BootloaderDFU.c 22.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*
             LUFA Library
     Copyright (C) Dean Camera, 2009.
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
  Copyright 2009  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, and distribute this software
  and its documentation for any purpose and without fee is hereby
  granted, provided that the above copyright notice appear in all
  copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
 */

#define  INCLUDE_FROM_BOOTLOADER_C
#include "BootloaderDFU.h"

/** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
 *  other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
 *  once a memory erase has completed.
 */
bool IsSecure      = SECURE_MODE;

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
 */
bool RunBootloader = true;

/** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
 *  jump to the application address it specifies, it sends two sequential commands which must be properly
53
 *  acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
 *  causing the bootloader to wait for the final exit command before shutting down.
 */
bool WaitForExit = false;

/** Current DFU state machine state, one of the values in the DFU_State_t enum. */
uint8_t DFU_State = dfuIDLE;

/** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
 *  each operation, and returned to the host when a Get Status DFU request is issued.
 */
uint8_t DFU_Status = OK;

/** Data containing the DFU command sent from the host. */
DFU_Command_t SentCommand;

/** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
 *  requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
 *  is issued by the host.
 */
uint8_t ResponseByte;

/** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
 *  may specify an alternate address when issuing the application soft-start command.
 */
AppPtr_t AppStartPtr = (AppPtr_t)0x0000;

/** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
 *  64KB of flash memory.
 */
uint8_t Flash64KBPage = 0;

/** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
 *  depending on the issued command from the host).
 */
uint16_t StartAddr = 0x0000;

/** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
 *  of EEPROM depending on the issued command from the host).
 */
uint16_t EndAddr = 0x0000;

/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously 
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main (void)
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

105
106
	/* Disable clock division */
	clock_prescale_set(clock_div_1);
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
	
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);

	/* Initialize the USB subsystem */
	USB_Init();

	/* Run the USB management task while the bootloader is supposed to be running */
	while (RunBootloader || WaitForExit)
	  USB_USBTask();
	
	/* Shut down the USB subsystem */
	USB_ShutDown();
	
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;

	/* Reset any used hardware ports back to their defaults */
	PORTD = 0;
	DDRD  = 0;
	
	#if defined(PORTE)
	PORTE = 0;
	DDRE  = 0;
	#endif
	
	/* Start the user application */
	AppStartPtr();
}

/** Event handler for the USB_Disconnect event. This indicates that the bootloader should exit and the user
 *  application started.
 */
EVENT_HANDLER(USB_Disconnect)
{
	/* Upon disconnection, run user application */
	RunBootloader = false;
}

/** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
 *  control requests that are not handled internally by the USB library (including the DFU commands, which are
 *  all issued via the control endpoint), so that they can be handled appropriately for the application.
 */
EVENT_HANDLER(USB_UnhandledControlPacket)
{
	/* Discard unused wIndex value */
	Endpoint_Discard_Word();
	
	/* Discard unused wValue value */
	Endpoint_Discard_Word();

	/* Get the size of the command and data from the wLength value */
	SentCommand.DataSize = Endpoint_Read_Word_LE();

	switch (bRequest)
	{
		case DFU_DNLOAD:
166
			Endpoint_ClearControlSETUP();
167
168
169
170
171
172
173
174
175
176
177
178
179
180
			
			/* Check if bootloader is waiting to terminate */
			if (WaitForExit)
			{
				/* Bootloader is terminating - process last received command */
				ProcessBootloaderCommand();
				
				/* Indicate that the last command has now been processed - free to exit bootloader */
				WaitForExit = false;
			}
			  
			/* If the request has a data stage, load it into the command struct */
			if (SentCommand.DataSize)
			{
181
				while (!(Endpoint_IsOUTReceived()));
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

				/* First byte of the data stage is the DNLOAD request's command */
				SentCommand.Command = Endpoint_Read_Byte();
					
				/* One byte of the data stage is the command, so subtract it from the total data bytes */
				SentCommand.DataSize--;
				
				/* Load in the rest of the data stage as command parameters */
				for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
				     Endpoint_BytesInEndpoint(); DataByte++)
				{
					SentCommand.Data[DataByte] = Endpoint_Read_Byte();
					SentCommand.DataSize--;
				}
				
				/* Process the command */
				ProcessBootloaderCommand();
			}
			
			/* Check if currently downloading firmware */
			if (DFU_State == dfuDNLOAD_IDLE)
			{									
				if (!(SentCommand.DataSize))
				{
					DFU_State = dfuIDLE;
				}
				else
				{
					/* Throw away the filler bytes before the start of the firmware */
					DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);

					/* Throw away the page alignment filler bytes before the start of the firmware */
					DiscardFillerBytes(StartAddr % SPM_PAGESIZE);
					
					/* Calculate the number of bytes remaining to be written */
					uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
					
					if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))        // Write flash
					{
						/* Calculate the number of words to be written from the number of bytes to be written */
						uint16_t WordsRemaining = (BytesRemaining >> 1);
					
						union
						{
							uint16_t Words[2];
							uint32_t Long;
228
						} CurrFlashAddress                 = {.Words = {StartAddr, Flash64KBPage}};
229
230
231
232
233
234
235
236
237
						
						uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
						uint8_t  WordsInFlashPage          = 0;

						while (WordsRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
238
239
								Endpoint_ClearControlOUT();
								while (!(Endpoint_IsOUTReceived()));
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
							}

							/* Write the next word into the current flash page */
							boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());

							/* Adjust counters */
							WordsInFlashPage      += 1;
							CurrFlashAddress.Long += 2;

							/* See if an entire page has been written to the flash page buffer */
							if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
							{
								/* Commit the flash page to memory */
								boot_page_write(CurrFlashPageStartAddress);
								boot_spm_busy_wait();
								
								/* Check if programming incomplete */
								if (WordsRemaining)
								{
									CurrFlashPageStartAddress = CurrFlashAddress.Long;
									WordsInFlashPage          = 0;

									/* Erase next page's temp buffer */
									boot_page_erase(CurrFlashAddress.Long);
									boot_spm_busy_wait();
								}
							}
						}
					
						/* Once programming complete, start address equals the end address */
						StartAddr = EndAddr;
					
						/* Re-enable the RWW section of flash */
						boot_rww_enable();
					}
					else                                                   // Write EEPROM
					{
						while (BytesRemaining--)
						{
							/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
							if (!(Endpoint_BytesInEndpoint()))
							{
282
283
								Endpoint_ClearControlOUT();
								while (!(Endpoint_IsOUTReceived()));
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
							}

							/* Read the byte from the USB interface and write to to the EEPROM */
							eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
							
							/* Adjust counters */
							StartAddr++;
						}
					}
					
					/* Throw away the currently unused DFU file suffix */
					DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
				}
			}

299
			Endpoint_ClearControlOUT();
300

301
			/* Acknowledge status stage */
302
303
			while (!(Endpoint_IsINReady()));
			Endpoint_ClearControlIN();
304
305
306
				
			break;
		case DFU_UPLOAD:
307
			Endpoint_ClearControlSETUP();
308

309
			while (!(Endpoint_IsINReady()));
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

			if (DFU_State != dfuUPLOAD_IDLE)
			{
				if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))       // Blank Check
				{
					/* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
					   that the memory isn't blank, and the host is requesting the first non-blank address */
					Endpoint_Write_Word_LE(StartAddr);
				}
				else
				{
					/* Idle state upload - send response to last issued command */
					Endpoint_Write_Byte(ResponseByte);
				}
			}
			else
			{
				/* Determine the number of bytes remaining in the current block */
				uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);

				if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))            // Read FLASH
				{
					/* Calculate the number of words to be written from the number of bytes to be written */
					uint16_t WordsRemaining = (BytesRemaining >> 1);

					union
					{
						uint16_t Words[2];
						uint32_t Long;
339
					} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
340
341
342
343
344
345

					while (WordsRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
346
347
							Endpoint_ClearControlIN();
							while (!(Endpoint_IsINReady()));
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
						}

						/* Read the flash word and send it via USB to the host */
						#if defined(RAMPZ)
							Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
						#else
							Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));							
						#endif

						/* Adjust counters */
						CurrFlashAddress.Long += 2;
					}
					
					/* Once reading is complete, start address equals the end address */
					StartAddr = EndAddr;
				}
				else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))       // Read EEPROM
				{
					while (BytesRemaining--)
					{
						/* Check if endpoint is full - if so clear it and wait until ready for next packet */
						if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
						{
371
372
							Endpoint_ClearControlIN();
							while (!(Endpoint_IsINReady()));
373
374
375
376
377
378
379
380
381
382
383
384
385
386
						}

						/* Read the EEPROM byte and send it via USB to the host */
						Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));

						/* Adjust counters */
						StartAddr++;
					}
				}

				/* Return to idle state */
				DFU_State = dfuIDLE;
			}

387
			Endpoint_ClearControlIN();
388

389
			/* Acknowledge status stage */
390
391
			while (!(Endpoint_IsOUTReceived()));
			Endpoint_ClearControlOUT();
392
393
394

			break;
		case DFU_GETSTATUS:
395
			Endpoint_ClearControlSETUP();
396
397
398
399
400
401
402
403
404
405
406
407
408
409
			
			/* Write 8-bit status value */
			Endpoint_Write_Byte(DFU_Status);
			
			/* Write 24-bit poll timeout value */
			Endpoint_Write_Byte(0);
			Endpoint_Write_Word_LE(0);
			
			/* Write 8-bit state value */
			Endpoint_Write_Byte(DFU_State);

			/* Write 8-bit state string ID number */
			Endpoint_Write_Byte(0);

410
			Endpoint_ClearControlIN();
411
			
412
			/* Acknowledge status stage */
413
414
			while (!(Endpoint_IsOUTReceived()));
			Endpoint_ClearControlOUT();
415
416
417
	
			break;		
		case DFU_CLRSTATUS:
418
			Endpoint_ClearControlSETUP();
419
420
421
422
			
			/* Reset the status value variable to the default OK status */
			DFU_Status = OK;

423
			/* Acknowledge status stage */
424
425
			while (!(Endpoint_IsINReady()));
			Endpoint_ClearControlIN();
426
			
427
428
			break;
		case DFU_GETSTATE:
429
			Endpoint_ClearControlSETUP();
430
431
432
433
			
			/* Write the current device state to the endpoint */
			Endpoint_Write_Byte(DFU_State);
		
434
			Endpoint_ClearControlIN();
435
			
436
			/* Acknowledge status stage */
437
438
			while (!(Endpoint_IsOUTReceived()));
			Endpoint_ClearControlOUT();
439
440
441

			break;
		case DFU_ABORT:
442
			Endpoint_ClearControlSETUP();
443
444
445
446
			
			/* Reset the current state variable to the default idle state */
			DFU_State = dfuIDLE;
			
447
			/* Acknowledge status stage */
448
449
			while (!(Endpoint_IsINReady()));
			Endpoint_ClearControlIN();
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

			break;
	}
}

/** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
 *  discard unused bytes in the stream from the host, including the memory program block suffix.
 *
 *  \param NumberOfBytes  Number of bytes to discard from the host from the control endpoint
 */
static void DiscardFillerBytes(uint8_t NumberOfBytes)
{
	while (NumberOfBytes--)
	{
		if (!(Endpoint_BytesInEndpoint()))
		{
466
			Endpoint_ClearControlOUT();
467
468

			/* Wait until next data packet received */
469
			while (!(Endpoint_IsOUTReceived()));
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
		}

		Endpoint_Discard_Byte();						
	}
}

/** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
 *  that the command is allowed based on the current secure mode flag value, and passes the command off to the
 *  appropriate handler function.
 */
static void ProcessBootloaderCommand(void)
{
	/* Check if device is in secure mode */
	if (IsSecure)
	{
		/* Don't process command unless it is a READ or chip erase command */
		if (!(((SentCommand.Command == COMMAND_WRITE)             &&
		        IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
			   (SentCommand.Command == COMMAND_READ)))
		{
			/* Set the state and status variables to indicate the error */
			DFU_State  = dfuERROR;
			DFU_Status = errWRITE;
			
			/* Stall command */
			Endpoint_StallTransaction();
			
			/* Don't process the command */
			return;
		}
	}

	/* Dispatch the required command processing routine based on the command type */
	switch (SentCommand.Command)
	{
		case COMMAND_PROG_START:
			ProcessMemProgCommand();
			break;
		case COMMAND_DISP_DATA:
			ProcessMemReadCommand();
			break;
		case COMMAND_WRITE:
			ProcessWriteCommand();
			break;
		case COMMAND_READ:
			ProcessReadCommand();
			break;
		case COMMAND_CHANGE_BASE_ADDR:
			if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00))              // Set 64KB flash page command
			  Flash64KBPage = SentCommand.Data[2];

			break;
	}
}

/** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
 *  in the StartAddr and EndAddr global variables.
 */
static void LoadStartEndAddresses(void)
{
	union
	{
		uint8_t  Bytes[2];
		uint16_t Word;
534
535
	} Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
	                {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
536
537
538
539
540
541
		
	/* Load in the start and ending read addresses from the sent data packet */
	StartAddr = Address[0].Word;
	EndAddr   = Address[1].Word;
}

542
/** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
 *  to write subsequent data from the host into the specified memory.
 */
static void ProcessMemProgCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Write FLASH command
	    IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                            // Write EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();
		
		/* If FLASH is being written to, we need to pre-erase the first page to write to */
		if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
		{
			union
			{
				uint16_t Words[2];
				uint32_t Long;
560
			} CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
561
562
563
564
565
566
567
568
569
570
571
			
			/* Erase the current page's temp buffer */
			boot_page_erase(CurrFlashAddress.Long);
			boot_spm_busy_wait();
		}
		
		/* Set the state so that the next DNLOAD requests reads in the firmware */
		DFU_State = dfuDNLOAD_IDLE;
	}
}

572
/** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
 *  to read subsequent data from the specified memory out to the host, as well as implementing the memory
 *  blank check command.
 */
static void ProcessMemReadCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) ||                          // Read FLASH command
        IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02))                            // Read EEPROM command
	{
		/* Load in the start and ending read addresses */
		LoadStartEndAddresses();

		/* Set the state so that the next UPLOAD requests read out the firmware */
		DFU_State = dfuUPLOAD_IDLE;
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                       // Blank check FLASH command
	{
		uint32_t CurrFlashAddress = 0;

		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			/* Check if the current byte is not blank */
			#if defined(RAMPZ)
			if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
			#else
			if (pgm_read_byte(CurrFlashAddress) != 0xFF)
			#endif
			{
				/* Save the location of the first non-blank byte for response back to the host */
				Flash64KBPage = (CurrFlashAddress >> 16);
				StartAddr     = CurrFlashAddress;
			
				/* Set state and status variables to the appropriate error values */
				DFU_State  = dfuERROR;
				DFU_Status = errCHECK_ERASED;

				break;
			}

			CurrFlashAddress++;
		}
	}
}

/** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
 *  bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
 */
static void ProcessWriteCommand(void)
{
	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03))                            // Start application
	{
		/* Indicate that the bootloader is terminating */
		WaitForExit = true;

		/* Check if empty request data array - an empty request after a filled request retains the
		   previous valid request data, but initializes the reset */
		if (!(SentCommand.DataSize))
		{
			if (SentCommand.Data[1] == 0x00)                                   // Start via watchdog
			{
				/* Start the watchdog to reset the AVR once the communications are finalized */
				wdt_enable(WDTO_250MS);
			}
			else                                                               // Start via jump
			{
				/* Load in the jump address into the application start address pointer */
				union
				{
					uint8_t  Bytes[2];
					AppPtr_t FuncPtr;
642
				} Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

				AppStartPtr = Address.FuncPtr;
				
				/* Set the flag to terminate the bootloader at next opportunity */
				RunBootloader = false;
			}
		}
	}
	else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF))                 // Erase flash
	{
		uint32_t CurrFlashAddress = 0;

		/* Clear the application section of flash */
		while (CurrFlashAddress < BOOT_START_ADDR)
		{
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();

			CurrFlashAddress += SPM_PAGESIZE;
		}

		/* Re-enable the RWW section of flash as writing to the flash locks it out */
		boot_rww_enable();
					
		/* Memory has been erased, reset the security bit so that programming/reading is allowed */
		IsSecure = false;
	}
}

/** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
 *  commands such as device signature and bootloader version retrieval.
 */
static void ProcessReadCommand(void)
{
	const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
680
	const uint8_t SignatureInfo[3]  = {SIGNATURE_0, SIGNATURE_1, SIGNATURE_2};
681
682
683
684
685
686
687
688
689
690
691
692

	uint8_t DataIndexToRead = SentCommand.Data[1];

	if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))                         // Read bootloader info
	{
		ResponseByte = BootloaderInfo[DataIndexToRead];
	}
	else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01))                    // Read signature byte
	{
		ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
	}
}