BootloaderCDC.c 16.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/*
             LUFA Library
     Copyright (C) Dean Camera, 2009.
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
  Copyright 2009  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, and distribute this software
  and its documentation for any purpose and without fee is hereby
  granted, provided that the above copyright notice appear in all
  copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
 
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

/* Globals: */
/** Line coding options for the virtual serial port. Although the virtual serial port data is never
 *  sent through a physical serial port, the line encoding data must still be read and preserved from
 *  the host, or the host will detect a problem and fail to open the port. This structure contains the
 *  current encoding options, including baud rate, character format, parity mode and total number of 
 *  bits in each data chunk.
 */
46
47
48
49
CDC_Line_Coding_t LineCoding = { .BaudRateBPS = 9600,
                                 .CharFormat  = OneStopBit,
                                 .ParityType  = Parity_None,
                                 .DataBits    = 8            };
50
51
52
53
54

/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
55
uint32_t CurrAddress;
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000.
 */
bool RunBootloader = true;


/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously 
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

74
75
	/* Disable clock division */
	clock_prescale_set(clock_div_1);
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
	
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
	
	/* Initialize USB Subsystem */
	USB_Init();

	while (RunBootloader)
	{
		USB_USBTask();
		CDC_Task();
	}
	
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);

	/* Wait until any pending transmissions have completed before shutting down */
93
	while (!(Endpoint_IsINReady()));
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
	
	/* Shut down the USB subsystem */
	USB_ShutDown();
	
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;

	/* Reset any used hardware ports back to their defaults */
	PORTD = 0;
	DDRD  = 0;
	
	#if defined(PORTE)
	PORTE = 0;
	DDRE  = 0;
	#endif
	
	/* Re-enable RWW section */
	boot_rww_enable();

	/* Start the user application */
	AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
	AppStartPtr();	
}

/** Event handler for the USB_Disconnect event. This indicates that the bootloader should exit and the user
 *  application started.
 */
EVENT_HANDLER(USB_Disconnect)
{
	/* Upon disconnection, run user application */
	RunBootloader = false;
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
EVENT_HANDLER(USB_ConfigurationChanged)
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
		                       ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);
}

/** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
 *  control requests that are not handled internally by the USB library, so that they can be handled appropriately
 *  for the application.
 */
EVENT_HANDLER(USB_UnhandledControlPacket)
{
	uint8_t* LineCodingData = (uint8_t*)&LineCoding;

	/* Process CDC specific control requests */
156
	switch (USB_ControlRequest.bRequest)
157
158
	{
		case REQ_GetLineEncoding:
159
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
160
			{
161
				Endpoint_ClearSETUP();
162
163
164
165

				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  Endpoint_Write_Byte(*(LineCodingData++));	
				
166
				Endpoint_ClearIN();
167
				
168
				/* Acknowledge status stage */
169
				while (!(Endpoint_IsOUTReceived()));
170
				Endpoint_ClearOUT();
171
172
173
174
			}
			
			break;
		case REQ_SetLineEncoding:
175
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
176
			{
177
				Endpoint_ClearSETUP();
178

179
				while (!(Endpoint_IsOUTReceived()));
180
181
182
183

				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  *(LineCodingData++) = Endpoint_Read_Byte();

184
				Endpoint_ClearOUT();
185

186
				/* Acknowledge status stage */
187
				while (!(Endpoint_IsINReady()));
188
				Endpoint_ClearIN();
189
190
191
192
			}
	
			break;
		case REQ_SetControlLineState:
193
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
194
			{
195
				Endpoint_ClearSETUP();
196
				
197
				/* Acknowledge status stage */
198
				while (!(Endpoint_IsINReady()));
199
				Endpoint_ClearIN();
200
201
202
203
204
205
206
207
208
209
210
			}
	
			break;
	}
}

/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
 *  \param Command  Single character AVR910 protocol command indicating what memory operation to perform
 */
211
static void ReadWriteMemoryBlock(const uint8_t Command)
212
213
214
215
216
217
218
219
220
221
222
223
{
	uint16_t BlockSize;
	char     MemoryType;
	
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
	
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
	
	MemoryType =  FetchNextCommandByte();

224
	if ((MemoryType != 'E') && (MemoryType != 'F'))
225
	{
226
227
228
229
230
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
		
		return;
	}
231

232
233
234
235
236
237
238
239
240
	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
			if (MemoryType == 'E')
241
			{
242
243
				/* Read the next EEPROM byte into the endpoint */
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(uint16_t)(CurrAddress >> 1)));
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
				/* Increment the address counter after use */
				CurrAddress += 2;
			}
			else
			{
				/* Read the next FLASH byte from the current FLASH page */
				#if defined(RAMPZ)
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));					
				#endif
				
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
				
				HighByte = !HighByte;
262
263
			}
		}
264
265
266
267
268
269
270
271
272
273
274
275
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
		
		while (BlockSize--)
276
277
		{
			if (MemoryType == 'F')
278
279
280
			{	
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
281
				{
282
283
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
284
285

					/* Increment the address counter after use */
286
287
288
					CurrAddress += 2;

					HighByte = false;
289
290
				}
				else
291
292
293
294
				{
					LowByte = FetchNextCommandByte();
				
					HighByte = true;
295
296
				}
			}
297
			else
298
			{
299
300
301
302
303
				/* Write the next EEPROM byte from the endpoint */
				eeprom_write_byte((uint8_t*)(uint16_t)(CurrAddress >> 1), FetchNextCommandByte());					

				/* Increment the address counter after use */
				CurrAddress += 2;
304
305
			}
		}
306
307
308
309
310
311
312
313
314
315
316
317
318

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
	
		/* Send response byte back to the host */
		WriteNextResponseByte('\r');		
319
320
321
322
323
324
325
326
327
328
329
330
331
332
	}
}

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
333
	while (!(Endpoint_IsReadWriteAllowed()))
334
	{
335
336
		Endpoint_ClearOUT();
		while (!(Endpoint_IsOUTReceived()));
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
	}
	
	/* Fetch the next byte from the OUT endpoint */
	return Endpoint_Read_Byte();
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
 *  \param Response  Next response byte to send to the host
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
	
353
	/* If IN endpoint full, clear it and wait util ready for the next packet to the host */
354
	if (!(Endpoint_IsReadWriteAllowed()))
355
	{
356
357
		Endpoint_ClearIN();
		while (!(Endpoint_IsINReady()));
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
	}
	
	/* Write the next byte to the OUT endpoint */
	Endpoint_Write_Byte(Response);
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
TASK(CDC_Task)
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* Check if endpoint has a command in it sent from the host */
373
	if (Endpoint_IsOUTReceived())
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
	{
		/* Read in the bootloader command (first byte sent from host) */
		uint8_t Command = FetchNextCommandByte();

		if ((Command == 'L') || (Command == 'P') || (Command == 'T') || (Command == 'E'))
		{
			if (Command == 'E')
			  RunBootloader = false;
			if (Command == 'T')
			  FetchNextCommandByte();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');			
		}
		else if (Command == 't')
		{
			/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
			WriteNextResponseByte(0x44);

			WriteNextResponseByte(0x00);
		}
		else if (Command == 'a')
		{
			/* Indicate auto-address increment is supported */
			WriteNextResponseByte('Y');
		}
		else if (Command == 'A')
		{
			/* Set the current address to that given by the host */
403
404
			CurrAddress   = (FetchNextCommandByte() << 9);
			CurrAddress  |= (FetchNextCommandByte() << 1);
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'p')
		{
			/* Indicate serial programmer back to the host */
			WriteNextResponseByte('S');		 
		}
		else if (Command == 'S')
		{
			/* Write the 7-byte software identifier to the endpoint */
			for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
			  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);		
		}
		else if (Command == 'V')
		{
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
		}
		else if (Command == 's')
		{
427
			WriteNextResponseByte(SIGNATURE_2);		
428
429
			WriteNextResponseByte(SIGNATURE_1);
			WriteNextResponseByte(SIGNATURE_0);
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
		}
		else if (Command == 'b')
		{
			WriteNextResponseByte('Y');
				
			/* Send block size to the host */
			WriteNextResponseByte(SPM_PAGESIZE >> 8);
			WriteNextResponseByte(SPM_PAGESIZE & 0xFF);		
		}
		else if (Command == 'e')
		{
			/* Clear the application section of flash */
			for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress++)
			{
				boot_page_erase(CurrFlashAddress);
				boot_spm_busy_wait();
				boot_page_write(CurrFlashAddress);
				boot_spm_busy_wait();

				CurrFlashAddress += SPM_PAGESIZE;
			}
			
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'l')
		{
			/* Set the lock bits to those given by the host */
			boot_lock_bits_set(FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'r')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));		
		}
		else if (Command == 'F')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
		}
		else if (Command == 'N')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));		
		}
		else if (Command == 'Q')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));		
		}
479
480
		else if (Command == 'C')
		{			
481
			/* Write the high byte to the current flash page */
482
483
484
485
486
487
488
489
490
			boot_page_fill(CurrAddress, FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'c')
		{			
			/* Write the low byte to the current flash page */
			boot_page_fill(CurrAddress | 1, FetchNextCommandByte());
491
			
492
493
494
			/* Increment the address */
			CurrAddress += 2;

495
496
497
498
499
500
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'm')
		{
			/* Commit the flash page to memory */
501
			boot_page_write(CurrAddress);
502
503
504
505
506
507
508
509
510
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if ((Command == 'B') || (Command == 'g'))
		{
511
			/* Delegate the block write/read to a separate function for clarity */
512
			ReadWriteMemoryBlock(Command);
513
514
515
516
		}
		else if (Command == 'R')
		{
			#if defined(RAMPZ)
517
			uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
518
			#else
519
			uint16_t ProgramWord = pgm_read_word(CurrAddress);			
520
521
522
523
524
525
526
527
			#endif
			
			WriteNextResponseByte(ProgramWord >> 8);
			WriteNextResponseByte(ProgramWord & 0xFF);
		}
		else if (Command == 'D')
		{
			/* Read the byte from the endpoint and write it to the EEPROM */
528
			eeprom_write_byte((uint8_t*)(uint16_t)(CurrAddress >> 1), FetchNextCommandByte());
529
530
			
			/* Increment the address after use */			
531
			CurrAddress += 2;
532
533
534
535
536
537
538
	
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'd')
		{
			/* Read the EEPROM byte and write it to the endpoint */
539
			WriteNextResponseByte(eeprom_read_byte((uint8_t*)(uint16_t)(CurrAddress >> 1)));
540
541

			/* Increment the address after use */
542
			CurrAddress += 2;
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
		}
		else if (Command == 27)
		{
			/* Escape is sync, ignore */
		}
		else
		{
			/* Unknown command, return fail code */
			WriteNextResponseByte('?');
		}

		/* Select the IN endpoint */
		Endpoint_SelectEndpoint(CDC_TX_EPNUM);

		/* Remember if the endpoint is completely full before clearing it */
558
		bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
559
560

		/* Send the endpoint data to the host */
561
		Endpoint_ClearIN();
562
563
564
565
		
		/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
		if (IsEndpointFull)
		{
566
567
			while (!(Endpoint_IsINReady()));
			Endpoint_ClearIN();
568
569
570
571
572
573
		}
		
		/* Select the OUT endpoint */
		Endpoint_SelectEndpoint(CDC_RX_EPNUM);

		/* Acknowledge the command from the host */
574
		Endpoint_ClearOUT();
575
576
	}
}