BootloaderCDC.c 15.5 KB
Newer Older
1
2
3
/*
             LUFA Library
     Copyright (C) Dean Camera, 2010.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
10
11
*/

/*
  Copyright 2010  Dean Camera (dean [at] fourwalledcubicle [dot] com)

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
35

36
37
38
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

39
40
41
42
43
44
45
46
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
 *  operating systems will not open the port unless the settings can be set successfully.
 */
CDC_Line_Coding_t LineEncoding = { .BaudRateBPS = 0,
                                   .CharFormat  = OneStopBit,
                                   .ParityType  = Parity_None,
                                   .DataBits    = 8            };

47
48
49
50
51
52
53
54
55
56
57
58
59
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
uint32_t CurrAddress;

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
 *  loop until the AVR restarts and the application runs.
 */
bool RunBootloader = true;


60
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

	/* Enable global interrupts so that the USB stack can function */
	sei();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
	/* Disconnect from the host - USB interface will be reset later along with the AVR */
	USB_Detach();

	/* Enable the watchdog and force a timeout to reset the AVR */
	wdt_enable(WDTO_250MS);

	for (;;);
}

/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
96

97
98
99
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
100

101
102
103
104
105
106
107
108
109
110
111
	/* Initialize USB Subsystem */
	USB_Init();
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
void EVENT_USB_Device_ConfigurationChanged(void)
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
112
	                           ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
113
114
115
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
116
	                           ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
117
118
119
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
120
	                           ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
121
122
123
	                           ENDPOINT_BANK_SINGLE);
}

124
125
126
127
128
129
130
131
132
133
134
/** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
 *  control requests that are not handled internally by the USB library (including the CDC control commands,
 *  which are all issued via the control endpoint), so that they can be handled appropriately for the application.
 */
void EVENT_USB_Device_UnhandledControlRequest(void)
{
	/* Process CDC specific control requests */
	switch (USB_ControlRequest.bRequest)
	{
		case REQ_GetLineEncoding:
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
135
			{
136
137
138
139
140
141
				Endpoint_ClearSETUP();

				/* Write the line coding data to the control endpoint */
				Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_Line_Coding_t));
				Endpoint_ClearOUT();
			}
142

143
144
145
146
147
148
149
150
151
152
			break;
		case REQ_SetLineEncoding:
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
			{
				Endpoint_ClearSETUP();

				/* Read the line coding data in from the host into the global struct */
				Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_Line_Coding_t));
				Endpoint_ClearIN();
			}
153

154
155
156
157
			break;
	}
}

158
159
160
161
162
163
164
165
166
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
 */
static void ReadWriteMemoryBlock(const uint8_t Command)
{
	uint16_t BlockSize;
	char     MemoryType;
167

168
169
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
170

171
172
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
173

174
175
176
177
178
179
	MemoryType =  FetchNextCommandByte();

	if ((MemoryType != 'E') && (MemoryType != 'F'))
	{
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
		return;
	}

	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
			if (MemoryType == 'F')
			{
				/* Read the next FLASH byte from the current FLASH page */
				#if (FLASHEND > 0xFFFF)
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
198
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
199
				#endif
200

201
202
203
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
204

205
206
207
208
209
				HighByte = !HighByte;
			}
			else
			{
				/* Read the next EEPROM byte into the endpoint */
210
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
211
212
213

				/* Increment the address counter after use */
				CurrAddress += 2;
214
			}
215
216
217
218
219
220
221
222
223
224
225
		}
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
226

227
228
229
		while (BlockSize--)
		{
			if (MemoryType == 'F')
230
			{
231
232
233
234
235
236
237
238
239
240
241
242
243
244
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
				{
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));

					/* Increment the address counter after use */
					CurrAddress += 2;

					HighByte = false;
				}
				else
				{
					LowByte = FetchNextCommandByte();
245

246
247
248
249
250
251
					HighByte = true;
				}
			}
			else
			{
				/* Write the next EEPROM byte from the endpoint */
252
				eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
253
254
255
256
257
258
259
260
261
262
263

				/* Increment the address counter after use */
				CurrAddress += 2;
			}
		}

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
264

265
266
267
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
268

269
		/* Send response byte back to the host */
270
		WriteNextResponseByte('\r');
271
272
273
274
275
276
277
278
279
280
281
282
	}
}

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
283

284
285
286
287
288
289
290
291
292
293
294
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
	while (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearOUT();

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
	}
295

296
297
298
299
300
301
302
303
304
305
306
307
308
	/* Fetch the next byte from the OUT endpoint */
	return Endpoint_Read_Byte();
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
 *  \param[in] Response  Next response byte to send to the host
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
309

310
311
312
313
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearIN();
314

315
		while (!(Endpoint_IsINReady()))
316
		{
317
318
319
320
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
	}
321

322
323
324
325
326
327
328
329
330
331
332
	/* Write the next byte to the OUT endpoint */
	Endpoint_Write_Byte(Response);
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
void CDC_Task(void)
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
333

334
335
336
337
338
339
340
341
342
343
	/* Check if endpoint has a command in it sent from the host */
	if (Endpoint_IsOUTReceived())
	{
		/* Read in the bootloader command (first byte sent from host) */
		uint8_t Command = FetchNextCommandByte();

		if ((Command == 'L') || (Command == 'P') || (Command == 'T') || (Command == 'E'))
		{
			if (Command == 'E')
			  RunBootloader = false;
344
			else if (Command == 'T')
345
346
347
			  FetchNextCommandByte();

			/* Send confirmation byte back to the host */
348
			WriteNextResponseByte('\r');
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
		}
		else if (Command == 't')
		{
			/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
			WriteNextResponseByte(0x44);
			WriteNextResponseByte(0x00);
		}
		else if (Command == 'a')
		{
			/* Indicate auto-address increment is supported */
			WriteNextResponseByte('Y');
		}
		else if (Command == 'A')
		{
			/* Set the current address to that given by the host */
			CurrAddress   = (FetchNextCommandByte() << 9);
			CurrAddress  |= (FetchNextCommandByte() << 1);

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'p')
		{
			/* Indicate serial programmer back to the host */
373
			WriteNextResponseByte('S');
374
375
376
377
378
		}
		else if (Command == 'S')
		{
			/* Write the 7-byte software identifier to the endpoint */
			for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
379
			  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
380
381
382
383
384
385
386
387
		}
		else if (Command == 'V')
		{
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
		}
		else if (Command == 's')
		{
388
			WriteNextResponseByte(AVR_SIGNATURE_3);
389
390
391
392
393
394
			WriteNextResponseByte(AVR_SIGNATURE_2);
			WriteNextResponseByte(AVR_SIGNATURE_1);
		}
		else if (Command == 'b')
		{
			WriteNextResponseByte('Y');
395

396
397
			/* Send block size to the host */
			WriteNextResponseByte(SPM_PAGESIZE >> 8);
398
			WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
399
400
401
402
403
404
405
406
407
408
409
410
411
		}
		else if (Command == 'e')
		{
			/* Clear the application section of flash */
			for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress++)
			{
				boot_page_erase(CurrFlashAddress);
				boot_spm_busy_wait();
				boot_page_write(CurrFlashAddress);
				boot_spm_busy_wait();

				CurrFlashAddress += SPM_PAGESIZE;
			}
412

413
			/* Send confirmation byte back to the host */
414
			WriteNextResponseByte('\r');
415
416
417
418
419
420
421
422
423
424
425
		}
		else if (Command == 'l')
		{
			/* Set the lock bits to those given by the host */
			boot_lock_bits_set(FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'r')
		{
426
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
427
428
429
430
431
432
433
		}
		else if (Command == 'F')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
		}
		else if (Command == 'N')
		{
434
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
435
436
437
		}
		else if (Command == 'Q')
		{
438
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
439
440
		}
		else if (Command == 'C')
441
		{
442
443
444
445
			/* Write the high byte to the current flash page */
			boot_page_fill(CurrAddress, FetchNextCommandByte());

			/* Send confirmation byte back to the host */
446
			WriteNextResponseByte('\r');
447
448
		}
		else if (Command == 'c')
449
		{
450
451
			/* Write the low byte to the current flash page */
			boot_page_fill(CurrAddress | 1, FetchNextCommandByte());
452

453
454
455
456
			/* Increment the address */
			CurrAddress += 2;

			/* Send confirmation byte back to the host */
457
			WriteNextResponseByte('\r');
458
459
460
461
462
		}
		else if (Command == 'm')
		{
			/* Commit the flash page to memory */
			boot_page_write(CurrAddress);
463

464
465
466
467
			/* Wait until write operation has completed */
			boot_spm_busy_wait();

			/* Send confirmation byte back to the host */
468
			WriteNextResponseByte('\r');
469
470
471
472
473
474
475
476
477
478
479
		}
		else if ((Command == 'B') || (Command == 'g'))
		{
			/* Delegate the block write/read to a separate function for clarity */
			ReadWriteMemoryBlock(Command);
		}
		else if (Command == 'R')
		{
			#if (FLASHEND > 0xFFFF)
			uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
			#else
480
			uint16_t ProgramWord = pgm_read_word(CurrAddress);
481
			#endif
482

483
484
485
486
487
488
			WriteNextResponseByte(ProgramWord >> 8);
			WriteNextResponseByte(ProgramWord & 0xFF);
		}
		else if (Command == 'D')
		{
			/* Read the byte from the endpoint and write it to the EEPROM */
489
			eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
490
491

			/* Increment the address after use */
492
			CurrAddress += 2;
493

494
			/* Send confirmation byte back to the host */
495
			WriteNextResponseByte('\r');
496
497
498
499
		}
		else if (Command == 'd')
		{
			/* Read the EEPROM byte and write it to the endpoint */
500
			WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

			/* Increment the address after use */
			CurrAddress += 2;
		}
		else if (Command == 27)
		{
			/* Escape is sync, ignore */
		}
		else
		{
			/* Unknown command, return fail code */
			WriteNextResponseByte('?');
		}

		/* Select the IN endpoint */
		Endpoint_SelectEndpoint(CDC_TX_EPNUM);

		/* Remember if the endpoint is completely full before clearing it */
		bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());

		/* Send the endpoint data to the host */
		Endpoint_ClearIN();
523

524
525
526
527
		/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
		if (IsEndpointFull)
		{
			while (!(Endpoint_IsINReady()))
528
			{
529
530
531
532
533
534
535
536
537
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

			Endpoint_ClearIN();
		}

		/* Wait until the data has been sent to the host */
		while (!(Endpoint_IsINReady()))
538
		{
539
540
541
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
542

543
544
545
546
547
548
549
		/* Select the OUT endpoint */
		Endpoint_SelectEndpoint(CDC_RX_EPNUM);

		/* Acknowledge the command from the host */
		Endpoint_ClearOUT();
	}
}
550