BootloaderDFU.c 22.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*
             LUFA Library
     Copyright (C) Dean Camera, 2009.
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
  Copyright 2009  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, and distribute this software
  and its documentation for any purpose and without fee is hereby
  granted, provided that the above copyright notice appear in all
  copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
 */

#define  INCLUDE_FROM_BOOTLOADER_C
#include "BootloaderDFU.h"

/** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
 *  other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
 *  once a memory erase has completed.
 */
bool IsSecure      = SECURE_MODE;

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
 */
bool RunBootloader = true;

/** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
 *  jump to the application address it specifies, it sends two sequential commands which must be properly
53
 *  acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
 *  causing the bootloader to wait for the final exit command before shutting down.
 */
bool WaitForExit = false;

/** Current DFU state machine state, one of the values in the DFU_State_t enum. */
uint8_t DFU_State = dfuIDLE;

/** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
 *  each operation, and returned to the host when a Get Status DFU request is issued.
 */
uint8_t DFU_Status = OK;

/** Data containing the DFU command sent from the host. */
DFU_Command_t SentCommand;

/** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
 *  requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
 *  is issued by the host.
 */
uint8_t ResponseByte;

/** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
 *  may specify an alternate address when issuing the application soft-start command.
 */
AppPtr_t AppStartPtr = (AppPtr_t)0x0000;

/** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
 *  64KB of flash memory.
 */
uint8_t Flash64KBPage = 0;

/** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
 *  depending on the issued command from the host).
 */
uint16_t StartAddr = 0x0000;

/** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
 *  of EEPROM depending on the issued command from the host).
 */
uint16_t EndAddr = 0x0000;

95

96
97
98
99
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously 
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
100
int main(void)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
{
	/* Configure hardware required by the bootloader */
	SetupHardware();

	/* Run the USB management task while the bootloader is supposed to be running */
	while (RunBootloader || WaitForExit)
	  USB_USBTask();
	
	/* Reset configured hardware back to their original states for the user application */
	ResetHardware();
	
	/* Start the user application */
	AppStartPtr();
}

/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
118
119
120
121
122
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

123
124
	/* Disable clock division */
	clock_prescale_set(clock_div_1);
125
126
127
128
129
130
131
	
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);

	/* Initialize the USB subsystem */
	USB_Init();
132
}
133

134
135
136
/** Resets all configured hardware required for the bootloader back to their original states. */
void ResetHardware(void)
{
137
138
139
140
141
142
143
144
	/* Shut down the USB subsystem */
	USB_ShutDown();
	
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;
}

145
/** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
146
147
148
 *  control requests that are not handled internally by the USB library (including the DFU commands, which are
 *  all issued via the control endpoint), so that they can be handled appropriately for the application.
 */
149
void EVENT_USB_Device_UnhandledControlRequest(void)
150
151
{
	/* Get the size of the command and data from the wLength value */
152
	SentCommand.DataSize = USB_ControlRequest.wLength;
153

154
	switch (USB_ControlRequest.bRequest)
155
156
	{
		case DFU_DNLOAD:
157
			Endpoint_ClearSETUP();
158
159
160
161
162
163
164
165
166
167
168
169
170
171
			
			/* Check if bootloader is waiting to terminate */
			if (WaitForExit)
			{
				/* Bootloader is terminating - process last received command */
				ProcessBootloaderCommand();
				
				/* Indicate that the last command has now been processed - free to exit bootloader */
				WaitForExit = false;
			}
			  
			/* If the request has a data stage, load it into the command struct */
			if (SentCommand.DataSize)
			{
172
173
174
175
176
				while (!(Endpoint_IsOUTReceived()))
				{				
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

				/* First byte of the data stage is the DNLOAD request's command */
				SentCommand.Command = Endpoint_Read_Byte();
					
				/* One byte of the data stage is the command, so subtract it from the total data bytes */
				SentCommand.DataSize--;
				
				/* Load in the rest of the data stage as command parameters */
				for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
				     Endpoint_BytesInEndpoint(); DataByte++)
				{
					SentCommand.Data[DataByte] = Endpoint_Read_Byte();
					SentCommand.DataSize--;
				}
				
				/* Process the command */
				ProcessBootloaderCommand();
			}
			
			/* Check if currently downloading firmware */
			if (DFU_State == dfuDNLOAD_IDLE)
			{									
				if (!(SentCommand.DataSize))
				{
					DFU_State = dfuIDLE;
				}
				else
				{
					/* Throw away the filler bytes before the start of the firmware */
					DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);

					/* Throw away the page alignment filler bytes before the start of the firmware */
					DiscardFillerBytes(StartAddr % SPM_PAGESIZE);
					
					/* Calculate the number of bytes remaining to be written */
					uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
					
					if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))        // Write flash
					{
						/* Calculate the number of words to be written from the number of bytes to be written */
						uint16_t WordsRemaining = (BytesRemaining >> 1);
					
						union
						{
							uint16_t Words[2];
							uint32_t Long;
223
						} CurrFlashAddress                 = {.Words = {StartAddr, Flash64KBPage}};
224
225
226
227
228
229
230
231
232
						
						uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
						uint8_t  WordsInFlashPage          = 0;

						while (WordsRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
233
								Endpoint_ClearOUT();
234
235
236
237
238
239

								while (!(Endpoint_IsOUTReceived()))
								{				
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
							}

							/* Write the next word into the current flash page */
							boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());

							/* Adjust counters */
							WordsInFlashPage      += 1;
							CurrFlashAddress.Long += 2;

							/* See if an entire page has been written to the flash page buffer */
							if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
							{
								/* Commit the flash page to memory */
								boot_page_write(CurrFlashPageStartAddress);
								boot_spm_busy_wait();
								
								/* Check if programming incomplete */
								if (WordsRemaining)
								{
									CurrFlashPageStartAddress = CurrFlashAddress.Long;
									WordsInFlashPage          = 0;

									/* Erase next page's temp buffer */
									boot_page_erase(CurrFlashAddress.Long);
									boot_spm_busy_wait();
								}
							}
						}
					
						/* Once programming complete, start address equals the end address */
						StartAddr = EndAddr;
					
						/* Re-enable the RWW section of flash */
						boot_rww_enable();
					}
					else                                                   // Write EEPROM
					{
						while (BytesRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
282
								Endpoint_ClearOUT();
283
284
285
286
287
288

								while (!(Endpoint_IsOUTReceived()))
								{				
									if (USB_DeviceState == DEVICE_STATE_Unattached)
									  return;
								}
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
							}

							/* Read the byte from the USB interface and write to to the EEPROM */
							eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
							
							/* Adjust counters */
							StartAddr++;
						}
					}
					
					/* Throw away the currently unused DFU file suffix */
					DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
				}
			}

304
			Endpoint_ClearOUT();
305

306
307
			Endpoint_ClearStatusStage();

308
309
			break;
		case DFU_UPLOAD:
310
			Endpoint_ClearSETUP();
311

312
313
314
315
316
317
			while (!(Endpoint_IsINReady()))
			{				
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}
							
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
			if (DFU_State != dfuUPLOAD_IDLE)
			{
				if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))       // Blank Check
				{
					/* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
					   that the memory isn't blank, and the host is requesting the first non-blank address */
					Endpoint_Write_Word_LE(StartAddr);
				}
				else
				{
					/* Idle state upload - send response to last issued command */
					Endpoint_Write_Byte(ResponseByte);
				}
			}
			else
			{
				/* Determine the number of bytes remaining in the current block */
				uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);

				if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))            // Read FLASH
				{
					/* Calculate the number of words to be written from the number of bytes to be written */
					uint16_t WordsRemaining = (BytesRemaining >> 1);

					union
					{
						uint16_t Words[2];
						uint32_t Long;
346
					} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
347
348
349
350
351
352

					while (WordsRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
353
							Endpoint_ClearIN();
354
355
356
357
358
359

							while (!(Endpoint_IsINReady()))
							{				
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
360
361
362
						}

						/* Read the flash word and send it via USB to the host */
363
						#if (FLASHEND > 0xFFFF)
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
							Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
						#else
							Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));							
						#endif

						/* Adjust counters */
						CurrFlashAddress.Long += 2;
					}
					
					/* Once reading is complete, start address equals the end address */
					StartAddr = EndAddr;
				}
				else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))       // Read EEPROM
				{
					while (BytesRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
383
							Endpoint_ClearIN();
384
385
386
387
388
389
							
							while (!(Endpoint_IsINReady()))
							{				
								if (USB_DeviceState == DEVICE_STATE_Unattached)
								  return;
							}
390
391
392
393
394
395
396
397
398
399
400
401
402
403
						}

						/* Read the EEPROM byte and send it via USB to the host */
						Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));

						/* Adjust counters */
						StartAddr++;
					}
				}

				/* Return to idle state */
				DFU_State = dfuIDLE;
			}

404
			Endpoint_ClearIN();
405

406
			Endpoint_ClearStatusStage();
407
408
			break;
		case DFU_GETSTATUS:
409
			Endpoint_ClearSETUP();
410
411
412
413
414
415
416
417
418
419
420
421
422
423
			
			/* Write 8-bit status value */
			Endpoint_Write_Byte(DFU_Status);
			
			/* Write 24-bit poll timeout value */
			Endpoint_Write_Byte(0);
			Endpoint_Write_Word_LE(0);
			
			/* Write 8-bit state value */
			Endpoint_Write_Byte(DFU_State);

			/* Write 8-bit state string ID number */
			Endpoint_Write_Byte(0);

424
			Endpoint_ClearIN();
425
			
426
			Endpoint_ClearStatusStage();
427
428
			break;		
		case DFU_CLRSTATUS:
429
			Endpoint_ClearSETUP();
430
431
432
433
			
			/* Reset the status value variable to the default OK status */
			DFU_Status = OK;

434
			Endpoint_ClearStatusStage();
435
436
			break;
		case DFU_GETSTATE:
437
			Endpoint_ClearSETUP();
438
439
440
441
			
			/* Write the current device state to the endpoint */
			Endpoint_Write_Byte(DFU_State);
		
442
			Endpoint_ClearIN();
443
			
444
			Endpoint_ClearStatusStage();
445
446
			break;
		case DFU_ABORT:
447
			Endpoint_ClearSETUP();
448
449
450
451
			
			/* Reset the current state variable to the default idle state */
			DFU_State = dfuIDLE;

452
			Endpoint_ClearStatusStage();
453
454
455
456
457
458
459
			break;
	}
}

/** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
 *  discard unused bytes in the stream from the host, including the memory program block suffix.
 *
460
 *  \param[in] NumberOfBytes  Number of bytes to discard from the host from the control endpoint
461
462
463
464
465
466
467
 */
static void DiscardFillerBytes(uint8_t NumberOfBytes)
{
	while (NumberOfBytes--)
	{
		if (!(Endpoint_BytesInEndpoint()))
		{
468
			Endpoint_ClearOUT();
469
470

			/* Wait until next data packet received */
471
472
473
474
475
			while (!(Endpoint_IsOUTReceived()))
			{				
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}
476
		}
477
478
479
480
		else
		{
			Endpoint_Discard_Byte();
		}
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
	}
}

/** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
 *  that the command is allowed based on the current secure mode flag value, and passes the command off to the
 *  appropriate handler function.
 */
static void ProcessBootloaderCommand(void)
{
	/* Check if device is in secure mode */
	if (IsSecure)
	{
		/* Don't process command unless it is a READ or chip erase command */
		if (!(((SentCommand.Command == COMMAND_WRITE)             &&
		        IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
			   (SentCommand.Command == COMMAND_READ)))
		{
			/* Set the state and status variables to indicate the error */
			DFU_State  = dfuERROR;
			DFU_Status = errWRITE;
			
			/* Stall command */
			Endpoint_StallTransaction();
			
			/* Don't process the command */
			return;
		}
	}

	/* Dispatch the required command processing routine based on the command type */
	switch (SentCommand.Command)
	{
		case COMMAND_PROG_START:
			ProcessMemProgCommand();
			break;
		case COMMAND_DISP_DATA:
			ProcessMemReadCommand();
			break;
		case COMMAND_WRITE:
			ProcessWriteCommand();
			break;
		case COMMAND_READ:
			ProcessReadCommand();
			break;
		case COMMAND_CHANGE_BASE_ADDR:
			if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00))              // Set 64KB flash page command
			  Flash64KBPage = SentCommand.Data[2];

			break;
	}
}

/** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
 *  in the StartAddr and EndAddr global variables.
 */
static void LoadStartEndAddresses(void)
{
	union
	{
		uint8_t  Bytes[2];
		uint16_t Word;
542
543
	} Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
	                {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
544
545
546
547
548
549
		
	/* Load in the start and ending read addresses from the sent data packet */
	StartAddr = Address[0].Word;
	EndAddr   = Address[1].Word;
}

550
/** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
 *  to write subsequent data from the host into the specified memory.
 */
static void ProcessMemProgCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Write FLASH command
	    IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                            // Write EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();
		
		/* If FLASH is being written to, we need to pre-erase the first page to write to */
		if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
		{
			union
			{
				uint16_t Words[2];
				uint32_t Long;
568
			} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
569
570
571
572
573
574
575
576
577
578
579
			
			/* Erase the current page's temp buffer */
			boot_page_erase(CurrFlashAddress.Long);
			boot_spm_busy_wait();
		}
		
		/* Set the state so that the next DNLOAD requests reads in the firmware */
		DFU_State = dfuDNLOAD_IDLE;
	}
}

580
/** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
 *  to read subsequent data from the specified memory out to the host, as well as implementing the memory
 *  blank check command.
 */
static void ProcessMemReadCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Read FLASH command
        IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))                            // Read EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();

		/* Set the state so that the next UPLOAD requests read out the firmware */
		DFU_State = dfuUPLOAD_IDLE;
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                       // Blank check FLASH command
	{
		uint32_t CurrFlashAddress = 0;

		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			/* Check if the current byte is not blank */
602
			#if (FLASHEND > 0xFFFF)
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
			if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
			#else
			if (pgm_read_byte(CurrFlashAddress) != 0xFF)
			#endif
			{
				/* Save the location of the first non-blank byte for response back to the host */
				Flash64KBPage = (CurrFlashAddress >> 16);
				StartAddr     = CurrFlashAddress;
			
				/* Set state and status variables to the appropriate error values */
				DFU_State  = dfuERROR;
				DFU_Status = errCHECK_ERASED;

				break;
			}

			CurrFlashAddress++;
		}
	}
}

/** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
 *  bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
 */
static void ProcessWriteCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03))                            // Start application
	{
		/* Indicate that the bootloader is terminating */
		WaitForExit = true;

		/* Check if empty request data array - an empty request after a filled request retains the
		   previous valid request data, but initializes the reset */
		if (!(SentCommand.DataSize))
		{
			if (SentCommand.Data[1] == 0x00)                                   // Start via watchdog
			{
				/* Start the watchdog to reset the AVR once the communications are finalized */
				wdt_enable(WDTO_250MS);
			}
			else                                                               // Start via jump
			{
				/* Load in the jump address into the application start address pointer */
				union
				{
					uint8_t  Bytes[2];
					AppPtr_t FuncPtr;
650
				} Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

				AppStartPtr = Address.FuncPtr;
				
				/* Set the flag to terminate the bootloader at next opportunity */
				RunBootloader = false;
			}
		}
	}
	else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF))                 // Erase flash
	{
		uint32_t CurrFlashAddress = 0;

		/* Clear the application section of flash */
		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();

			CurrFlashAddress += SPM_PAGESIZE;
		}

		/* Re-enable the RWW section of flash as writing to the flash locks it out */
		boot_rww_enable();
					
		/* Memory has been erased, reset the security bit so that programming/reading is allowed */
		IsSecure = false;
	}
}

/** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
 *  commands such as device signature and bootloader version retrieval.
 */
static void ProcessReadCommand(void)
{
	const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
688
	const uint8_t SignatureInfo[3]  = {AVR_SIGNATURE_1,    AVR_SIGNATURE_2,     AVR_SIGNATURE_3};
689
690
691
692
693
694
695
696
697
698
699
700

	uint8_t DataIndexToRead = SentCommand.Data[1];

	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))                         // Read bootloader info
	{
		ResponseByte = BootloaderInfo[DataIndexToRead];
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                    // Read signature byte
	{
		ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
	}
}