Common.h 13.8 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2011.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2011  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
32
 *  \brief Common library convenience headers, macros and functions.
33
 *
34
 *  \copydetails Group_Common
35
 */
36

37
/** \defgroup Group_Common Common Utility Headers - LUFA/Drivers/Common/Common.h
38
 *  \brief Common library convenience headers, macros and functions.
39
40
41
42
43
44
45
 *
 *  Common utility headers containing macros, functions, enums and types which are common to all
 *  aspects of the library.
 *
 *  @{
 */

46
/** \defgroup Group_Debugging Debugging Macros
47
 *  \brief Convenience macros to aid in debugging applications.
48
 *
49
 *  Macros to aid debugging of a user application.
50
 */
51

52
/** \defgroup Group_BitManip Endian and Bit Macros
53
 *  \brief Convenience macros to aid in bit manipulations and endianness transforms.
54
 *
55
 *  Functions for swapping endianness and reversing bit orders of data.
56
57
 */

58
59
#ifndef __LUFA_COMMON_H__
#define __LUFA_COMMON_H__
60

61
62
63
64
65
	/* Macros: */
		#if !defined(__DOXYGEN__)
			#define __INCLUDE_FROM_COMMON_H
		#endif
		
66
	/* Includes: */
67
68
		#include <stdint.h>
		#include <stdbool.h>
69
		#include <string.h>
70
		#include <stddef.h>
71
		
72
		#include "Architectures.h"
73
74
		#include "Attributes.h"
		#include "BoardTypes.h"
75
76
		
	/* Architecture specific utility includes: */
77
78
79
80
		#if defined(__DOXYGEN__)
			/** Type define for an unsigned integer the same width as the selected architecture's machine register. */
			typedef MACHINE_REG_t uint_reg_t;
		#elif (ARCH == ARCH_AVR8)
81
82
83
84
			#include <avr/io.h>
			#include <avr/interrupt.h>
			#include <avr/pgmspace.h>
			#include <avr/eeprom.h>
85
			#include <avr/boot.h>
86
87
			#include <util/atomic.h>
			#include <util/delay.h>
88
			
89
			typedef uint8_t uint_reg_t;
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

			#define le16_to_cpu(x)           x
			#define le32_to_cpu(x)           x
			#define be16_to_cpu(x)           SwapEndian_16(x)
			#define be32_to_cpu(x)           SwapEndian_32(x)
			#define cpu_to_le16(x)           x
			#define cpu_to_le32(x)           x
			#define cpu_to_be16(x)           SwapEndian_16(x)
			#define cpu_to_be32(x)           SwapEndian_32(x)
			#define LE16_TO_CPU(x)           x
			#define LE32_TO_CPU(x)           x
			#define BE16_TO_CPU(x)           SWAPENDIAN_16(x)
			#define BE32_TO_CPU(x)           SWAPENDIAN_32(x)
			#define CPU_TO_LE16(x)           x
			#define CPU_TO_LE32(x)           x
			#define CPU_TO_BE16(x)           SWAPENDIAN_16(x)
			#define CPU_TO_BE32(x)           SWAPENDIAN_32(x)

108
109
110
		#elif (ARCH == ARCH_UC3B)
			#include <avr32/io.h>

111
			typedef uint32_t uint_reg_t;
112
			
113
			// TODO
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
			#define le16_to_cpu(x)           SwapEndian_16(x)
			#define le32_to_cpu(x)           SwapEndian_32(x)
			#define be16_to_cpu(x)           x
			#define be32_to_cpu(x)           x
			#define cpu_to_le16(x)           SwapEndian_16(x)
			#define cpu_to_le32(x)           SwapEndian_32(x)
			#define cpu_to_be16(x)           x
			#define cpu_to_be32(x)           x
			#define LE16_TO_CPU(x)           SWAPENDIAN_16(x)
			#define LE32_TO_CPU(x)           SWAPENDIAN_32(x)
			#define BE16_TO_CPU(x)           x
			#define BE32_TO_CPU(x)           x
			#define CPU_TO_LE16(x)           SWAPENDIAN_16(x)
			#define CPU_TO_LE32(x)           SWAPENDIAN_32(x)
			#define CPU_TO_BE16(x)           x
			#define CPU_TO_BE32(x)           x
			
			#define ISR(Name)                void Name (void) __attribute__((__interrupt__)); void Name (void)
132
133
134
135
136
137
138
139
			#define EEMEM
			#define PROGMEM                  const
			#define ATOMIC_BLOCK(x)          if (1)
			#define ATOMIC_RESTORESTATE
			#define pgm_read_byte(x)         *x
			#define eeprom_read_byte(x)      *x
			#define eeprom_update_byte(x, y) *x = y
			#define eeprom_write_byte(x, y)  *x = y
140
			#define _delay_ms(x)
141
142
			#define memcmp_P(...)            memcmp(__VA_ARGS__)
			#define memcpy_P(...)            memcpy(__VA_ARGS__)
143
		#endif
144
145

	/* Public Interface - May be used in end-application: */
146
		/* Macros: */
147
148
149
			/** Macro for encasing other multi-statement macros. This should be used along with an opening brace
			 *  before the start of any multi-statement macro, so that the macros contents as a whole are treated
			 *  as a discrete block and not as a list of separate statements which may cause problems when used as
150
			 *  a block (such as inline \c if statements).
151
152
153
154
155
156
			 */
			#define MACROS                  do

			/** Macro for encasing other multi-statement macros. This should be used along with a preceding closing
			 *  brace at the end of any multi-statement macro, so that the macros contents as a whole are treated
			 *  as a discrete block and not as a list of separate statements which may cause problems when used as
157
			 *  a block (such as inline \c if statements).
158
159
			 */
			#define MACROE                  while (0)
160

161
162
163
164
165
166
167
168
169
170
			/** Convenience macro to determine the larger of two values.
			 *
			 *  \note This macro should only be used with operands that do not have side effects from being evaluated
			 *        multiple times.
			 *
			 *  \param[in] x  First value to compare
			 *  \param[in] y  First value to compare
			 *
			 *  \return The larger of the two input parameters
			 */
171
172
173
			#if !defined(MAX) || defined(__DOXYGEN__)
				#define MAX(x, y)               ((x > y) ? x : y)
			#endif
174
175
176
177
178
179
180
181
182
183
184

			/** Convenience macro to determine the smaller of two values.
			 *
			 *  \note This macro should only be used with operands that do not have side effects from being evaluated
			 *        multiple times.
			 *
			 *  \param[in] x  First value to compare
			 *  \param[in] y  First value to compare
			 *
			 *  \return The smaller of the two input parameters
			 */
185
186
187
			#if !defined(MIN) || defined(__DOXYGEN__)
				#define MIN(x, y)               ((x < y) ? x : y)
			#endif
188

189
			#if (ARCH == ARCH_AVR8) || defined(__DOXYGEN__)
190
191
192
193
194
195
196
				/** Defines a volatile \c NOP statement which cannot be optimized out by the compiler, and thus can always
				 *  be set as a breakpoint in the resulting code. Useful for debugging purposes, where the optimiser
				 *  removes/reorders code to the point where break points cannot reliably be set.
				 *
				 *  \ingroup Group_Debugging
				 */
				#define JTAG_DEBUG_POINT()      __asm__ __volatile__ ("NOP" ::)
197

198
199
200
201
202
203
204
205
				/** Defines an explicit JTAG break point in the resulting binary via the assembly \c BREAK statement. When
				 *  a JTAG is used, this causes the program execution to halt when reached until manually resumed.
				 *
				 *  \ingroup Group_Debugging
				 */
				#define JTAG_DEBUG_BREAK()      __asm__ __volatile__ ("BREAK" ::)

				#if !defined(pgm_read_ptr) || defined(__DOXYGEN__)
206
207
208
209
210
					/** Reads a pointer out of PROGMEM space on the AVR8 architecture. This is currently a wrapper for the
					 *  avr-libc \c pgm_read_ptr() macro with a \c void* cast, so that its value can be assigned directly
					 *  to a pointer variable or used in pointer arithmetic without further casting in C. In a future
					 *  avr-libc distribution this will be part of the standard API and will be implemented in a more formal
					 *  manner.
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
					 *
					 *  \param[in] Addr  Address of the pointer to read.
					 *
					 *  \return Pointer retrieved from PROGMEM space.
					 */
					#define pgm_read_ptr(Addr)    (void*)pgm_read_word(Addr)
				#endif

				/** Macro for testing condition "x" and breaking via \ref JTAG_DEBUG_BREAK() if the condition is false.
				 *
				 *  \param[in] Condition  Condition that will be evaluated,
				 *
				 *  \ingroup Group_Debugging
				*/
				#define JTAG_DEBUG_ASSERT(Condition)    MACROS{ if (!(Condition)) { JTAG_DEBUG_BREAK(); } }MACROE
226

227
				/** Macro for testing condition "x" and writing debug data to the stdout stream if \c false. The stdout stream
228
229
				 *  must be pre-initialized before this macro is run and linked to an output device, such as the microcontroller's
				 *  USART peripheral.
230
231
232
233
234
235
236
237
238
239
240
				 *
				 *  The output takes the form "{FILENAME}: Function {FUNCTION NAME}, Line {LINE NUMBER}: Assertion {Condition} failed."
				 *
				 *  \param[in] Condition  Condition that will be evaluated,
				 *
				 *  \ingroup Group_Debugging
				 */
				#define STDOUT_ASSERT(Condition)        MACROS{ if (!(x)) { printf_P(PSTR("%s: Function \"%s\", Line %d: "   \
				                                                "Assertion \"%s\" failed.\r\n"),     \
				                                                __FILE__, __func__, __LINE__, #Condition); } }MACROE
			#endif
241
			
242
			/** Forces GCC to use pointer indirection (via the device's pointer register pairs) when accessing the given
243
			 *  struct pointer. In some cases GCC will emit non-optimal assembly code when accessing a structure through
244
			 *  a pointer, resulting in a larger binary. When this macro is used on a (non \c const) structure pointer before
245
246
247
248
249
250
			 *  use, it will force GCC to use pointer indirection on the elements rather than direct store and load
			 *  instructions.
			 *
			 *  \param[in, out] StructPtr  Pointer to a structure which is to be forced into indirect access mode.
			 */
			#define GCC_FORCE_POINTER_ACCESS(StructPtr) __asm__ __volatile__("" : "=b" (StructPtr) : "0" (StructPtr))
251
252
253

			/** Swaps the byte ordering of a 16-bit value at compile time. Do not use this macro for swapping byte orderings
			 *  of dynamic values computed at runtime, use \ref SwapEndian_16() instead. The result of this macro can be used
254
			 *  inside struct or other variable initializers outside of a function, something that is not possible with the
255
256
257
258
259
260
261
262
263
264
			 *  inline function variant.
			 *
			 *  \param[in]  x  16-bit value whose byte ordering is to be swapped.
			 *
			 *  \return Input value with the byte ordering reversed.
			 */
			#define SWAPENDIAN_16(x)          ((((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8))

			/** Swaps the byte ordering of a 32-bit value at compile time. Do not use this macro for swapping byte orderings
			 *  of dynamic values computed at runtime- use \ref SwapEndian_32() instead. The result of this macro can be used
265
			 *  inside struct or other variable initializers outside of a function, something that is not possible with the
266
267
268
269
270
271
272
273
			 *  inline function variant.
			 *
			 *  \param[in]  x  32-bit value whose byte ordering is to be swapped.
			 *
			 *  \return Input value with the byte ordering reversed.
			 */
			#define SWAPENDIAN_32(x)          ((((x) & 0xFF000000UL) >> 24UL) | (((x) & 0x00FF0000UL) >> 8UL) | \
			                                   (((x) & 0x0000FF00UL) << 8UL)  | (((x) & 0x000000FFUL) << 24UL))
274

275
276
277
278
279
280
		/* Inline Functions: */
			/** Function to reverse the individual bits in a byte - i.e. bit 7 is moved to bit 0, bit 6 to bit 1,
			 *  etc.
			 *
			 *  \ingroup Group_BitManip
			 *
281
			 *  \param[in] Byte  Byte of data whose bits are to be reversed.
282
283
284
285
286
287
288
289
290
291
			 */
			static inline uint8_t BitReverse(uint8_t Byte) ATTR_WARN_UNUSED_RESULT ATTR_CONST;
			static inline uint8_t BitReverse(uint8_t Byte)
			{
				Byte = (((Byte & 0xF0) >> 4) | ((Byte & 0x0F) << 4));
				Byte = (((Byte & 0xCC) >> 2) | ((Byte & 0x33) << 2));
				Byte = (((Byte & 0xAA) >> 1) | ((Byte & 0x55) << 1));

				return Byte;
			}
292

293
294
295
296
			/** Function to reverse the byte ordering of the individual bytes in a 16 bit number.
			 *
			 *  \ingroup Group_BitManip
			 *
297
			 *  \param[in] Word  Word of data whose bytes are to be swapped.
298
			 */
299
300
			static inline uint16_t SwapEndian_16(const uint16_t Word) ATTR_WARN_UNUSED_RESULT ATTR_CONST;
			static inline uint16_t SwapEndian_16(const uint16_t Word)
301
			{
302
303
304
305
306
307
308
				uint8_t Temp;

				union
				{
					uint16_t Word;
					uint8_t  Bytes[2];
				} Data;
309

310
				Data.Word = Word;
311

312
313
314
				Temp = Data.Bytes[0];
				Data.Bytes[0] = Data.Bytes[1];
				Data.Bytes[1] = Temp;
315

316
				return Data.Word;
317
318
319
320
321
322
			}

			/** Function to reverse the byte ordering of the individual bytes in a 32 bit number.
			 *
			 *  \ingroup Group_BitManip
			 *
323
			 *  \param[in] DWord  Double word of data whose bytes are to be swapped.
324
			 */
325
326
			static inline uint32_t SwapEndian_32(const uint32_t DWord) ATTR_WARN_UNUSED_RESULT ATTR_CONST;
			static inline uint32_t SwapEndian_32(const uint32_t DWord)
327
			{
328
329
330
331
332
333
334
				uint8_t Temp;

				union
				{
					uint32_t DWord;
					uint8_t  Bytes[4];
				} Data;
335

336
				Data.DWord = DWord;
337

338
339
340
				Temp = Data.Bytes[0];
				Data.Bytes[0] = Data.Bytes[3];
				Data.Bytes[3] = Temp;
341

342
343
344
				Temp = Data.Bytes[1];
				Data.Bytes[1] = Data.Bytes[2];
				Data.Bytes[2] = Temp;
345

346
				return Data.DWord;
347
348
349
350
351
352
			}

			/** Function to reverse the byte ordering of the individual bytes in a n byte number.
			 *
			 *  \ingroup Group_BitManip
			 *
353
354
			 *  \param[in,out] Data   Pointer to a number containing an even number of bytes to be reversed.
			 *  \param[in]     Bytes  Length of the data in bytes.
355
			 */
356
357
358
359
			static inline void SwapEndian_n(void* Data,
			                                uint8_t Bytes) ATTR_NON_NULL_PTR_ARG(1);
			static inline void SwapEndian_n(void* Data,
			                                uint8_t Bytes)
360
			{
361
				uint8_t* CurrDataPos = (uint8_t*)Data;
362

363
				while (Bytes > 1)
364
365
366
367
368
369
370
371
372
373
374
375
376
				{
					uint8_t Temp = *CurrDataPos;
					*CurrDataPos = *(CurrDataPos + Bytes - 1);
					*(CurrDataPos + Bytes - 1) = Temp;

					CurrDataPos++;
					Bytes -= 2;
				}
			}

#endif

/** @} */
377