (IsSecure)
	{
		/* Don't process command unless it is a READ or chip erase command */
		if (!(((SentCommand.Command == COMMAND_WRITE)             &&
		        IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
			   (SentCommand.Command == COMMAND_READ)))
		{
			/* Set the state and status variables to indicate the error */
			DFU_State  = dfuERROR;
			DFU_Status = errWRITE;
			
			/* Stall command */
			Endpoint_StallTransaction();
			
			/* Don't process the command */
			return;
		}
	}

	/* Dispatch the required command processing routine based on the command type */
	switch (SentCommand.Command)
	{
		case COMMAND_PROG_START:
			ProcessMemProgCommand();
			break;
		case COMMAND_DISP_DATA:
			ProcessMemReadCommand();
			break;
		case COMMAND_WRITE:
			ProcessWriteCommand();
			break;
		case COMMAND_READ:
			ProcessReadCommand();
			break;
		case COMMAND_CHANGE_BASE_ADDR:
			if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00))              // Set 64KB flash page command
			  Flash64KBPage = SentCommand.Data[2];

			break;
	}
}

/** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
 *  in the StartAddr and EndAddr global variables.
 */
static void LoadStartEndAddresses(void)
{
	union
	{
		uint8_t  Bytes[2];
		uint16_t Word;
534 535
	} Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
	                {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
536 537 538 539 540 541
		
	/* Load in the start and ending read addresses from the sent data packet */
	StartAddr = Address[0].Word;
	EndAddr   = Address[1].Word;
}

542
/** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
 *  to write subsequent data from the host into the specified memory.
 */
static void ProcessMemProgCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Write FLASH command
	    IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                            // Write EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();
		
		/* If FLASH is being written to, we need to pre-erase the first page to write to */
		if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
		{
			union
			{
				uint16_t Words[2];
				uint32_t Long;
560
			} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
561 562 563 564 565 566 567 568 569 570 571
			
			/* Erase the current page's temp buffer */
			boot_page_erase(CurrFlashAddress.Long);
			boot_spm_busy_wait();
		}
		
		/* Set the state so that the next DNLOAD requests reads in the firmware */
		DFU_State = dfuDNLOAD_IDLE;
	}
}

572
/** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
 *  to read subsequent data from the specified memory out to the host, as well as implementing the memory
 *  blank check command.
 */
static void ProcessMemReadCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Read FLASH command
        IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))                            // Read EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();

		/* Set the state so that the next UPLOAD requests read out the firmware */
		DFU_State = dfuUPLOAD_IDLE;
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                       // Blank check FLASH command
	{
		uint32_t CurrFlashAddress = 0;

		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			/* Check if the current byte is not blank */
			#if defined(RAMPZ)
			if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
			#else
			if (pgm_read_byte(CurrFlashAddress) != 0xFF)
			#endif
			{
				/* Save the location of the first non-blank byte for response back to the host */
				Flash64KBPage = (CurrFlashAddress >> 16);
				StartAddr     = CurrFlashAddress;
			
				/* Set state and status variables to the appropriate error values */
				DFU_State  = dfuERROR;
				DFU_Status = errCHECK_ERASED;

				break;
			}

			CurrFlashAddress++;
		}
	}
}

/** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
 *  bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
 */
static void ProcessWriteCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03))                            // Start application
	{
		/* Indicate that the bootloader is terminating */
		WaitForExit = true;

		/* Check if empty request data array - an empty request after a filled request retains the
		   previous valid request data, but initializes the reset */
		if (!(SentCommand.DataSize))
		{
			if (SentCommand.Data[1] == 0x00)                                   // Start via watchdog
			{
				/* Start the watchdog to reset the AVR once the communications are finalized */
				wdt_enable(WDTO_250MS);
			}
			else                                                               // Start via jump
			{
				/* Load in the jump address into the application start address pointer */
				union
				{
					uint8_t  Bytes[2];
					AppPtr_t FuncPtr;
642
				} Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

				AppStartPtr = Address.FuncPtr;
				
				/* Set the flag to terminate the bootloader at next opportunity */
				RunBootloader = false;
			}
		}
	}
	else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF))                 // Erase flash
	{
		uint32_t CurrFlashAddress = 0;

		/* Clear the application section of flash */
		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();

			CurrFlashAddress += SPM_PAGESIZE;
		}

		/* Re-enable the RWW section of flash as writing to the flash locks it out */
		boot_rww_enable();
					
		/* Memory has been erased, reset the security bit so that programming/reading is allowed */
		IsSecure = false;
	}
}

/** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
 *  commands such as device signature and bootloader version retrieval.
 */
static void ProcessReadCommand(void)
{
	const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
680
	const uint8_t SignatureInfo[3]  = {SIGNATURE_0, SIGNATURE_1, SIGNATURE_2};
681 682 683 684 685 686 687 688 689 690 691 692

	uint8_t DataIndexToRead = SentCommand.Data[1];

	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))                         // Read bootloader info
	{
		ResponseByte = BootloaderInfo[DataIndexToRead];
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                    // Read signature byte
	{
		ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
	}
}