BootloaderCDC.c 16.9 KB
Newer Older
1 2
/*
             LUFA Library
Dean Camera's avatar
Dean Camera committed
3
     Copyright (C) Dean Camera, 2010.
4 5 6 7 8 9
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
Dean Camera's avatar
Dean Camera committed
10
  Copyright 2010  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12 13 14 15 16 17 18
  Permission to use, copy, modify, distribute, and sell this 
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in 
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting 
  documentation, and that the name of the author not be used in 
  advertising or publicity pertaining to distribution of the 
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
 
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

/** Line coding options for the virtual serial port. Although the virtual serial port data is never
 *  sent through a physical serial port, the line encoding data must still be read and preserved from
 *  the host, or the host will detect a problem and fail to open the port. This structure contains the
 *  current encoding options, including baud rate, character format, parity mode and total number of 
 *  bits in each data chunk.
 */
45 46 47 48
CDC_Line_Coding_t LineCoding = { .BaudRateBPS = 9600,
                                 .CharFormat  = OneStopBit,
                                 .ParityType  = Parity_None,
                                 .DataBits    = 8            };
49 50 51 52 53

/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
54
uint32_t CurrAddress;
55 56 57 58 59 60 61 62 63 64 65 66 67

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000.
 */
bool RunBootloader = true;


/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously 
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
	
	/* Reset all configured hardware to their default states for the user app */
	ResetHardware();

	/* Start the user application */
	AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
	AppStartPtr();	
}

/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
88 89 90 91 92
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

93 94
	/* Disable clock division */
	clock_prescale_set(clock_div_1);
95 96 97 98 99 100 101
	
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
	
	/* Initialize USB Subsystem */
	USB_Init();
102
}
103

104 105 106
/** Resets all configured hardware required for the bootloader back to their original states. */
void ResetHardware(void)
{
107 108 109 110 111 112 113 114 115 116 117 118 119 120
	/* Shut down the USB subsystem */
	USB_ShutDown();
	
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;

	/* Re-enable RWW section */
	boot_rww_enable();
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
121
void EVENT_USB_Device_ConfigurationChanged(void)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
		                       ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);
}

137
/** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
138 139 140
 *  control requests that are not handled internally by the USB library, so that they can be handled appropriately
 *  for the application.
 */
141
void EVENT_USB_Device_UnhandledControlRequest(void)
142 143 144 145
{
	uint8_t* LineCodingData = (uint8_t*)&LineCoding;

	/* Process CDC specific control requests */
146
	switch (USB_ControlRequest.bRequest)
147 148
	{
		case REQ_GetLineEncoding:
149
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
150
			{
151
				Endpoint_ClearSETUP();
152 153 154 155

				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  Endpoint_Write_Byte(*(LineCodingData++));	
				
156
				Endpoint_ClearIN();
157
				
158
				Endpoint_ClearStatusStage();
159 160 161 162
			}
			
			break;
		case REQ_SetLineEncoding:
163
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
164
			{
165
				Endpoint_ClearSETUP();
166

167 168 169 170 171 172
				while (!(Endpoint_IsOUTReceived()))
				{				
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}
			
173 174 175
				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  *(LineCodingData++) = Endpoint_Read_Byte();

176
				Endpoint_ClearOUT();
177

178
				Endpoint_ClearStatusStage();
179 180 181 182
			}
	
			break;
		case REQ_SetControlLineState:
183
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
184
			{
185
				Endpoint_ClearSETUP();
186
				
187
				Endpoint_ClearStatusStage();
188 189 190 191 192 193 194 195 196
			}
	
			break;
	}
}

/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
197
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
198
 */
199
static void ReadWriteMemoryBlock(const uint8_t Command)
200 201 202 203 204 205 206 207 208 209 210 211
{
	uint16_t BlockSize;
	char     MemoryType;
	
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
	
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
	
	MemoryType =  FetchNextCommandByte();

212
	if ((MemoryType != 'E') && (MemoryType != 'F'))
213
	{
214 215 216 217 218
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
		
		return;
	}
219

220 221 222 223 224 225 226 227
	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
228
			if (MemoryType == 'F')
229 230
			{
				/* Read the next FLASH byte from the current FLASH page */
231
				#if (FLASHEND > 0xFFFF)
232 233 234 235 236 237 238 239 240 241
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));					
				#endif
				
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
				
				HighByte = !HighByte;
242
			}
243 244 245 246 247 248 249 250
			else
			{
				/* Read the next EEPROM byte into the endpoint */
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(uint16_t)(CurrAddress >> 1)));

				/* Increment the address counter after use */
				CurrAddress += 2;
			}			
251
		}
252 253 254 255 256 257 258 259 260 261 262 263
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
		
		while (BlockSize--)
264 265
		{
			if (MemoryType == 'F')
266 267 268
			{	
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
269
				{
270 271
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
272 273

					/* Increment the address counter after use */
274 275 276
					CurrAddress += 2;

					HighByte = false;
277 278
				}
				else
279 280 281 282
				{
					LowByte = FetchNextCommandByte();
				
					HighByte = true;
283 284
				}
			}
285
			else
286
			{
287 288 289 290 291
				/* Write the next EEPROM byte from the endpoint */
				eeprom_write_byte((uint8_t*)(uint16_t)(CurrAddress >> 1), FetchNextCommandByte());					

				/* Increment the address counter after use */
				CurrAddress += 2;
292 293
			}
		}
294 295 296 297 298 299 300 301 302 303 304 305 306

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
	
		/* Send response byte back to the host */
		WriteNextResponseByte('\r');		
307 308 309 310 311 312 313 314 315 316 317 318 319 320
	}
}

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
321
	while (!(Endpoint_IsReadWriteAllowed()))
322
	{
323
		Endpoint_ClearOUT();
324 325 326 327 328 329

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
330 331 332 333 334 335 336 337 338
	}
	
	/* Fetch the next byte from the OUT endpoint */
	return Endpoint_Read_Byte();
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
339
 *  \param[in] Response  Next response byte to send to the host
340 341 342 343 344 345
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
	
346
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
347
	if (!(Endpoint_IsReadWriteAllowed()))
348
	{
349
		Endpoint_ClearIN();
350 351 352 353 354 355
		
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
356 357 358 359 360 361 362 363 364
	}
	
	/* Write the next byte to the OUT endpoint */
	Endpoint_Write_Byte(Response);
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
365
void CDC_Task(void)
366 367 368 369 370
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* Check if endpoint has a command in it sent from the host */
371
	if (Endpoint_IsOUTReceived())
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	{
		/* Read in the bootloader command (first byte sent from host) */
		uint8_t Command = FetchNextCommandByte();

		if ((Command == 'L') || (Command == 'P') || (Command == 'T') || (Command == 'E'))
		{
			if (Command == 'E')
			  RunBootloader = false;
			if (Command == 'T')
			  FetchNextCommandByte();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');			
		}
		else if (Command == 't')
		{
			/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
			WriteNextResponseByte(0x44);

			WriteNextResponseByte(0x00);
		}
		else if (Command == 'a')
		{
			/* Indicate auto-address increment is supported */
			WriteNextResponseByte('Y');
		}
		else if (Command == 'A')
		{
			/* Set the current address to that given by the host */
401 402
			CurrAddress   = (FetchNextCommandByte() << 9);
			CurrAddress  |= (FetchNextCommandByte() << 1);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'p')
		{
			/* Indicate serial programmer back to the host */
			WriteNextResponseByte('S');		 
		}
		else if (Command == 'S')
		{
			/* Write the 7-byte software identifier to the endpoint */
			for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
			  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);		
		}
		else if (Command == 'V')
		{
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
		}
		else if (Command == 's')
		{
425 426 427
			WriteNextResponseByte(AVR_SIGNATURE_3);		
			WriteNextResponseByte(AVR_SIGNATURE_2);
			WriteNextResponseByte(AVR_SIGNATURE_1);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		}
		else if (Command == 'b')
		{
			WriteNextResponseByte('Y');
				
			/* Send block size to the host */
			WriteNextResponseByte(SPM_PAGESIZE >> 8);
			WriteNextResponseByte(SPM_PAGESIZE & 0xFF);		
		}
		else if (Command == 'e')
		{
			/* Clear the application section of flash */
			for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress++)
			{
				boot_page_erase(CurrFlashAddress);
				boot_spm_busy_wait();
				boot_page_write(CurrFlashAddress);
				boot_spm_busy_wait();

				CurrFlashAddress += SPM_PAGESIZE;
			}
			
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'l')
		{
			/* Set the lock bits to those given by the host */
			boot_lock_bits_set(FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'r')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));		
		}
		else if (Command == 'F')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
		}
		else if (Command == 'N')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));		
		}
		else if (Command == 'Q')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));		
		}
477 478
		else if (Command == 'C')
		{			
479
			/* Write the high byte to the current flash page */
480 481 482 483 484 485 486 487 488
			boot_page_fill(CurrAddress, FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'c')
		{			
			/* Write the low byte to the current flash page */
			boot_page_fill(CurrAddress | 1, FetchNextCommandByte());
489
			
490 491 492
			/* Increment the address */
			CurrAddress += 2;

493 494 495 496 497 498
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'm')
		{
			/* Commit the flash page to memory */
499
			boot_page_write(CurrAddress);
500 501 502 503 504 505 506 507 508
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if ((Command == 'B') || (Command == 'g'))
		{
509
			/* Delegate the block write/read to a separate function for clarity */
510
			ReadWriteMemoryBlock(Command);
511 512 513
		}
		else if (Command == 'R')
		{
514
			#if (FLASHEND > 0xFFFF)
515
			uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
516
			#else
517
			uint16_t ProgramWord = pgm_read_word(CurrAddress);			
518 519 520 521 522 523 524 525
			#endif
			
			WriteNextResponseByte(ProgramWord >> 8);
			WriteNextResponseByte(ProgramWord & 0xFF);
		}
		else if (Command == 'D')
		{
			/* Read the byte from the endpoint and write it to the EEPROM */
526
			eeprom_write_byte((uint8_t*)((uint16_t)(CurrAddress >> 1)), FetchNextCommandByte());
527 528
			
			/* Increment the address after use */			
529
			CurrAddress += 2;
530 531 532 533 534 535 536
	
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'd')
		{
			/* Read the EEPROM byte and write it to the endpoint */
537
			WriteNextResponseByte(eeprom_read_byte((uint8_t*)((uint16_t)(CurrAddress >> 1))));
538 539

			/* Increment the address after use */
540
			CurrAddress += 2;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		}
		else if (Command == 27)
		{
			/* Escape is sync, ignore */
		}
		else
		{
			/* Unknown command, return fail code */
			WriteNextResponseByte('?');
		}

		/* Select the IN endpoint */
		Endpoint_SelectEndpoint(CDC_TX_EPNUM);

		/* Remember if the endpoint is completely full before clearing it */
556
		bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
557 558

		/* Send the endpoint data to the host */
559
		Endpoint_ClearIN();
560 561 562 563
		
		/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
		if (IsEndpointFull)
		{
564 565 566 567 568 569
			while (!(Endpoint_IsINReady()))
			{				
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

570
			Endpoint_ClearIN();
571
		}
572 573

		/* Wait until the data has been sent to the host */
574 575 576 577 578
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
579 580 581 582 583
		
		/* Select the OUT endpoint */
		Endpoint_SelectEndpoint(CDC_RX_EPNUM);

		/* Acknowledge the command from the host */
584
		Endpoint_ClearOUT();
585 586
	}
}