BootloaderCDC.c 17 KB
Newer Older
1
2
/*
             LUFA Library
Dean Camera's avatar
Dean Camera committed
3
     Copyright (C) Dean Camera, 2010.
4
5
6
7
8
9
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
Dean Camera's avatar
Dean Camera committed
10
  Copyright 2010  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
13
14
15
16
17
18
  Permission to use, copy, modify, distribute, and sell this 
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in 
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting 
  documentation, and that the name of the author not be used in 
  advertising or publicity pertaining to distribution of the 
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
 
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

/** Line coding options for the virtual serial port. Although the virtual serial port data is never
 *  sent through a physical serial port, the line encoding data must still be read and preserved from
 *  the host, or the host will detect a problem and fail to open the port. This structure contains the
 *  current encoding options, including baud rate, character format, parity mode and total number of 
 *  bits in each data chunk.
 */
45
46
47
48
CDC_Line_Coding_t LineCoding = { .BaudRateBPS = 9600,
                                 .CharFormat  = OneStopBit,
                                 .ParityType  = Parity_None,
                                 .DataBits    = 8            };
49
50
51
52
53

/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
54
uint32_t CurrAddress;
55
56
57
58
59
60
61
62
63
64
65
66
67

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000.
 */
bool RunBootloader = true;


/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously 
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
68
69
70
71
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

72
73
74
	/* Enable global interrupts so that the USB stack can function */
	sei();

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
	
	/* Reset all configured hardware to their default states for the user app */
	ResetHardware();

	/* Start the user application */
	AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
	AppStartPtr();	
}

/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
91
92
93
94
95
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

96
97
	/* Disable clock division */
	clock_prescale_set(clock_div_1);
98
99
100
101
102
103
104
	
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
	
	/* Initialize USB Subsystem */
	USB_Init();
105
}
106

107
108
109
/** Resets all configured hardware required for the bootloader back to their original states. */
void ResetHardware(void)
{
110
111
112
113
114
115
116
117
118
119
120
121
122
123
	/* Shut down the USB subsystem */
	USB_ShutDown();
	
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;

	/* Re-enable RWW section */
	boot_rww_enable();
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
124
void EVENT_USB_Device_ConfigurationChanged(void)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
		                       ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);
}

140
/** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
141
142
143
 *  control requests that are not handled internally by the USB library, so that they can be handled appropriately
 *  for the application.
 */
144
void EVENT_USB_Device_UnhandledControlRequest(void)
145
146
147
148
{
	uint8_t* LineCodingData = (uint8_t*)&LineCoding;

	/* Process CDC specific control requests */
149
	switch (USB_ControlRequest.bRequest)
150
151
	{
		case REQ_GetLineEncoding:
152
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
153
			{
154
				Endpoint_ClearSETUP();
155
156
157
158

				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  Endpoint_Write_Byte(*(LineCodingData++));	
				
159
				Endpoint_ClearIN();
160
				
161
				Endpoint_ClearStatusStage();
162
163
164
165
			}
			
			break;
		case REQ_SetLineEncoding:
166
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
167
			{
168
				Endpoint_ClearSETUP();
169

170
171
172
173
174
175
				while (!(Endpoint_IsOUTReceived()))
				{				
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}
			
176
177
178
				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  *(LineCodingData++) = Endpoint_Read_Byte();

179
				Endpoint_ClearOUT();
180

181
				Endpoint_ClearStatusStage();
182
183
184
185
			}
	
			break;
		case REQ_SetControlLineState:
186
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
187
			{
188
				Endpoint_ClearSETUP();
189
				
190
				Endpoint_ClearStatusStage();
191
192
193
194
195
196
197
198
199
			}
	
			break;
	}
}

/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
200
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
201
 */
202
static void ReadWriteMemoryBlock(const uint8_t Command)
203
204
205
206
207
208
209
210
211
212
213
214
{
	uint16_t BlockSize;
	char     MemoryType;
	
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
	
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
	
	MemoryType =  FetchNextCommandByte();

215
	if ((MemoryType != 'E') && (MemoryType != 'F'))
216
	{
217
218
219
220
221
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
		
		return;
	}
222

223
224
225
226
227
228
229
230
	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
231
			if (MemoryType == 'F')
232
233
			{
				/* Read the next FLASH byte from the current FLASH page */
234
				#if (FLASHEND > 0xFFFF)
235
236
237
238
239
240
241
242
243
244
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));					
				#endif
				
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
				
				HighByte = !HighByte;
245
			}
246
247
248
249
250
251
252
253
			else
			{
				/* Read the next EEPROM byte into the endpoint */
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(uint16_t)(CurrAddress >> 1)));

				/* Increment the address counter after use */
				CurrAddress += 2;
			}			
254
		}
255
256
257
258
259
260
261
262
263
264
265
266
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
		
		while (BlockSize--)
267
268
		{
			if (MemoryType == 'F')
269
270
271
			{	
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
272
				{
273
274
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
275
276

					/* Increment the address counter after use */
277
278
279
					CurrAddress += 2;

					HighByte = false;
280
281
				}
				else
282
283
284
285
				{
					LowByte = FetchNextCommandByte();
				
					HighByte = true;
286
287
				}
			}
288
			else
289
			{
290
291
292
293
294
				/* Write the next EEPROM byte from the endpoint */
				eeprom_write_byte((uint8_t*)(uint16_t)(CurrAddress >> 1), FetchNextCommandByte());					

				/* Increment the address counter after use */
				CurrAddress += 2;
295
296
			}
		}
297
298
299
300
301
302
303
304
305
306
307
308
309

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
	
		/* Send response byte back to the host */
		WriteNextResponseByte('\r');		
310
311
312
313
314
315
316
317
318
319
320
321
322
323
	}
}

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
324
	while (!(Endpoint_IsReadWriteAllowed()))
325
	{
326
		Endpoint_ClearOUT();
327
328
329
330
331
332

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
333
334
335
336
337
338
339
340
341
	}
	
	/* Fetch the next byte from the OUT endpoint */
	return Endpoint_Read_Byte();
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
342
 *  \param[in] Response  Next response byte to send to the host
343
344
345
346
347
348
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
	
349
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
350
	if (!(Endpoint_IsReadWriteAllowed()))
351
	{
352
		Endpoint_ClearIN();
353
354
355
356
357
358
		
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
359
360
361
362
363
364
365
366
367
	}
	
	/* Write the next byte to the OUT endpoint */
	Endpoint_Write_Byte(Response);
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
368
void CDC_Task(void)
369
370
371
372
373
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* Check if endpoint has a command in it sent from the host */
374
	if (Endpoint_IsOUTReceived())
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
	{
		/* Read in the bootloader command (first byte sent from host) */
		uint8_t Command = FetchNextCommandByte();

		if ((Command == 'L') || (Command == 'P') || (Command == 'T') || (Command == 'E'))
		{
			if (Command == 'E')
			  RunBootloader = false;
			if (Command == 'T')
			  FetchNextCommandByte();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');			
		}
		else if (Command == 't')
		{
			/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
			WriteNextResponseByte(0x44);

			WriteNextResponseByte(0x00);
		}
		else if (Command == 'a')
		{
			/* Indicate auto-address increment is supported */
			WriteNextResponseByte('Y');
		}
		else if (Command == 'A')
		{
			/* Set the current address to that given by the host */
404
405
			CurrAddress   = (FetchNextCommandByte() << 9);
			CurrAddress  |= (FetchNextCommandByte() << 1);
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'p')
		{
			/* Indicate serial programmer back to the host */
			WriteNextResponseByte('S');		 
		}
		else if (Command == 'S')
		{
			/* Write the 7-byte software identifier to the endpoint */
			for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
			  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);		
		}
		else if (Command == 'V')
		{
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
		}
		else if (Command == 's')
		{
428
429
430
			WriteNextResponseByte(AVR_SIGNATURE_3);		
			WriteNextResponseByte(AVR_SIGNATURE_2);
			WriteNextResponseByte(AVR_SIGNATURE_1);
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
		}
		else if (Command == 'b')
		{
			WriteNextResponseByte('Y');
				
			/* Send block size to the host */
			WriteNextResponseByte(SPM_PAGESIZE >> 8);
			WriteNextResponseByte(SPM_PAGESIZE & 0xFF);		
		}
		else if (Command == 'e')
		{
			/* Clear the application section of flash */
			for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress++)
			{
				boot_page_erase(CurrFlashAddress);
				boot_spm_busy_wait();
				boot_page_write(CurrFlashAddress);
				boot_spm_busy_wait();

				CurrFlashAddress += SPM_PAGESIZE;
			}
			
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'l')
		{
			/* Set the lock bits to those given by the host */
			boot_lock_bits_set(FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'r')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));		
		}
		else if (Command == 'F')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
		}
		else if (Command == 'N')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));		
		}
		else if (Command == 'Q')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));		
		}
480
481
		else if (Command == 'C')
		{			
482
			/* Write the high byte to the current flash page */
483
484
485
486
487
488
489
490
491
			boot_page_fill(CurrAddress, FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'c')
		{			
			/* Write the low byte to the current flash page */
			boot_page_fill(CurrAddress | 1, FetchNextCommandByte());
492
			
493
494
495
			/* Increment the address */
			CurrAddress += 2;

496
497
498
499
500
501
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'm')
		{
			/* Commit the flash page to memory */
502
			boot_page_write(CurrAddress);
503
504
505
506
507
508
509
510
511
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if ((Command == 'B') || (Command == 'g'))
		{
512
			/* Delegate the block write/read to a separate function for clarity */
513
			ReadWriteMemoryBlock(Command);
514
515
516
		}
		else if (Command == 'R')
		{
517
			#if (FLASHEND > 0xFFFF)
518
			uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
519
			#else
520
			uint16_t ProgramWord = pgm_read_word(CurrAddress);			
521
522
523
524
525
526
527
528
			#endif
			
			WriteNextResponseByte(ProgramWord >> 8);
			WriteNextResponseByte(ProgramWord & 0xFF);
		}
		else if (Command == 'D')
		{
			/* Read the byte from the endpoint and write it to the EEPROM */
529
			eeprom_write_byte((uint8_t*)((uint16_t)(CurrAddress >> 1)), FetchNextCommandByte());
530
531
			
			/* Increment the address after use */			
532
			CurrAddress += 2;
533
534
535
536
537
538
539
	
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'd')
		{
			/* Read the EEPROM byte and write it to the endpoint */
540
			WriteNextResponseByte(eeprom_read_byte((uint8_t*)((uint16_t)(CurrAddress >> 1))));
541
542

			/* Increment the address after use */
543
			CurrAddress += 2;
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
		}
		else if (Command == 27)
		{
			/* Escape is sync, ignore */
		}
		else
		{
			/* Unknown command, return fail code */
			WriteNextResponseByte('?');
		}

		/* Select the IN endpoint */
		Endpoint_SelectEndpoint(CDC_TX_EPNUM);

		/* Remember if the endpoint is completely full before clearing it */
559
		bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
560
561

		/* Send the endpoint data to the host */
562
		Endpoint_ClearIN();
563
564
565
566
		
		/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
		if (IsEndpointFull)
		{
567
568
569
570
571
572
			while (!(Endpoint_IsINReady()))
			{				
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

573
			Endpoint_ClearIN();
574
		}
575
576

		/* Wait until the data has been sent to the host */
577
578
579
580
581
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
582
583
584
585
586
		
		/* Select the OUT endpoint */
		Endpoint_SelectEndpoint(CDC_RX_EPNUM);

		/* Acknowledge the command from the host */
587
		Endpoint_ClearOUT();
588
589
	}
}