BootloaderCDC.c 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
/*
             LUFA Library
     Copyright (C) Dean Camera, 2009.
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
  Copyright 2009  Dean Camera (dean [at] fourwalledcubicle [dot] com)

12
13
14
15
16
17
18
  Permission to use, copy, modify, distribute, and sell this 
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in 
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting 
  documentation, and that the name of the author not be used in 
  advertising or publicity pertaining to distribution of the 
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
 
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

/** Line coding options for the virtual serial port. Although the virtual serial port data is never
 *  sent through a physical serial port, the line encoding data must still be read and preserved from
 *  the host, or the host will detect a problem and fail to open the port. This structure contains the
 *  current encoding options, including baud rate, character format, parity mode and total number of 
 *  bits in each data chunk.
 */
45
46
47
48
CDC_Line_Coding_t LineCoding = { .BaudRateBPS = 9600,
                                 .CharFormat  = OneStopBit,
                                 .ParityType  = Parity_None,
                                 .DataBits    = 8            };
49
50
51
52
53

/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
54
uint32_t CurrAddress;
55
56
57
58
59
60
61
62
63
64
65
66
67

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000.
 */
bool RunBootloader = true;


/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously 
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
	
	/* Reset all configured hardware to their default states for the user app */
	ResetHardware();

	/* Start the user application */
	AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
	AppStartPtr();	
}

/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
88
89
90
91
92
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

93
94
	/* Disable clock division */
	clock_prescale_set(clock_div_1);
95
96
97
98
99
100
101
	
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
	
	/* Initialize USB Subsystem */
	USB_Init();
102
}
103

104
105
106
/** Resets all configured hardware required for the bootloader back to their original states. */
void ResetHardware(void)
{
107
108
109
110
111
112
113
114
115
116
117
118
119
120
	/* Shut down the USB subsystem */
	USB_ShutDown();
	
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;

	/* Re-enable RWW section */
	boot_rww_enable();
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
121
void EVENT_USB_Device_ConfigurationChanged(void)
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
		                       ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);
}

137
/** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
138
139
140
 *  control requests that are not handled internally by the USB library, so that they can be handled appropriately
 *  for the application.
 */
141
void EVENT_USB_Device_UnhandledControlRequest(void)
142
143
144
145
{
	uint8_t* LineCodingData = (uint8_t*)&LineCoding;

	/* Process CDC specific control requests */
146
	switch (USB_ControlRequest.bRequest)
147
148
	{
		case REQ_GetLineEncoding:
149
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
150
			{
151
				Endpoint_ClearSETUP();
152
153
154
155

				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  Endpoint_Write_Byte(*(LineCodingData++));	
				
156
				Endpoint_ClearIN();
157
				
158
				Endpoint_ClearStatusStage();
159
160
161
162
			}
			
			break;
		case REQ_SetLineEncoding:
163
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
164
			{
165
				Endpoint_ClearSETUP();
166

167
168
169
170
171
172
				while (!(Endpoint_IsOUTReceived()))
				{				
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}
			
173
174
175
				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  *(LineCodingData++) = Endpoint_Read_Byte();

176
				Endpoint_ClearOUT();
177

178
				Endpoint_ClearStatusStage();
179
180
181
182
			}
	
			break;
		case REQ_SetControlLineState:
183
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
184
			{
185
				Endpoint_ClearSETUP();
186
				
187
				Endpoint_ClearStatusStage();
188
189
190
191
192
193
194
195
196
			}
	
			break;
	}
}

/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
197
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
198
 */
199
static void ReadWriteMemoryBlock(const uint8_t Command)
200
201
202
203
204
205
206
207
208
209
210
211
{
	uint16_t BlockSize;
	char     MemoryType;
	
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
	
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
	
	MemoryType =  FetchNextCommandByte();

212
	if ((MemoryType != 'E') && (MemoryType != 'F'))
213
	{
214
215
216
217
218
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
		
		return;
	}
219

220
221
222
223
224
225
226
227
	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
228
			if (MemoryType == 'F')
229
230
			{
				/* Read the next FLASH byte from the current FLASH page */
231
				#if (FLASHEND > 0xFFFF)
232
233
234
235
236
237
238
239
240
241
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));					
				#endif
				
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
				
				HighByte = !HighByte;
242
			}
243
244
245
246
247
248
249
250
			else
			{
				/* Read the next EEPROM byte into the endpoint */
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(uint16_t)(CurrAddress >> 1)));

				/* Increment the address counter after use */
				CurrAddress += 2;
			}			
251
		}
252
253
254
255
256
257
258
259
260
261
262
263
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
		
		while (BlockSize--)
264
265
		{
			if (MemoryType == 'F')
266
267
268
			{	
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
269
				{
270
271
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
272
273

					/* Increment the address counter after use */
274
275
276
					CurrAddress += 2;

					HighByte = false;
277
278
				}
				else
279
280
281
282
				{
					LowByte = FetchNextCommandByte();
				
					HighByte = true;
283
284
				}
			}
285
			else
286
			{
287
288
289
290
291
				/* Write the next EEPROM byte from the endpoint */
				eeprom_write_byte((uint8_t*)(uint16_t)(CurrAddress >> 1), FetchNextCommandByte());					

				/* Increment the address counter after use */
				CurrAddress += 2;
292
293
			}
		}
294
295
296
297
298
299
300
301
302
303
304
305
306

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
	
		/* Send response byte back to the host */
		WriteNextResponseByte('\r');		
307
308
309
310
311
312
313
314
315
316
317
318
319
320
	}
}

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
321
	while (!(Endpoint_IsReadWriteAllowed()))
322
	{
323
		Endpoint_ClearOUT();
324
325
326
327
328
329

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
330
331
332
333
334
335
336
337
338
	}
	
	/* Fetch the next byte from the OUT endpoint */
	return Endpoint_Read_Byte();
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
339
 *  \param[in] Response  Next response byte to send to the host
340
341
342
343
344
345
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
	
346
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
347
	if (!(Endpoint_IsReadWriteAllowed()))
348
	{
349
		Endpoint_ClearIN();
350
351
352
353
354
355
		
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
356
357
358
359
360
361
362
363
364
	}
	
	/* Write the next byte to the OUT endpoint */
	Endpoint_Write_Byte(Response);
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
365
void CDC_Task(void)
366
367
368
369
370
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* Check if endpoint has a command in it sent from the host */
371
	if (Endpoint_IsOUTReceived())
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
	{
		/* Read in the bootloader command (first byte sent from host) */
		uint8_t Command = FetchNextCommandByte();

		if ((Command == 'L') || (Command == 'P') || (Command == 'T') || (Command == 'E'))
		{
			if (Command == 'E')
			  RunBootloader = false;
			if (Command == 'T')
			  FetchNextCommandByte();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');			
		}
		else if (Command == 't')
		{
			/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
			WriteNextResponseByte(0x44);

			WriteNextResponseByte(0x00);
		}
		else if (Command == 'a')
		{
			/* Indicate auto-address increment is supported */
			WriteNextResponseByte('Y');
		}
		else if (Command == 'A')
		{
			/* Set the current address to that given by the host */
401
402
			CurrAddress   = (FetchNextCommandByte() << 9);
			CurrAddress  |= (FetchNextCommandByte() << 1);
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'p')
		{
			/* Indicate serial programmer back to the host */
			WriteNextResponseByte('S');		 
		}
		else if (Command == 'S')
		{
			/* Write the 7-byte software identifier to the endpoint */
			for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
			  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);		
		}
		else if (Command == 'V')
		{
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
		}
		else if (Command == 's')
		{
425
426
427
			WriteNextResponseByte(AVR_SIGNATURE_3);		
			WriteNextResponseByte(AVR_SIGNATURE_2);
			WriteNextResponseByte(AVR_SIGNATURE_1);
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
		}
		else if (Command == 'b')
		{
			WriteNextResponseByte('Y');
				
			/* Send block size to the host */
			WriteNextResponseByte(SPM_PAGESIZE >> 8);
			WriteNextResponseByte(SPM_PAGESIZE & 0xFF);		
		}
		else if (Command == 'e')
		{
			/* Clear the application section of flash */
			for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress++)
			{
				boot_page_erase(CurrFlashAddress);
				boot_spm_busy_wait();
				boot_page_write(CurrFlashAddress);
				boot_spm_busy_wait();

				CurrFlashAddress += SPM_PAGESIZE;
			}
			
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'l')
		{
			/* Set the lock bits to those given by the host */
			boot_lock_bits_set(FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'r')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));		
		}
		else if (Command == 'F')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
		}
		else if (Command == 'N')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));		
		}
		else if (Command == 'Q')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));		
		}
477
478
		else if (Command == 'C')
		{			
479
			/* Write the high byte to the current flash page */
480
481
482
483
484
485
486
487
488
			boot_page_fill(CurrAddress, FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'c')
		{			
			/* Write the low byte to the current flash page */
			boot_page_fill(CurrAddress | 1, FetchNextCommandByte());
489
			
490
491
492
			/* Increment the address */
			CurrAddress += 2;

493
494
495
496
497
498
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'm')
		{
			/* Commit the flash page to memory */
499
			boot_page_write(CurrAddress);
500
501
502
503
504
505
506
507
508
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if ((Command == 'B') || (Command == 'g'))
		{
509
			/* Delegate the block write/read to a separate function for clarity */
510
			ReadWriteMemoryBlock(Command);
511
512
513
		}
		else if (Command == 'R')
		{
514
			#if (FLASHEND > 0xFFFF)
515
			uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
516
			#else
517
			uint16_t ProgramWord = pgm_read_word(CurrAddress);			
518
519
520
521
522
523
524
525
			#endif
			
			WriteNextResponseByte(ProgramWord >> 8);
			WriteNextResponseByte(ProgramWord & 0xFF);
		}
		else if (Command == 'D')
		{
			/* Read the byte from the endpoint and write it to the EEPROM */
526
			eeprom_write_byte((uint8_t*)((uint16_t)(CurrAddress >> 1)), FetchNextCommandByte());
527
528
			
			/* Increment the address after use */			
529
			CurrAddress += 2;
530
531
532
533
534
535
536
	
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'd')
		{
			/* Read the EEPROM byte and write it to the endpoint */
537
			WriteNextResponseByte(eeprom_read_byte((uint8_t*)((uint16_t)(CurrAddress >> 1))));
538
539

			/* Increment the address after use */
540
			CurrAddress += 2;
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
		}
		else if (Command == 27)
		{
			/* Escape is sync, ignore */
		}
		else
		{
			/* Unknown command, return fail code */
			WriteNextResponseByte('?');
		}

		/* Select the IN endpoint */
		Endpoint_SelectEndpoint(CDC_TX_EPNUM);

		/* Remember if the endpoint is completely full before clearing it */
556
		bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
557
558

		/* Send the endpoint data to the host */
559
		Endpoint_ClearIN();
560
561
562
563
		
		/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
		if (IsEndpointFull)
		{
564
565
566
567
568
569
			while (!(Endpoint_IsINReady()))
			{				
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

570
			Endpoint_ClearIN();
571
		}
572
573

		/* Wait until the data has been sent to the host */
574
575
576
577
578
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
579
580
581
582
583
		
		/* Select the OUT endpoint */
		Endpoint_SelectEndpoint(CDC_RX_EPNUM);

		/* Acknowledge the command from the host */
584
		Endpoint_ClearOUT();
585
586
	}
}