ISPTarget.c 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/*
             LUFA Library
     Copyright (C) Dean Camera, 2010.
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
  Copyright 2010  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this 
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in 
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting 
  documentation, and that the name of the author not be used in 
  advertising or publicity pertaining to distribution of the 
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Target-related functions for the ISP Protocol decoder.
 */

#include "ISPTarget.h"

#if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)

40
41
42
43
/** List of hardware SPI prescaler masks for possible AVRStudio ISP programming speeds.
 *
 *  \hideinitializer
 */
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
static uint8_t SPIMaskFromSCKDuration[] PROGMEM =
{
#if (F_CPU == 8000000)
	SPI_SPEED_FCPU_DIV_2,    // AVRStudio =   8MHz SPI, Actual =   4MHz SPI
	SPI_SPEED_FCPU_DIV_2,    // AVRStudio =   4MHz SPI, Actual =   4MHz SPI
	SPI_SPEED_FCPU_DIV_4,    // AVRStudio =   2MHz SPI, Actual =   2MHz SPI
	SPI_SPEED_FCPU_DIV_8,    // AVRStudio =   1MHz SPI, Actual =   1MHz SPI
	SPI_SPEED_FCPU_DIV_16,   // AVRStudio = 500KHz SPI, Actual = 500KHz SPI
	SPI_SPEED_FCPU_DIV_32,   // AVRStudio = 250KHz SPI, Actual = 250KHz SPI
	SPI_SPEED_FCPU_DIV_64,   // AVRStudio = 125KHz SPI, Actual = 125KHz SPI
#elif (F_CPU == 16000000)
	SPI_SPEED_FCPU_DIV_2,    // AVRStudio =   8MHz SPI, Actual =   8MHz SPI
	SPI_SPEED_FCPU_DIV_4,    // AVRStudio =   4MHz SPI, Actual =   4MHz SPI
	SPI_SPEED_FCPU_DIV_8,    // AVRStudio =   2MHz SPI, Actual =   2MHz SPI
	SPI_SPEED_FCPU_DIV_16,   // AVRStudio =   1MHz SPI, Actual =   1MHz SPI
	SPI_SPEED_FCPU_DIV_32,   // AVRStudio = 500KHz SPI, Actual = 500KHz SPI
	SPI_SPEED_FCPU_DIV_64,   // AVRStudio = 250KHz SPI, Actual = 250KHz SPI
	SPI_SPEED_FCPU_DIV_128   // AVRStudio = 125KHz SPI, Actual = 125KHz SPI
#else
	#error No SPI prescaler masks for chosen F_CPU speed.
#endif
};

67
68
69
70
/** Lookup table to convert the slower ISP speeds into a compare value for the software SPI driver.
 *
 *  \hideinitializer
 */
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
static uint16_t TimerCompareFromSCKDuration[] PROGMEM =
{
	TIMER_COMP(96386), TIMER_COMP(89888), TIMER_COMP(84211), TIMER_COMP(79208), TIMER_COMP(74767),
	TIMER_COMP(70797), TIMER_COMP(67227), TIMER_COMP(64000), TIMER_COMP(61069), TIMER_COMP(58395),
	TIMER_COMP(55945), TIMER_COMP(51613), TIMER_COMP(49690), TIMER_COMP(47905), TIMER_COMP(46243),
	TIMER_COMP(43244), TIMER_COMP(41885), TIMER_COMP(39409), TIMER_COMP(38278), TIMER_COMP(36200),
	TIMER_COMP(34335), TIMER_COMP(32654), TIMER_COMP(31129), TIMER_COMP(29740), TIMER_COMP(28470),
	TIMER_COMP(27304), TIMER_COMP(25724), TIMER_COMP(24768), TIMER_COMP(23461), TIMER_COMP(22285),
	TIMER_COMP(21221), TIMER_COMP(20254), TIMER_COMP(19371), TIMER_COMP(18562), TIMER_COMP(17583),
	TIMER_COMP(16914), TIMER_COMP(16097), TIMER_COMP(15356), TIMER_COMP(14520), TIMER_COMP(13914),
	TIMER_COMP(13224), TIMER_COMP(12599), TIMER_COMP(12031), TIMER_COMP(11511), TIMER_COMP(10944),
	TIMER_COMP(10431), TIMER_COMP(9963),  TIMER_COMP(9468),  TIMER_COMP(9081),  TIMER_COMP(8612),
	TIMER_COMP(8239),  TIMER_COMP(7851),  TIMER_COMP(7498),  TIMER_COMP(7137),  TIMER_COMP(6809),
	TIMER_COMP(6478),  TIMER_COMP(6178),  TIMER_COMP(5879),  TIMER_COMP(5607),  TIMER_COMP(5359),
	TIMER_COMP(5093),  TIMER_COMP(4870),  TIMER_COMP(4633),  TIMER_COMP(4418),  TIMER_COMP(4209),
	TIMER_COMP(4019),  TIMER_COMP(3823),  TIMER_COMP(3645),  TIMER_COMP(3474),  TIMER_COMP(3310),
	TIMER_COMP(3161),  TIMER_COMP(3011),  TIMER_COMP(2869),  TIMER_COMP(2734),  TIMER_COMP(2611),
	TIMER_COMP(2484),  TIMER_COMP(2369),  TIMER_COMP(2257),  TIMER_COMP(2152),  TIMER_COMP(2052),
	TIMER_COMP(1956),  TIMER_COMP(1866),  TIMER_COMP(1779),  TIMER_COMP(1695),  TIMER_COMP(1615),
	TIMER_COMP(1539),  TIMER_COMP(1468),  TIMER_COMP(1398),  TIMER_COMP(1333),  TIMER_COMP(1271),
	TIMER_COMP(1212),  TIMER_COMP(1155),  TIMER_COMP(1101),  TIMER_COMP(1049),  TIMER_COMP(1000),
	TIMER_COMP(953),   TIMER_COMP(909),   TIMER_COMP(866),   TIMER_COMP(826),   TIMER_COMP(787),
	TIMER_COMP(750),   TIMER_COMP(715),   TIMER_COMP(682),   TIMER_COMP(650),   TIMER_COMP(619),
	TIMER_COMP(590),   TIMER_COMP(563),   TIMER_COMP(536),   TIMER_COMP(511),   TIMER_COMP(487),
	TIMER_COMP(465),   TIMER_COMP(443),   TIMER_COMP(422),   TIMER_COMP(402),   TIMER_COMP(384),
	TIMER_COMP(366),   TIMER_COMP(349),   TIMER_COMP(332),   TIMER_COMP(317),   TIMER_COMP(302),
	TIMER_COMP(288),   TIMER_COMP(274),   TIMER_COMP(261),   TIMER_COMP(249),   TIMER_COMP(238),
	TIMER_COMP(226),   TIMER_COMP(216),   TIMER_COMP(206),   TIMER_COMP(196),   TIMER_COMP(187),
	TIMER_COMP(178),   TIMER_COMP(170),   TIMER_COMP(162),   TIMER_COMP(154),   TIMER_COMP(147),
	TIMER_COMP(140),   TIMER_COMP(134),   TIMER_COMP(128),   TIMER_COMP(122),   TIMER_COMP(116),
	TIMER_COMP(111),   TIMER_COMP(105),   TIMER_COMP(100),   TIMER_COMP(95.4),  TIMER_COMP(90.9),
	TIMER_COMP(86.6),  TIMER_COMP(82.6),  TIMER_COMP(78.7),  TIMER_COMP(75.0),  TIMER_COMP(71.5),
	TIMER_COMP(68.2),  TIMER_COMP(65.0),  TIMER_COMP(61.9),  TIMER_COMP(59.0),  TIMER_COMP(56.3),
	TIMER_COMP(53.6),  TIMER_COMP(51.1)
};

/** Currently selected SPI driver, either hardware (for fast ISP speeds) or software (for slower ISP speeds). */
bool HardwareSPIMode = true;

/** Software SPI data register for sending and receiving */
volatile uint8_t SoftSPI_Data;

/** Number of bits left to transfer in the software SPI driver */
volatile uint8_t SoftSPI_BitsRemaining;


/** ISR to handle software SPI transmission and reception */
ISR(TIMER1_COMPA_vect, ISR_BLOCK)
{
	if (!(PINB & (1 << 1)))
	{
		if (SoftSPI_Data & 0x80)
		  PORTB |=  (1 << 2);
		else
		  PORTB &= ~(1 << 2);
	}
	else
	{
		SoftSPI_Data <<= 1;

		if (!(SoftSPI_BitsRemaining--))
		  TCCR1B = 0;

		if (PINB & (1 << 3))
		  SoftSPI_Data |= 0x01;	
	}

	PORTB ^= (1 << 1);	
}

141
/** Initialises the appropriate SPI driver (hardware or software, depending on the selected ISP speed) ready for
142
 *  communication with the attached target.
143
 */
144
void ISPTarget_Init(void)
145
146
147
{
	uint8_t SCKDuration = V2Params_GetParameterValue(PARAM_SCK_DURATION);

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
	if (SCKDuration < sizeof(SPIMaskFromSCKDuration))
	{
		HardwareSPIMode = true;

		SPI_Init(pgm_read_byte(&SPIMaskFromSCKDuration[SCKDuration]) | SPI_ORDER_MSB_FIRST |
		                       SPI_SCK_LEAD_RISING | SPI_SAMPLE_LEADING | SPI_MODE_MASTER);
	}
	else
	{
		HardwareSPIMode = false;
		
		DDRB  |= ((1 << 1) | (1 << 2));
		PORTB |= ((1 << 0) | (1 << 3));

		TIMSK1 = (1 << OCIE1A);
		OCR1A  = pgm_read_word(&TimerCompareFromSCKDuration[SCKDuration - sizeof(SPIMaskFromSCKDuration)]);
	}
}

/** Shuts down the current selected SPI driver (hardware or software, depending on the selected ISP speed) so that no
 *  further communications can occur until the driver is re-initialized.
 */
void ISPTarget_ShutDown(void)
{
	if (HardwareSPIMode)
	{
		SPI_ShutDown();
	}
	else
	{
		DDRB  &= ~((1 << 1) | (1 << 2));
		PORTB &= ~((1 << 0) | (1 << 3));	
	}
}

/** Sends and receives a single byte of data to and from the attached target via software SPI.
 *
 *  \param[in] Byte  Byte of data to send to the attached target
 *
 *  \return Received byte of data from the attached target
 */
uint8_t ISPTarget_TransferSoftSPIByte(const uint8_t Byte)
{
	SoftSPI_Data          = Byte;
	SoftSPI_BitsRemaining = 8;

	if (SoftSPI_Data & 0x01)
	  PORTB |=  (1 << 2);
	else
	  PORTB &= ~(1 << 2);

	TCNT1  = 0;
	TCCR1B = ((1 << WGM12) | (1 << CS11));
	while (SoftSPI_BitsRemaining && TimeoutTicksRemaining);
	TCCR1B = 0;
	
	return SoftSPI_Data;
205
206
207
208
209
}

/** Asserts or deasserts the target's reset line, using the correct polarity as set by the host using a SET PARAM command.
 *  When not asserted, the line is tristated so as not to interfere with normal device operation.
 *
210
 *  \param[in] ResetTarget  Boolean true when the target should be held in reset, false otherwise
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
 */
void ISPTarget_ChangeTargetResetLine(const bool ResetTarget)
{
	if (ResetTarget)
	{
		AUX_LINE_DDR |= AUX_LINE_MASK;
		
		if (!(V2Params_GetParameterValue(PARAM_RESET_POLARITY)))
		  AUX_LINE_PORT |= AUX_LINE_MASK;
	}
	else
	{
		AUX_LINE_DDR  &= ~AUX_LINE_MASK;
		AUX_LINE_PORT &= ~AUX_LINE_MASK;
	}
}

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/** Waits until the target has completed the last operation, by continuously polling the device's
 *  BUSY flag until it is cleared, or until the command timeout period has expired.
 *
 *  \return V2 Protocol status \ref STATUS_CMD_OK if the no timeout occurred, \ref STATUS_RDY_BSY_TOUT otherwise
 */
uint8_t ISPTarget_WaitWhileTargetBusy(void)
{
	do
	{
		ISPTarget_SendByte(0xF0);
		ISPTarget_SendByte(0x00);
		ISPTarget_SendByte(0x00);
	}
	while ((ISPTarget_ReceiveByte() & 0x01) && TimeoutTicksRemaining);

	return TimeoutTicksRemaining ? STATUS_CMD_OK : STATUS_RDY_BSY_TOUT;
}

/** Sends a low-level LOAD EXTENDED ADDRESS command to the target, for addressing of memory beyond the
 *  64KB boundary. This sends the command with the correct address as indicated by the current address
 *  pointer variable set by the host when a SET ADDRESS command is issued.
 */
void ISPTarget_LoadExtendedAddress(void)
{
	ISPTarget_SendByte(LOAD_EXTENDED_ADDRESS_CMD);
	ISPTarget_SendByte(0x00);
	ISPTarget_SendByte((CurrentAddress & 0x00FF0000) >> 16);
	ISPTarget_SendByte(0x00);	
}

258
259
260
261
/** Waits until the last issued target memory programming command has completed, via the check mode given and using
 *  the given parameters.
 *
 *  \param[in] ProgrammingMode  Programming mode used and completion check to use, a mask of PROG_MODE_* constants
262
263
264
265
 *  \param[in] PollAddress      Memory address to poll for completion if polling check mode used
 *  \param[in] PollValue        Poll value to check against if polling check mode used
 *  \param[in] DelayMS          Milliseconds to delay before returning if delay check mode used
 *  \param[in] ReadMemCommand   Device low-level READ MEMORY command to send if value check mode used
266
267
268
269
 *
 *  \return V2 Protocol status \ref STATUS_CMD_OK if the no timeout occurred, \ref STATUS_RDY_BSY_TOUT or
 *          \ref STATUS_CMD_TOUT otherwise
 */
270
271
272
273
274
uint8_t ISPTarget_WaitForProgComplete(const uint8_t ProgrammingMode,
                                      const uint16_t PollAddress,
                                      const uint8_t PollValue,
                                      const uint8_t DelayMS,
                                      const uint8_t ReadMemCommand)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
{
	uint8_t ProgrammingStatus  = STATUS_CMD_OK;

	/* Determine method of Programming Complete check */
	switch (ProgrammingMode & ~(PROG_MODE_PAGED_WRITES_MASK | PROG_MODE_COMMIT_PAGE_MASK))
	{
		case PROG_MODE_WORD_TIMEDELAY_MASK:
		case PROG_MODE_PAGED_TIMEDELAY_MASK:
			ISPProtocol_DelayMS(DelayMS);
			break;
		case PROG_MODE_WORD_VALUE_MASK:
		case PROG_MODE_PAGED_VALUE_MASK:
			do
			{
289
290
291
				ISPTarget_SendByte(ReadMemCommand);
				ISPTarget_SendByte(PollAddress >> 8);
				ISPTarget_SendByte(PollAddress & 0xFF);
292
			}
293
			while ((ISPTarget_TransferByte(0x00) == PollValue) && TimeoutTicksRemaining);
294

295
			if (!(TimeoutTicksRemaining))
296
297
298
299
300
301
302
303
304
305
306
307
308
			 ProgrammingStatus = STATUS_CMD_TOUT;
			
			break;		
		case PROG_MODE_WORD_READYBUSY_MASK:
		case PROG_MODE_PAGED_READYBUSY_MASK:
			ProgrammingStatus = ISPTarget_WaitWhileTargetBusy();
			break;
	}

	return ProgrammingStatus;
}

#endif