ISPProtocol.c 17.9 KB
Newer Older
1
2
/*
             LUFA Library
Dean Camera's avatar
Dean Camera committed
3
     Copyright (C) Dean Camera, 2010.
4
5
6
7
8
9
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
Dean Camera's avatar
Dean Camera committed
10
  Copyright 2010  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
13
14
15
16
17
18
  Permission to use, copy, modify, distribute, and sell this 
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in 
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting 
  documentation, and that the name of the author not be used in 
  advertising or publicity pertaining to distribution of the 
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices.
 */

#include "ISPProtocol.h"

38
39
#if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on
 *  the attached device, returning success or failure back to the host.
 */
void ISPProtocol_EnterISPMode(void)
{
	struct
	{
		uint8_t TimeoutMS;
		uint8_t PinStabDelayMS;
		uint8_t ExecutionDelayMS;
		uint8_t SynchLoops;
		uint8_t ByteDelay;
		uint8_t PollValue;
		uint8_t PollIndex;
		uint8_t EnterProgBytes[4];
	} Enter_ISP_Params;
	
57
	Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NO_STREAM_CALLBACK);
58
59
60
61
62
63
64

	Endpoint_ClearOUT();
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint8_t ResponseStatus = STATUS_CMD_FAILED;
	
	CurrentAddress = 0;
65
66
67
68
69
70
	
	/* Set up the synchronous USART to generate the recovery clock on XCK pin */
	UBRR1  = (F_CPU / 500000UL);
	UCSR1B = (1 << TXEN1);
	UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
	DDRD  |= (1 << 5);
71

72
	/* Perform execution delay, initialize SPI bus */
73
	ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS); 
74
	SPI_Init(ISPTarget_GetSPIPrescalerMask() | SPI_SCK_LEAD_RISING | SPI_SAMPLE_LEADING | SPI_MODE_MASTER);
75
76
77

	/* Continuously attempt to synchronize with the target until either the number of attempts specified
	 * by the host has exceeded, or the the device sends back the expected response values */
78
	while (Enter_ISP_Params.SynchLoops-- && (ResponseStatus == STATUS_CMD_FAILED) && TimeoutMSRemaining)
79
80
81
82
	{
		uint8_t ResponseBytes[4];

		ISPTarget_ChangeTargetResetLine(true);
83
		ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
84
85
86

		for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
		{
87
			ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay);
88
			ResponseBytes[RByte] = SPI_Transfer(Enter_ISP_Params.EnterProgBytes[RByte]);
89
90
91
92
93
94
95
96
97
98
		}
		
		/* Check if polling disabled, or if the polled value matches the expected value */
		if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue))
		{
			ResponseStatus = STATUS_CMD_OK;
		}
		else
		{
			ISPTarget_ChangeTargetResetLine(false);
99
			ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
		}
	}

	Endpoint_Write_Byte(CMD_ENTER_PROGMODE_ISP);
	Endpoint_Write_Byte(ResponseStatus);
	Endpoint_ClearIN();
}

/** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */
void ISPProtocol_LeaveISPMode(void)
{
	struct
	{
		uint8_t PreDelayMS;
		uint8_t PostDelayMS;
	} Leave_ISP_Params;

117
	Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NO_STREAM_CALLBACK);
118
119
120
121
	
	Endpoint_ClearOUT();
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

122
	/* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */
123
	ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS);
124
125
	ISPTarget_ChangeTargetResetLine(false);
	SPI_ShutDown();
126
	ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS);
127

128
129
130
131
132
133
	/* Turn off the synchronous USART to terminate the recovery clock on XCK pin */
	UBRR1  = (F_CPU / 500000UL);
	UCSR1B = (1 << TXEN1);
	UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
	DDRD  &= ~(1 << 5);

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
	Endpoint_Write_Byte(CMD_LEAVE_PROGMODE_ISP);
	Endpoint_Write_Byte(STATUS_CMD_OK);
	Endpoint_ClearIN();
}

/** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes,
 *  words or pages of data to the attached device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_ProgramMemory(uint8_t V2Command)
{
	struct
	{
		uint16_t BytesToWrite;
		uint8_t  ProgrammingMode;
		uint8_t  DelayMS;
		uint8_t  ProgrammingCommands[3];
		uint8_t  PollValue1;
		uint8_t  PollValue2;
		uint8_t  ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the
	} Write_Memory_Params;      // whole page and ACK the packet as fast as possible to prevent it from aborting
	
157
	Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) -
158
	                                               sizeof(Write_Memory_Params.ProgData)), NO_STREAM_CALLBACK);
159
160


161
162
163
164
165
166
167
168
169
170
171
172
173
	Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite);
	
	if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData))
	{
		Endpoint_ClearOUT();
		Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

		Endpoint_Write_Byte(V2Command);
		Endpoint_Write_Byte(STATUS_CMD_FAILED);
		Endpoint_ClearIN();
		return;
	}
	
174
	Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NO_STREAM_CALLBACK);
175
176
177
178
179
180
181
182
183
184

	Endpoint_ClearOUT();
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint8_t  ProgrammingStatus = STATUS_CMD_OK;	
	uint16_t PollAddress       = 0;
	uint8_t  PollValue         = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 :
	                                                                    Write_Memory_Params.PollValue2;
	uint8_t* NextWriteByte = Write_Memory_Params.ProgData;

185
186
187
	/* Check to see if the host has issued a SET ADDRESS command and we haven't sent a
	 * LOAD EXTENDED ADDRESS command (if needed, used when operating beyond the 128KB
	 * FLASH barrier) */
188
189
190
191
192
193
194
195
	if (MustSetAddress)
	{
		if (CurrentAddress & (1UL << 31))
		  ISPTarget_LoadExtendedAddress();

		MustSetAddress = false;
	}

196
	/* Check the programming mode desired by the host, either Paged or Word memory writes */
197
198
199
200
201
202
203
204
205
206
	if (Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK)
	{
		uint16_t StartAddress = (CurrentAddress & 0xFFFF);
	
		/* Paged mode memory programming */
		for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
		{
			bool    IsOddByte   = (CurrentByte & 0x01);
			uint8_t ByteToWrite = *(NextWriteByte++);
		
207
208
209
210
			SPI_Send(Write_Memory_Params.ProgrammingCommands[0]);
			SPI_Send(CurrentAddress >> 8);
			SPI_Send(CurrentAddress & 0xFF);
			SPI_Send(ByteToWrite);
211
			
212
213
			/* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
			 * or low byte at the current word address */
214
215
			if (V2Command == CMD_PROGRAM_FLASH_ISP)
			  Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
216
217

			/* Check to see the write completion method, to see if we have a valid polling address */
218
219
220
221
			if (!(PollAddress) && (ByteToWrite != PollValue))
			{
				if (IsOddByte && (V2Command == CMD_PROGRAM_FLASH_ISP))
				  Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK;
222

223
224
225
226
227
228
229
230
231
232
				PollAddress = (CurrentAddress & 0xFFFF);				
			}		

			if (IsOddByte || (V2Command == CMD_PROGRAM_EEPROM_ISP))
			  CurrentAddress++;
		}
		
		/* If the current page must be committed, send the PROGRAM PAGE command to the target */
		if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK)
		{
233
234
235
236
			SPI_Send(Write_Memory_Params.ProgrammingCommands[1]);
			SPI_Send(StartAddress >> 8);
			SPI_Send(StartAddress & 0xFF);
			SPI_Send(0x00);
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
			
			/* Check if polling is possible, if not switch to timed delay mode */
			if (!(PollAddress))
			{
				Write_Memory_Params.ProgrammingMode &= ~PROG_MODE_PAGED_VALUE_MASK;
				Write_Memory_Params.ProgrammingMode |=  PROG_MODE_PAGED_TIMEDELAY_MASK;				
			}

			ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
			                                                  Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]);
		}
	}
	else
	{
		/* Word/byte mode memory programming */
		for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
		{
			bool    IsOddByte   = (CurrentByte & 0x01);
			uint8_t ByteToWrite = *(NextWriteByte++);
			  
257
258
259
260
			SPI_Send(Write_Memory_Params.ProgrammingCommands[0]);
			SPI_Send(CurrentAddress >> 8);
			SPI_Send(CurrentAddress & 0xFF);
			SPI_Send(ByteToWrite);
261
			
262
263
264
265
266
			/* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
			 * or low byte at the current word address */
			if (V2Command == CMD_PROGRAM_FLASH_ISP)
			  Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
			if (ByteToWrite != PollValue)
			{
				if (IsOddByte && (V2Command == CMD_PROGRAM_FLASH_ISP))
				  Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK;
				  
				PollAddress = (CurrentAddress & 0xFFFF);
			}

			if (IsOddByte || (V2Command == CMD_PROGRAM_EEPROM_ISP))
			  CurrentAddress++;
			
			ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
			                                                  Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]);
			  
			if (ProgrammingStatus != STATUS_CMD_OK)
			  break;
		}
	}

	Endpoint_Write_Byte(V2Command);
	Endpoint_Write_Byte(ProgrammingStatus);
	Endpoint_ClearIN();
}

/** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes,
 *  words or pages of data from the attached device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_ReadMemory(uint8_t V2Command)
{
	struct
	{
		uint16_t BytesToRead;
		uint8_t  ReadMemoryCommand;
	} Read_Memory_Params;
	
304
	Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NO_STREAM_CALLBACK);
305
306
307
308
309
310
311
312
	Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead);
	
	Endpoint_ClearOUT();
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
	
	Endpoint_Write_Byte(V2Command);
	Endpoint_Write_Byte(STATUS_CMD_OK);
	
313
314
315
	/* Check to see if the host has issued a SET ADDRESS command and we haven't sent a
	 * LOAD EXTENDED ADDRESS command (if needed, used when operating beyond the 128KB
	 * FLASH barrier) */
316
317
318
319
320
321
322
323
	if (MustSetAddress)
	{
		if (CurrentAddress & (1UL << 31))
		  ISPTarget_LoadExtendedAddress();

		MustSetAddress = false;
	}

324
	/* Read each byte from the device and write them to the packet for the host */
325
326
	for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++)
	{
327
		/* Read the next byte from the desired memory space in the device */
328
329
330
331
		SPI_Send(Read_Memory_Params.ReadMemoryCommand);
		SPI_Send(CurrentAddress >> 8);
		SPI_Send(CurrentAddress & 0xFF);
		Endpoint_Write_Byte(SPI_Receive());
332
		
333
		/* Check if the endpoint bank is currently full, if so send the packet */
334
335
336
337
338
339
		if (!(Endpoint_IsReadWriteAllowed()))
		{
			Endpoint_ClearIN();
			Endpoint_WaitUntilReady();
		}
		
340
341
342
343
344
345
346
347
		/* AVR FLASH addressing requires us to modify the read command based on if we are reading a high
		 * or low byte at the current word address */
		if (V2Command == CMD_READ_FLASH_ISP)
		  Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK;

		/* Only increment the current address if we have read both bytes in the current word when in FLASH
		 * read mode, or for each byte when in EEPROM read mode */		 
		if (((CurrentByte & 0x01) && (V2Command == CMD_READ_FLASH_ISP)) || (V2Command == CMD_READ_EEPROM_ISP))
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
		  CurrentAddress++;
	}

	Endpoint_Write_Byte(STATUS_CMD_OK);

	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
	Endpoint_ClearIN();
	
	/* Ensure last packet is a short packet to terminate the transfer */
	if (IsEndpointFull)
	{
		Endpoint_WaitUntilReady();	
		Endpoint_ClearIN();
		Endpoint_WaitUntilReady();	
	}
}

/** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */
void ISPProtocol_ChipErase(void)
{
	struct
	{
		uint8_t EraseDelayMS;
		uint8_t PollMethod;
		uint8_t EraseCommandBytes[4];
	} Erase_Chip_Params;
	
375
	Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NO_STREAM_CALLBACK);
376
377
378
379
380
381
	
	Endpoint_ClearOUT();
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
	
	uint8_t ResponseStatus = STATUS_CMD_OK;
	
382
	/* Send the chip erase commands as given by the host to the device */
383
	for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++)
384
	  SPI_Send(Erase_Chip_Params.EraseCommandBytes[SByte]);
385

386
	/* Use appropriate command completion check as given by the host (delay or busy polling) */
387
	if (!(Erase_Chip_Params.PollMethod))
388
	  ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS);
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
	else
	  ResponseStatus = ISPTarget_WaitWhileTargetBusy();
	  
	Endpoint_Write_Byte(CMD_CHIP_ERASE_ISP);
	Endpoint_Write_Byte(ResponseStatus);
	Endpoint_ClearIN();
}

/** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands,
 *  reading the requested configuration byte from the device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command)
{
	struct
	{
		uint8_t RetByte;
		uint8_t ReadCommandBytes[4];
	} Read_FuseLockSigOSCCAL_Params;
	
410
	Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NO_STREAM_CALLBACK);
411
412
413
414
415

	Endpoint_ClearOUT();
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint8_t ResponseBytes[4];
416
417

	/* Send the Fuse or Lock byte read commands as given by the host to the device, store response */
418
	for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
419
	  ResponseBytes[RByte] = SPI_Transfer(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]);
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
		
	Endpoint_Write_Byte(V2Command);
	Endpoint_Write_Byte(STATUS_CMD_OK);
	Endpoint_Write_Byte(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]);
	Endpoint_Write_Byte(STATUS_CMD_OK);
	Endpoint_ClearIN();
}

/** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration
 *  byte to the device.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
void ISPProtocol_WriteFuseLock(uint8_t V2Command)
{
	struct
	{
		uint8_t WriteCommandBytes[4];
	} Write_FuseLockSig_Params;
	
440
	Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NO_STREAM_CALLBACK);
441
442
443
444

	Endpoint_ClearOUT();
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

445
	/* Send the Fuse or Lock byte program commands as given by the host to the device */
446
	for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++)
447
	  SPI_Send(Write_FuseLockSig_Params.WriteCommandBytes[SByte]);
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
		
	Endpoint_Write_Byte(V2Command);
	Endpoint_Write_Byte(STATUS_CMD_OK);
	Endpoint_Write_Byte(STATUS_CMD_OK);
	Endpoint_ClearIN();
}

/** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */
void ISPProtocol_SPIMulti(void)
{
	struct
	{
		uint8_t TxBytes;
		uint8_t RxBytes;
		uint8_t RxStartAddr;
		uint8_t TxData[255];
	} SPI_Multi_Params;
	
466
467
	Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NO_STREAM_CALLBACK);
	Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NO_STREAM_CALLBACK);
468
469
470
471
472
473
474
475
476
477
478
479
480
481
	
	Endpoint_ClearOUT();
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
	
	Endpoint_Write_Byte(CMD_SPI_MULTI);
	Endpoint_Write_Byte(STATUS_CMD_OK);

	uint8_t CurrTxPos = 0;
	uint8_t CurrRxPos = 0;

	/* Write out bytes to transmit until the start of the bytes to receive is met */
	while (CurrTxPos < SPI_Multi_Params.RxStartAddr)
	{
		if (CurrTxPos < SPI_Multi_Params.TxBytes)
482
		  SPI_Send(SPI_Multi_Params.TxData[CurrTxPos]);
483
		else
484
		  SPI_Send(0);
485
486
487
488
489
490
491
492
		
		CurrTxPos++;
	}

	/* Transmit remaining bytes with padding as needed, read in response bytes */
	while (CurrRxPos < SPI_Multi_Params.RxBytes)
	{
		if (CurrTxPos < SPI_Multi_Params.TxBytes)
493
		  Endpoint_Write_Byte(SPI_Transfer(SPI_Multi_Params.TxData[CurrTxPos++]));
494
		else
495
		  Endpoint_Write_Byte(SPI_Receive());
496
497
498
499
500
501
502
		  
		/* Check to see if we have filled the endpoint bank and need to send the packet */
		if (!(Endpoint_IsReadWriteAllowed()))
		{
			Endpoint_ClearIN();
			Endpoint_WaitUntilReady();
		}
503
504
505
506
507
		
		CurrRxPos++;
	}	
	
	Endpoint_Write_Byte(STATUS_CMD_OK);
508
509

	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
510
	Endpoint_ClearIN();
511
512
513
514
515
516
517
518
	
	/* Ensure last packet is a short packet to terminate the transfer */
	if (IsEndpointFull)
	{
		Endpoint_WaitUntilReady();	
		Endpoint_ClearIN();
		Endpoint_WaitUntilReady();	
	}
519
}
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/** Blocking delay for a given number of milliseconds.
 *
 *  \param[in] DelayMS  Number of milliseconds to delay for
 */
void ISPProtocol_DelayMS(uint8_t DelayMS)
{
	while (DelayMS-- && TimeoutMSRemaining)
	{
		if (TimeoutMSRemaining)
		  TimeoutMSRemaining--;
		  
		_delay_ms(1);
	}
}

536
#endif