Pipe_AVR8.h 35.9 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2011.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2011  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/
30

31
/** \file
32
33
 *  \brief USB Pipe definitions for the AVR8 microcontrollers.
 *  \copydetails Group_PipeManagement_AVR8
34
35
36
 *
 *  \note This file should not be included directly. It is automatically included as needed by the USB driver
 *        dispatch header located in LUFA/Drivers/USB/USB.h.
37
 */
38

39
40
/** \ingroup Group_PipeRW
 *  \defgroup Group_PipeRW_AVR8 Pipe Data Reading and Writing (AVR8)
41
 *  \brief Pipe data read/write definitions for the Atmel AVR8 architecture.
42
43
44
 *
 *  Functions, macros, variables, enums and types related to data reading and writing from and to pipes.
 */
45

46
47
/** \ingroup Group_PipePrimitiveRW
 *  \defgroup Group_PipePrimitiveRW_AVR8 Read/Write of Primitive Data Types (AVR8)
48
 *  \brief Pipe primative data read/write definitions for the Atmel AVR8 architecture.
49
50
51
 *
 *  Functions, macros, variables, enums and types related to data reading and writing of primitive data types
 *  from and to pipes.
52
 */
53

54
55
/** \ingroup Group_PipePacketManagement
 *  \defgroup Group_PipePacketManagement_AVR8 Pipe Packet Management (AVR8)
56
 *  \brief Pipe packet management definitions for the Atmel AVR8 architecture.
57
58
59
 *
 *  Functions, macros, variables, enums and types related to packet management of pipes.
 */
60

61
62
/** \ingroup Group_PipeControlReq
 *  \defgroup Group_PipeControlReq_AVR8 Pipe Control Request Management (AVR8)
63
 *  \brief Pipe control request management definitions for the Atmel AVR8 architecture.
64
65
66
67
68
 *
 *  Module for host mode request processing. This module allows for the transmission of standard, class and
 *  vendor control requests to the default control endpoint of an attached device while in host mode.
 *
 *  \see Chapter 9 of the USB 2.0 specification.
69
 */
70

71
72
/** \ingroup Group_PipeManagement
 *  \defgroup Group_PipeManagement_AVR8 Pipe Management (AVR8)
73
 *  \brief Pipe management definitions for the Atmel AVR8 architecture.
74
75
76
77
78
79
80
81
 *
 *  This module contains functions, macros and enums related to pipe management when in USB Host mode. This
 *  module contains the pipe management macros, as well as pipe interrupt and data send/receive functions
 *  for various data types.
 *
 *  @{
 */

82
83
#ifndef __PIPE_AVR8_H__
#define __PIPE_AVR8_H__
84
85

	/* Includes: */
86
87
		#include "../../../../Common/Common.h"
		#include "../USBTask.h"
88

89
90
91
92
93
94
95
96
97
	/* Enable C linkage for C++ Compilers: */
		#if defined(__cplusplus)
			extern "C" {
		#endif

	/* Preprocessor Checks: */
		#if !defined(__INCLUDE_FROM_USB_DRIVER)
			#error Do not include this file directly. Include LUFA/Drivers/USB/USB.h instead.
		#endif
98

99
100
	/* Public Interface - May be used in end-application: */
		/* Macros: */
101
102
			/** \name Pipe Error Flag Masks */
			//@{
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
			/** Mask for \ref Pipe_GetErrorFlags(), indicating that an overflow error occurred in the pipe on the received data. */
			#define PIPE_ERRORFLAG_OVERFLOW         (1 << 6)

			/** Mask for \ref Pipe_GetErrorFlags(), indicating that an underflow error occurred in the pipe on the received data. */
			#define PIPE_ERRORFLAG_UNDERFLOW        (1 << 5)

			/** Mask for \ref Pipe_GetErrorFlags(), indicating that a CRC error occurred in the pipe on the received data. */
			#define PIPE_ERRORFLAG_CRC16            (1 << 4)

			/** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware timeout error occurred in the pipe. */
			#define PIPE_ERRORFLAG_TIMEOUT          (1 << 3)

			/** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware PID error occurred in the pipe. */
			#define PIPE_ERRORFLAG_PID              (1 << 2)

			/** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware data PID error occurred in the pipe. */
			#define PIPE_ERRORFLAG_DATAPID          (1 << 1)

			/** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware data toggle error occurred in the pipe. */
			#define PIPE_ERRORFLAG_DATATGL          (1 << 0)
123
			//@}
124

125
126
			/** \name Pipe Token Masks */
			//@{
127
128
129
130
131
132
133
134
135
136
137
138
139
140
			/** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a SETUP token (for CONTROL type pipes),
			 *  which will trigger a control request on the attached device when data is written to the pipe.
			 */
			#define PIPE_TOKEN_SETUP                (0 << PTOKEN0)

			/** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a IN token (for non-CONTROL type pipes),
			 *  indicating that the pipe data will flow from device to host.
			 */
			#define PIPE_TOKEN_IN                   (1 << PTOKEN0)

			/** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a OUT token (for non-CONTROL type pipes),
			 *  indicating that the pipe data will flow from host to device.
			 */
			#define PIPE_TOKEN_OUT                  (2 << PTOKEN0)
141
142
143
144
			//@}
			
			/** \name Pipe Bank Mode Masks */
			//@{
145
146
147
148
149
150
151
152
153
154
155
156
			/** Mask for the bank mode selection for the \ref Pipe_ConfigurePipe() macro. This indicates that the pipe
			 *  should have one single bank, which requires less USB FIFO memory but results in slower transfers as
			 *  only one USB device (the AVR or the attached device) can access the pipe's bank at the one time.
			 */
			#define PIPE_BANK_SINGLE                (0 << EPBK0)

			/** Mask for the bank mode selection for the \ref Pipe_ConfigurePipe() macro. This indicates that the pipe
			 *  should have two banks, which requires more USB FIFO memory but results in faster transfers as one
			 *  USB device (the AVR or the attached device) can access one bank while the other accesses the second
			 *  bank.
			 */
			#define PIPE_BANK_DOUBLE                (1 << EPBK0)
157
158
			//@}
			
159
160
161
162
163
			/** Pipe address for the default control pipe, which always resides in address 0. This is
			 *  defined for convenience to give more readable code when used with the pipe macros.
			 */
			#define PIPE_CONTROLPIPE                0

164
			/** Default size of the default control pipe's bank, until altered by the Endpoint0Size value
165
166
167
			 *  in the device descriptor of the attached device.
			 */
			#define PIPE_CONTROLPIPE_DEFAULT_SIZE   64
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
			/** Pipe number mask, for masking against pipe addresses to retrieve the pipe's numerical address
			 *  in the device.
			 */
			#define PIPE_PIPENUM_MASK               0x07

			/** Total number of pipes (including the default control pipe at address 0) which may be used in
			 *  the device. Different USB AVR models support different amounts of pipes, this value reflects
			 *  the maximum number of pipes for the currently selected AVR model.
			 */
			#define PIPE_TOTAL_PIPES                7

			/** Size in bytes of the largest pipe bank size possible in the device. Not all banks on each AVR
			 *  model supports the largest bank size possible on the device; different pipe numbers support
			 *  different maximum bank sizes. This value reflects the largest possible bank of any pipe on the
			 *  currently selected USB AVR model.
			 */
			#define PIPE_MAX_SIZE                   256

			/** Endpoint number mask, for masking against endpoint addresses to retrieve the endpoint's
			 *  numerical address in the attached device.
			 */
			#define PIPE_EPNUM_MASK                 0x0F

			/** Endpoint direction mask, for masking against endpoint addresses to retrieve the endpoint's
193
			 *  direction for comparing with the \c ENDPOINT_DESCRIPTOR_DIR_* masks.
194
195
196
197
			 */
			#define PIPE_EPDIR_MASK                 0x80

		/* Enums: */
198
			/** Enum for the possible error return codes of the \ref Pipe_WaitUntilReady() function.
199
			 *
200
			 *  \ingroup Group_PipeRW_AVR8
201
202
203
			 */
			enum Pipe_WaitUntilReady_ErrorCodes_t
			{
204
				PIPE_READYWAIT_NoError                 = 0, /**< Pipe ready for next packet, no error. */
205
				PIPE_READYWAIT_PipeStalled             = 1,	/**< The device stalled the pipe while waiting. */
206
207
208
209
210
211
212
213
				PIPE_READYWAIT_DeviceDisconnected      = 2,	/**< Device was disconnected from the host while waiting. */
				PIPE_READYWAIT_Timeout                 = 3, /**< The device failed to accept or send the next packet
				                                             *   within the software timeout period set by the
				                                             *   \ref USB_STREAM_TIMEOUT_MS macro.
				                                             */
			};

		/* Inline Functions: */
214
215
216
217
218
			/** Indicates the number of bytes currently stored in the current pipes's selected bank.
			 *
			 *  \note The return width of this function may differ, depending on the maximum pipe bank size
			 *        of the selected AVR model.
			 *
219
			 *  \ingroup Group_PipeRW_AVR8
220
			 *
221
			 *  \return Total number of bytes in the currently selected pipe's FIFO buffer.
222
223
224
225
226
227
			 */
			static inline uint16_t Pipe_BytesInPipe(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint16_t Pipe_BytesInPipe(void)
			{
				return UPBCX;
			}
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
			/** Returns the pipe address of the currently selected pipe. This is typically used to save the
			 *  currently selected pipe number so that it can be restored after another pipe has been manipulated.
			 *
			 *  \return Index of the currently selected pipe.
			 */
			static inline uint8_t Pipe_GetCurrentPipe(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint8_t Pipe_GetCurrentPipe(void)
			{
				return (UPNUM & PIPE_PIPENUM_MASK);
			}

			/** Selects the given pipe number. Any pipe operations which do not require the pipe number to be
			 *  indicated will operate on the currently selected pipe.
			 *
			 *  \param[in] PipeNumber  Index of the pipe to select.
			 */
			static inline void Pipe_SelectPipe(const uint8_t PipeNumber) ATTR_ALWAYS_INLINE;
			static inline void Pipe_SelectPipe(const uint8_t PipeNumber)
			{
				UPNUM = PipeNumber;
			}
250

251
252
253
254
255
256
257
258
259
260
			/** Resets the desired pipe, including the pipe banks and flags.
			 *
			 *  \param[in] PipeNumber  Index of the pipe to reset.
			 */
			static inline void Pipe_ResetPipe(const uint8_t PipeNumber) ATTR_ALWAYS_INLINE;
			static inline void Pipe_ResetPipe(const uint8_t PipeNumber)
			{
				UPRST = (1 << PipeNumber);
				UPRST = 0;
			}
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
			/** Enables the currently selected pipe so that data can be sent and received through it to and from
			 *  an attached device.
			 *
			 *  \pre The currently selected pipe must first be configured properly via \ref Pipe_ConfigurePipe().
			 */
			static inline void Pipe_EnablePipe(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_EnablePipe(void)
			{
				UPCONX |= (1 << PEN);
			}

			/** Disables the currently selected pipe so that data cannot be sent and received through it to and
			 *  from an attached device.
			 */
			static inline void Pipe_DisablePipe(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_DisablePipe(void)
			{
				UPCONX &= ~(1 << PEN);
			}

			/** Determines if the currently selected pipe is enabled, but not necessarily configured.
			 *
284
			 * \return Boolean \c true if the currently selected pipe is enabled, \c false otherwise.
285
286
287
288
289
290
			 */
			static inline bool Pipe_IsEnabled(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsEnabled(void)
			{
				return ((UPCONX & (1 << PEN)) ? true : false);
			}
291

292
293
			/** Gets the current pipe token, indicating the pipe's data direction and type.
			 *
294
			 *  \return The current pipe token, as a \c PIPE_TOKEN_* mask.
295
296
297
298
299
300
			 */
			static inline uint8_t Pipe_GetPipeToken(void) ATTR_ALWAYS_INLINE;
			static inline uint8_t Pipe_GetPipeToken(void)
			{
				return (UPCFG0X & (0x03 << PTOKEN0));
			}
301

302
			/** Sets the token for the currently selected pipe to one of the tokens specified by the \c PIPE_TOKEN_*
303
304
305
306
			 *  masks. This can be used on CONTROL type pipes, to allow for bidirectional transfer of data during
			 *  control requests, or on regular pipes to allow for half-duplex bidirectional data transfer to devices
			 *  which have two endpoints of opposite direction sharing the same endpoint address within the device.
			 *
307
			 *  \param[in] Token  New pipe token to set the selected pipe to, as a \c PIPE_TOKEN_* mask.
308
309
310
311
312
313
			 */
			static inline void Pipe_SetPipeToken(const uint8_t Token) ATTR_ALWAYS_INLINE;
			static inline void Pipe_SetPipeToken(const uint8_t Token)
			{
				UPCFG0X = ((UPCFG0X & ~(0x03 << PTOKEN0)) | Token);
			}
314

315
316
317
318
319
320
			/** Configures the currently selected pipe to allow for an unlimited number of IN requests. */
			static inline void Pipe_SetInfiniteINRequests(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_SetInfiniteINRequests(void)
			{
				UPCONX |= (1 << INMODE);
			}
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
			/** Configures the currently selected pipe to only allow the specified number of IN requests to be
			 *  accepted by the pipe before it is automatically frozen.
			 *
			 *  \param[in] TotalINRequests  Total number of IN requests that the pipe may receive before freezing.
			 */
			static inline void Pipe_SetFiniteINRequests(const uint8_t TotalINRequests) ATTR_ALWAYS_INLINE;
			static inline void Pipe_SetFiniteINRequests(const uint8_t TotalINRequests)
			{
				UPCONX &= ~(1 << INMODE);
				UPINRQX = TotalINRequests;
			}

			/** Determines if the currently selected pipe is configured.
			 *
336
			 *  \return Boolean \c true if the selected pipe is configured, \c false otherwise.
337
338
339
340
341
342
			 */
			static inline bool Pipe_IsConfigured(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsConfigured(void)
			{
				return ((UPSTAX & (1 << CFGOK)) ? true : false);
			}
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
			/** Retrieves the endpoint number of the endpoint within the attached device that the currently selected
			 *  pipe is bound to.
			 *
			 *  \return Endpoint number the currently selected pipe is bound to.
			 */
			static inline uint8_t Pipe_BoundEndpointNumber(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint8_t Pipe_BoundEndpointNumber(void)
			{
				return ((UPCFG0X >> PEPNUM0) & PIPE_EPNUM_MASK);
			}

			/** Sets the period between interrupts for an INTERRUPT type pipe to a specified number of milliseconds.
			 *
			 *  \param[in] Milliseconds  Number of milliseconds between each pipe poll.
			 */
			static inline void Pipe_SetInterruptPeriod(const uint8_t Milliseconds) ATTR_ALWAYS_INLINE;
			static inline void Pipe_SetInterruptPeriod(const uint8_t Milliseconds)
			{
				UPCFG2X = Milliseconds;
			}
364

365
366
367
368
369
370
371
372
373
374
			/** Returns a mask indicating which pipe's interrupt periods have elapsed, indicating that the pipe should
			 *  be serviced.
			 *
			 *  \return Mask whose bits indicate which pipes have interrupted.
			 */
			static inline uint8_t Pipe_GetPipeInterrupts(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint8_t Pipe_GetPipeInterrupts(void)
			{
				return UPINT;
			}
375

376
377
378
379
380
			/** Determines if the specified pipe number has interrupted (valid only for INTERRUPT type
			 *  pipes).
			 *
			 *  \param[in] PipeNumber  Index of the pipe whose interrupt flag should be tested.
			 *
381
			 *  \return Boolean \c true if the specified pipe has interrupted, \c false otherwise.
382
383
384
385
386
387
			 */
			static inline bool Pipe_HasPipeInterrupted(const uint8_t PipeNumber) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_HasPipeInterrupted(const uint8_t PipeNumber)
			{
				return ((UPINT & (1 << PipeNumber)) ? true : false);
			}
388

389
390
391
392
393
394
			/** Unfreezes the selected pipe, allowing it to communicate with an attached device. */
			static inline void Pipe_Unfreeze(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Unfreeze(void)
			{
				UPCONX &= ~(1 << PFREEZE);
			}
395

396
397
398
399
400
401
402
403
404
			/** Freezes the selected pipe, preventing it from communicating with an attached device. */
			static inline void Pipe_Freeze(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Freeze(void)
			{
				UPCONX |= (1 << PFREEZE);
			}

			/** Determines if the currently selected pipe is frozen, and not able to accept data.
			 *
405
			 *  \return Boolean \c true if the currently selected pipe is frozen, \c false otherwise.
406
407
408
409
410
411
			 */
			static inline bool Pipe_IsFrozen(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsFrozen(void)
			{
				return ((UPCONX & (1 << PFREEZE)) ? true : false);
			}
412

413
414
415
416
417
418
			/** Clears the master pipe error flag. */
			static inline void Pipe_ClearError(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_ClearError(void)
			{
				UPINTX &= ~(1 << PERRI);
			}
419

420
421
422
423
424
			/** Determines if the master pipe error flag is set for the currently selected pipe, indicating that
			 *  some sort of hardware error has occurred on the pipe.
			 *
			 *  \see \ref Pipe_GetErrorFlags() macro for information on retrieving the exact error flag.
			 *
425
			 *  \return Boolean \c true if an error has occurred on the selected pipe, \c false otherwise.
426
427
428
429
430
431
			 */
			static inline bool Pipe_IsError(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsError(void)
			{
				return ((UPINTX & (1 << PERRI)) ? true : false);
			}
432

433
434
435
436
437
438
439
440
			/** Clears all the currently selected pipe's hardware error flags, but does not clear the master error
			 *  flag for the pipe.
			 */
			static inline void Pipe_ClearErrorFlags(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_ClearErrorFlags(void)
			{
				UPERRX = 0;
			}
441

442
			/** Gets a mask of the hardware error flags which have occurred on the currently selected pipe. This
443
			 *  value can then be masked against the \c PIPE_ERRORFLAG_* masks to determine what error has occurred.
444
			 *
445
			 *  \return  Mask comprising of \c PIPE_ERRORFLAG_* bits indicating what error has occurred on the selected pipe.
446
447
448
449
450
451
452
453
454
			 */
			static inline uint8_t Pipe_GetErrorFlags(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint8_t Pipe_GetErrorFlags(void)
			{
				return ((UPERRX & (PIPE_ERRORFLAG_CRC16 | PIPE_ERRORFLAG_TIMEOUT |
				                   PIPE_ERRORFLAG_PID   | PIPE_ERRORFLAG_DATAPID |
				                   PIPE_ERRORFLAG_DATATGL)) |
				        (UPSTAX & (PIPE_ERRORFLAG_OVERFLOW | PIPE_ERRORFLAG_UNDERFLOW)));
			}
455
456
457
458
459
			
			/** Retrieves the number of busy banks in the currently selected pipe, which have been queued for
			 *  transmission via the \ref Pipe_ClearOUT() command, or are awaiting acknowledgement via the
			 *  \ref Pipe_ClearIN() command.
			 *
460
			 *  \ingroup Group_PipePacketManagement_AVR8
461
462
463
464
465
			 *
			 *  \return Total number of busy banks in the selected pipe.
			 */
			static inline uint8_t Pipe_GetBusyBanks(void)
			{
466
				return (UPSTAX & (0x03 << NBUSYBK0));
467
			}
468

469
470
471
472
473
474
475
476
			/** Determines if the currently selected pipe may be read from (if data is waiting in the pipe
			 *  bank and the pipe is an IN direction, or if the bank is not yet full if the pipe is an OUT
			 *  direction). This function will return false if an error has occurred in the pipe, or if the pipe
			 *  is an IN direction and no packet (or an empty packet) has been received, or if the pipe is an OUT
			 *  direction and the pipe bank is full.
			 *
			 *  \note This function is not valid on CONTROL type pipes.
			 *
477
			 *  \ingroup Group_PipePacketManagement_AVR8
478
			 *
479
480
			 *  \return Boolean \c true if the currently selected pipe may be read from or written to, depending
			 *          on its direction.
481
482
483
484
485
486
			 */
			static inline bool Pipe_IsReadWriteAllowed(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsReadWriteAllowed(void)
			{
				return ((UPINTX & (1 << RWAL)) ? true : false);
			}
487

488
			/** Determines if a packet has been received on the currently selected IN pipe from the attached device.
489
			 *
490
			 *  \ingroup Group_PipePacketManagement_AVR8
491
			 *
492
			 *  \return Boolean \c true if the current pipe has received an IN packet, \c false otherwise.
493
494
495
496
497
498
			 */
			static inline bool Pipe_IsINReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsINReceived(void)
			{
				return ((UPINTX & (1 << RXINI)) ? true : false);
			}
499

500
			/** Determines if the currently selected OUT pipe is ready to send an OUT packet to the attached device.
501
			 *
502
			 *  \ingroup Group_PipePacketManagement_AVR8
503
			 *
504
			 *  \return Boolean \c true if the current pipe is ready for an OUT packet, \c false otherwise.
505
506
507
508
509
510
511
512
513
514
			 */
			static inline bool Pipe_IsOUTReady(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsOUTReady(void)
			{
				return ((UPINTX & (1 << TXOUTI)) ? true : false);
			}

			/** Determines if no SETUP request is currently being sent to the attached device on the selected
			 *  CONTROL type pipe.
			 *
515
			 *  \ingroup Group_PipePacketManagement_AVR8
516
			 *
517
			 *  \return Boolean \c true if the current pipe is ready for a SETUP packet, \c false otherwise.
518
519
520
521
522
523
			 */
			static inline bool Pipe_IsSETUPSent(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsSETUPSent(void)
			{
				return ((UPINTX & (1 << TXSTPI)) ? true : false);
			}
524

525
526
			/** Sends the currently selected CONTROL type pipe's contents to the device as a SETUP packet.
			 *
527
			 *  \ingroup Group_PipePacketManagement_AVR8
528
529
530
531
532
533
534
535
536
537
			 */
			static inline void Pipe_ClearSETUP(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_ClearSETUP(void)
			{
				UPINTX &= ~((1 << TXSTPI) | (1 << FIFOCON));
			}

			/** Acknowledges the reception of a setup IN request from the attached device on the currently selected
			 *  pipe, freeing the bank ready for the next packet.
			 *
538
			 *  \ingroup Group_PipePacketManagement_AVR8
539
540
541
542
543
544
545
546
547
548
			 */
			static inline void Pipe_ClearIN(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_ClearIN(void)
			{
				UPINTX &= ~((1 << RXINI) | (1 << FIFOCON));
			}

			/** Sends the currently selected pipe's contents to the device as an OUT packet on the selected pipe, freeing
			 *  the bank ready for the next packet.
			 *
549
			 *  \ingroup Group_PipePacketManagement_AVR8
550
551
552
553
554
555
556
557
558
559
560
561
562
			 */
			static inline void Pipe_ClearOUT(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_ClearOUT(void)
			{
				UPINTX &= ~((1 << TXOUTI) | (1 << FIFOCON));
			}

			/** Determines if the device sent a NAK (Negative Acknowledge) in response to the last sent packet on
			 *  the currently selected pipe. This occurs when the host sends a packet to the device, but the device
			 *  is not currently ready to handle the packet (i.e. its endpoint banks are full). Once a NAK has been
			 *  received, it must be cleared using \ref Pipe_ClearNAKReceived() before the previous (or any other) packet
			 *  can be re-sent.
			 *
563
			 *  \ingroup Group_PipePacketManagement_AVR8
564
			 *
565
			 *  \return Boolean \c true if an NAK has been received on the current pipe, \c false otherwise.
566
567
568
569
570
571
572
573
574
			 */
			static inline bool Pipe_IsNAKReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsNAKReceived(void)
			{
				return ((UPINTX & (1 << NAKEDI)) ? true : false);
			}

			/** Clears the NAK condition on the currently selected pipe.
			 *
575
			 *  \ingroup Group_PipePacketManagement_AVR8
576
577
578
579
580
581
582
583
			 *
			 *  \see \ref Pipe_IsNAKReceived() for more details.
			 */
			static inline void Pipe_ClearNAKReceived(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_ClearNAKReceived(void)
			{
				UPINTX &= ~(1 << NAKEDI);
			}
584

585
586
			/** Determines if the currently selected pipe has had the STALL condition set by the attached device.
			 *
587
			 *  \ingroup Group_PipePacketManagement_AVR8
588
			 *
589
			 *  \return Boolean \c true if the current pipe has been stalled by the attached device, \c false otherwise.
590
591
592
593
594
595
			 */
			static inline bool Pipe_IsStalled(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline bool Pipe_IsStalled(void)
			{
				return ((UPINTX & (1 << RXSTALLI)) ? true : false);
			}
596

597
598
599
			/** Clears the STALL condition detection flag on the currently selected pipe, but does not clear the
			 *  STALL condition itself (this must be done via a ClearFeature control request to the device).
			 *
600
			 *  \ingroup Group_PipePacketManagement_AVR8
601
602
603
604
605
606
607
			 */
			static inline void Pipe_ClearStall(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_ClearStall(void)
			{
				UPINTX &= ~(1 << RXSTALLI);
			}

608
609
			/** Reads one byte from the currently selected pipe's bank, for OUT direction pipes.
			 *
610
			 *  \ingroup Group_PipePrimitiveRW_AVR8
611
			 *
612
			 *  \return Next byte in the currently selected pipe's FIFO buffer.
613
614
615
616
617
618
619
620
621
			 */
			static inline uint8_t Pipe_Read_Byte(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint8_t Pipe_Read_Byte(void)
			{
				return UPDATX;
			}

			/** Writes one byte from the currently selected pipe's bank, for IN direction pipes.
			 *
622
			 *  \ingroup Group_PipePrimitiveRW_AVR8
623
			 *
624
			 *  \param[in] Byte  Next byte to write into the the currently selected pipe's FIFO buffer.
625
626
627
628
629
630
631
632
633
			 */
			static inline void Pipe_Write_Byte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Write_Byte(const uint8_t Byte)
			{
				UPDATX = Byte;
			}

			/** Discards one byte from the currently selected pipe's bank, for OUT direction pipes.
			 *
634
			 *  \ingroup Group_PipePrimitiveRW_AVR8
635
636
637
638
639
			 */
			static inline void Pipe_Discard_Byte(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Discard_Byte(void)
			{
				uint8_t Dummy;
640

641
642
				Dummy = UPDATX;
			}
643

644
645
646
			/** Reads two bytes from the currently selected pipe's bank in little endian format, for OUT
			 *  direction pipes.
			 *
647
			 *  \ingroup Group_PipePrimitiveRW_AVR8
648
			 *
649
			 *  \return Next word in the currently selected pipe's FIFO buffer.
650
651
652
653
654
655
656
657
658
			 */
			static inline uint16_t Pipe_Read_Word_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint16_t Pipe_Read_Word_LE(void)
			{
				union
				{
					uint16_t Word;
					uint8_t  Bytes[2];
				} Data;
659

660
661
				Data.Bytes[0] = UPDATX;
				Data.Bytes[1] = UPDATX;
662

663
664
665
666
667
668
				return Data.Word;
			}

			/** Reads two bytes from the currently selected pipe's bank in big endian format, for OUT
			 *  direction pipes.
			 *
669
			 *  \ingroup Group_PipePrimitiveRW_AVR8
670
			 *
671
			 *  \return Next word in the currently selected pipe's FIFO buffer.
672
673
674
675
676
677
678
679
680
			 */
			static inline uint16_t Pipe_Read_Word_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint16_t Pipe_Read_Word_BE(void)
			{
				union
				{
					uint16_t Word;
					uint8_t  Bytes[2];
				} Data;
681

682
683
				Data.Bytes[1] = UPDATX;
				Data.Bytes[0] = UPDATX;
684

685
686
				return Data.Word;
			}
687

688
689
690
			/** Writes two bytes to the currently selected pipe's bank in little endian format, for IN
			 *  direction pipes.
			 *
691
			 *  \ingroup Group_PipePrimitiveRW_AVR8
692
			 *
693
			 *  \param[in] Word  Next word to write to the currently selected pipe's FIFO buffer.
694
695
696
697
698
699
700
			 */
			static inline void Pipe_Write_Word_LE(const uint16_t Word) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Write_Word_LE(const uint16_t Word)
			{
				UPDATX = (Word & 0xFF);
				UPDATX = (Word >> 8);
			}
701

702
703
704
			/** Writes two bytes to the currently selected pipe's bank in big endian format, for IN
			 *  direction pipes.
			 *
705
			 *  \ingroup Group_PipePrimitiveRW_AVR8
706
			 *
707
			 *  \param[in] Word  Next word to write to the currently selected pipe's FIFO buffer.
708
709
710
711
712
713
714
715
716
717
			 */
			static inline void Pipe_Write_Word_BE(const uint16_t Word) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Write_Word_BE(const uint16_t Word)
			{
				UPDATX = (Word >> 8);
				UPDATX = (Word & 0xFF);
			}

			/** Discards two bytes from the currently selected pipe's bank, for OUT direction pipes.
			 *
718
			 *  \ingroup Group_PipePrimitiveRW_AVR8
719
720
721
722
723
			 */
			static inline void Pipe_Discard_Word(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Discard_Word(void)
			{
				uint8_t Dummy;
724

725
726
727
728
729
730
731
				Dummy = UPDATX;
				Dummy = UPDATX;
			}

			/** Reads four bytes from the currently selected pipe's bank in little endian format, for OUT
			 *  direction pipes.
			 *
732
			 *  \ingroup Group_PipePrimitiveRW_AVR8
733
			 *
734
			 *  \return Next double word in the currently selected pipe's FIFO buffer.
735
736
737
738
739
740
741
742
743
			 */
			static inline uint32_t Pipe_Read_DWord_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint32_t Pipe_Read_DWord_LE(void)
			{
				union
				{
					uint32_t DWord;
					uint8_t  Bytes[4];
				} Data;
744

745
746
747
748
				Data.Bytes[0] = UPDATX;
				Data.Bytes[1] = UPDATX;
				Data.Bytes[2] = UPDATX;
				Data.Bytes[3] = UPDATX;
749

750
751
752
753
754
755
				return Data.DWord;
			}

			/** Reads four bytes from the currently selected pipe's bank in big endian format, for OUT
			 *  direction pipes.
			 *
756
			 *  \ingroup Group_PipePrimitiveRW_AVR8
757
			 *
758
			 *  \return Next double word in the currently selected pipe's FIFO buffer.
759
760
761
762
763
764
765
766
767
			 */
			static inline uint32_t Pipe_Read_DWord_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
			static inline uint32_t Pipe_Read_DWord_BE(void)
			{
				union
				{
					uint32_t DWord;
					uint8_t  Bytes[4];
				} Data;
768

769
770
771
772
				Data.Bytes[3] = UPDATX;
				Data.Bytes[2] = UPDATX;
				Data.Bytes[1] = UPDATX;
				Data.Bytes[0] = UPDATX;
773

774
775
776
777
778
779
				return Data.DWord;
			}

			/** Writes four bytes to the currently selected pipe's bank in little endian format, for IN
			 *  direction pipes.
			 *
780
			 *  \ingroup Group_PipePrimitiveRW_AVR8
781
			 *
782
			 *  \param[in] DWord  Next double word to write to the currently selected pipe's FIFO buffer.
783
784
785
786
787
788
789
790
791
			 */
			static inline void Pipe_Write_DWord_LE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Write_DWord_LE(const uint32_t DWord)
			{
				UPDATX = (DWord &  0xFF);
				UPDATX = (DWord >> 8);
				UPDATX = (DWord >> 16);
				UPDATX = (DWord >> 24);
			}
792

793
794
795
			/** Writes four bytes to the currently selected pipe's bank in big endian format, for IN
			 *  direction pipes.
			 *
796
			 *  \ingroup Group_PipePrimitiveRW_AVR8
797
			 *
798
			 *  \param[in] DWord  Next double word to write to the currently selected pipe's FIFO buffer.
799
800
801
802
803
804
805
806
			 */
			static inline void Pipe_Write_DWord_BE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Write_DWord_BE(const uint32_t DWord)
			{
				UPDATX = (DWord >> 24);
				UPDATX = (DWord >> 16);
				UPDATX = (DWord >> 8);
				UPDATX = (DWord &  0xFF);
807
808
809
			}

			/** Discards four bytes from the currently selected pipe's bank, for OUT direction pipes.
810
			 *
811
			 *  \ingroup Group_PipePrimitiveRW_AVR8
812
813
814
815
816
			 */
			static inline void Pipe_Discard_DWord(void) ATTR_ALWAYS_INLINE;
			static inline void Pipe_Discard_DWord(void)
			{
				uint8_t Dummy;
817

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
				Dummy = UPDATX;
				Dummy = UPDATX;
				Dummy = UPDATX;
				Dummy = UPDATX;
			}

		/* External Variables: */
			/** Global indicating the maximum packet size of the default control pipe located at address
			 *  0 in the device. This value is set to the value indicated in the attached device's device
		     *  descriptor once the USB interface is initialized into host mode and a device is attached
			 *  to the USB bus.
			 *
			 *  \note This variable should be treated as read-only in the user application, and never manually
			 *        changed in value.
			 */
			extern uint8_t USB_ControlPipeSize;

		/* Function Prototypes: */
			/** Configures the specified pipe number with the given pipe type, token, target endpoint number in the
837
			 *  attached device, bank size and banking mode.
838
839
840
841
842
843
844
			 *
			 *  A newly configured pipe is frozen by default, and must be unfrozen before use via the \ref Pipe_Unfreeze()
			 *  before being used. Pipes should be kept frozen unless waiting for data from a device while in IN mode, or
			 *  sending data to the device in OUT mode. IN type pipes are also automatically configured to accept infinite
			 *  numbers of IN requests without automatic freezing - this can be overridden by a call to
			 *  \ref Pipe_SetFiniteINRequests().
			 *
845
846
			 *  \param[in] Number          Pipe number to configure. This must be more than 0 and less than \ref PIPE_TOTAL_PIPES.
			 *
847
			 *  \param[in] Type            Type of pipe to configure, an \c EP_TYPE_* mask. Not all pipe types are available on Low
848
849
850
			 *                             Speed USB devices - refer to the USB 2.0 specification.
			 *
			 *  \param[in] Token           Pipe data token, either \ref PIPE_TOKEN_SETUP, \ref PIPE_TOKEN_OUT or \ref PIPE_TOKEN_IN.
851
			 *                             All pipes (except Control type) are unidirectional - data may only be read from or
852
853
854
855
856
			 *                             written to the pipe bank based on its direction, not both.
			 *
			 *  \param[in] EndpointNumber  Endpoint index within the attached device that the pipe should interface to.
			 *
			 *  \param[in] Size            Size of the pipe's bank, where packets are stored before they are transmitted to
857
858
			 *                             the USB device, or after they have been received from the USB device (depending on
			 *                             the pipe's data direction). The bank size must indicate the maximum packet size that
859
860
			 *                             the pipe can handle.
			 *
861
			 *  \param[in] Banks           Number of banks to use for the pipe being configured, a \c PIPE_BANK_* mask. More banks
862
863
864
			 *                             uses more USB DPRAM, but offers better performance. Isochronous type pipes <b>must</b>
			 *                             have at least two banks.
			 *
865
			 *  \note When the \c ORDERED_EP_CONFIG compile time option is used, Pipes <b>must</b> be configured in ascending order,
866
			 *        or bank corruption will occur.
867
868
			 *        \n\n
			 *
869
870
871
872
873
874
			 *  \note Certain models of USB AVR's pipes may have different maximum packet sizes based on the pipe's
			 *        index - refer to the chosen USB AVR's datasheet to determine the maximum bank size for each pipe.
			 *        \n\n
			 *
			 *  \note The default control pipe should not be manually configured by the user application, as it is
			 *        automatically configured by the library internally.
875
876
			 *        \n\n
			 *
877
878
			 *  \note This routine will automatically select the specified pipe upon success. Upon failure, the pipe which
			 *        failed to reconfigure correctly will be selected.
879
			 *
880
			 *  \return Boolean \c true if the configuration succeeded, \c false otherwise.
881
			 */
882
			bool Pipe_ConfigurePipe(const uint8_t Number,
883
884
885
886
887
			                        const uint8_t Type,
			                        const uint8_t Token,
			                        const uint8_t EndpointNumber,
			                        const uint16_t Size,
			                        const uint8_t Banks);
888

889
			/** Spin-loops until the currently selected non-control pipe is ready for the next packed of data to be read
890
891
			 *  or written to it, aborting in the case of an error condition (such as a timeout or device disconnect).
			 *
892
			 *  \ingroup Group_PipeRW_AVR8
893
			 *
894
			 *  \return A value from the \ref Pipe_WaitUntilReady_ErrorCodes_t enum.
895
896
			 */
			uint8_t Pipe_WaitUntilReady(void);
897

898
899
900
			/** Determines if a pipe has been bound to the given device endpoint address. If a pipe which is bound to the given
			 *  endpoint is found, it is automatically selected.
			 *
901
			 *  \param[in] EndpointAddress Address and direction mask of the endpoint within the attached device to check.
902
			 *
903
904
			 *  \return Boolean \c true if a pipe bound to the given endpoint address of the specified direction is found,
			 *          \c false otherwise.
905
906
907
908
			 */
			bool Pipe_IsEndpointBound(const uint8_t EndpointAddress);

	/* Private Interface - For use in library only: */
909
910
911
912
913
	#if !defined(__DOXYGEN__)
		/* Macros: */
			#if !defined(ENDPOINT_CONTROLEP)
				#define ENDPOINT_CONTROLEP          0
			#endif
914

915
		/* Inline Functions: */
916
917
			static inline uint8_t Pipe_BytesToEPSizeMask(const uint16_t Bytes) ATTR_WARN_UNUSED_RESULT ATTR_CONST ATTR_ALWAYS_INLINE;
			static inline uint8_t Pipe_BytesToEPSizeMask(const uint16_t Bytes)
918
			{
919
920
				uint8_t  MaskVal    = 0;
				uint16_t CheckBytes = 8;
921

922
923
924
925
926
				while ((CheckBytes < Bytes) && (CheckBytes < PIPE_MAX_SIZE))
				{
					MaskVal++;
					CheckBytes <<= 1;
				}
927

928
				return (MaskVal << EPSIZE0);
929
930
			}

931
932
		/* Function Prototypes: */
			void Pipe_ClearPipes(void);
933
934
935
936
937
938
	#endif

	/* Disable C linkage for C++ Compilers: */
		#if defined(__cplusplus)
			}
		#endif
939

940
941
942
#endif

/** @} */
943