BootloaderCDC.c 17.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/*
             LUFA Library
     Copyright (C) Dean Camera, 2009.
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
  Copyright 2009  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, and distribute this software
  and its documentation for any purpose and without fee is hereby
  granted, provided that the above copyright notice appear in all
  copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
 
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

/* Globals: */
/** Line coding options for the virtual serial port. Although the virtual serial port data is never
 *  sent through a physical serial port, the line encoding data must still be read and preserved from
 *  the host, or the host will detect a problem and fail to open the port. This structure contains the
 *  current encoding options, including baud rate, character format, parity mode and total number of 
 *  bits in each data chunk.
 */
46
47
48
49
CDC_Line_Coding_t LineCoding = { .BaudRateBPS = 9600,
                                 .CharFormat  = OneStopBit,
                                 .ParityType  = Parity_None,
                                 .DataBits    = 8            };
50
51
52
53
54

/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
55
uint32_t CurrAddress;
56
57
58
59
60
61
62
63
64
65
66
67
68

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
 *  jumped to via an indirect jump to location 0x0000.
 */
bool RunBootloader = true;


/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously 
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
	
	/* Reset all configured hardware to their default states for the user app */
	ResetHardware();

	/* Start the user application */
	AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
	AppStartPtr();	
}

/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
89
90
91
92
93
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

94
95
	/* Disable clock division */
	clock_prescale_set(clock_div_1);
96
97
98
99
100
101
102
	
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
	
	/* Initialize USB Subsystem */
	USB_Init();
103
}
104

105
106
107
/** Resets all configured hardware required for the bootloader back to their original states. */
void ResetHardware(void)
{
108
109
110
111
112
113
114
115
116
117
118
119
120
121
	/* Shut down the USB subsystem */
	USB_ShutDown();
	
	/* Relocate the interrupt vector table back to the application section */
	MCUCR = (1 << IVCE);
	MCUCR = 0;

	/* Re-enable RWW section */
	boot_rww_enable();
}

/** Event handler for the USB_Disconnect event. This indicates that the bootloader should exit and the user
 *  application started.
 */
122
void EVENT_USB_Disconnect(void)
123
124
125
126
127
128
129
130
{
	/* Upon disconnection, run user application */
	RunBootloader = false;
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
131
void EVENT_USB_ConfigurationChanged(void)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
		                       ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);
}

/** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
 *  control requests that are not handled internally by the USB library, so that they can be handled appropriately
 *  for the application.
 */
151
void EVENT_USB_UnhandledControlPacket(void)
152
153
154
155
{
	uint8_t* LineCodingData = (uint8_t*)&LineCoding;

	/* Process CDC specific control requests */
156
	switch (USB_ControlRequest.bRequest)
157
158
	{
		case REQ_GetLineEncoding:
159
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
160
			{
161
				Endpoint_ClearSETUP();
162
163
164
165

				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  Endpoint_Write_Byte(*(LineCodingData++));	
				
166
				Endpoint_ClearIN();
167
				
168
				Endpoint_ClearStatusStage();
169
170
171
172
			}
			
			break;
		case REQ_SetLineEncoding:
173
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
174
			{
175
				Endpoint_ClearSETUP();
176

177
178
179
180
181
182
				while (!(Endpoint_IsOUTReceived()))
				{				
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}
			
183
184
185
				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  *(LineCodingData++) = Endpoint_Read_Byte();

186
				Endpoint_ClearOUT();
187

188
				Endpoint_ClearStatusStage();
189
190
191
192
			}
	
			break;
		case REQ_SetControlLineState:
193
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
194
			{
195
				Endpoint_ClearSETUP();
196
				
197
				Endpoint_ClearStatusStage();
198
199
200
201
202
203
204
205
206
			}
	
			break;
	}
}

/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
207
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
208
 */
209
static void ReadWriteMemoryBlock(const uint8_t Command)
210
211
212
213
214
215
216
217
218
219
220
221
{
	uint16_t BlockSize;
	char     MemoryType;
	
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
	
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
	
	MemoryType =  FetchNextCommandByte();

222
	if ((MemoryType != 'E') && (MemoryType != 'F'))
223
	{
224
225
226
227
228
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
		
		return;
	}
229

230
231
232
233
234
235
236
237
238
	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
			if (MemoryType == 'E')
239
			{
240
241
				/* Read the next EEPROM byte into the endpoint */
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(uint16_t)(CurrAddress >> 1)));
242

243
244
245
246
247
248
				/* Increment the address counter after use */
				CurrAddress += 2;
			}
			else
			{
				/* Read the next FLASH byte from the current FLASH page */
249
				#if (FLASHEND > 0xFFFF)
250
251
252
253
254
255
256
257
258
259
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));					
				#endif
				
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
				
				HighByte = !HighByte;
260
261
			}
		}
262
263
264
265
266
267
268
269
270
271
272
273
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
		
		while (BlockSize--)
274
275
		{
			if (MemoryType == 'F')
276
277
278
			{	
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
279
				{
280
281
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
282
283

					/* Increment the address counter after use */
284
285
286
					CurrAddress += 2;

					HighByte = false;
287
288
				}
				else
289
290
291
292
				{
					LowByte = FetchNextCommandByte();
				
					HighByte = true;
293
294
				}
			}
295
			else
296
			{
297
298
299
300
301
				/* Write the next EEPROM byte from the endpoint */
				eeprom_write_byte((uint8_t*)(uint16_t)(CurrAddress >> 1), FetchNextCommandByte());					

				/* Increment the address counter after use */
				CurrAddress += 2;
302
303
			}
		}
304
305
306
307
308
309
310
311
312
313
314
315
316

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
	
		/* Send response byte back to the host */
		WriteNextResponseByte('\r');		
317
318
319
320
321
322
323
324
325
326
327
328
329
330
	}
}

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
331
	while (!(Endpoint_IsReadWriteAllowed()))
332
	{
333
		Endpoint_ClearOUT();
334
335
336
337
338
339

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
340
341
342
343
344
345
346
347
348
	}
	
	/* Fetch the next byte from the OUT endpoint */
	return Endpoint_Read_Byte();
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
349
 *  \param[in] Response  Next response byte to send to the host
350
351
352
353
354
355
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
	
356
	/* If IN endpoint full, clear it and wait util ready for the next packet to the host */
357
	if (!(Endpoint_IsReadWriteAllowed()))
358
	{
359
		Endpoint_ClearIN();
360
361
362
363
364
365
		
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
366
367
368
369
370
371
372
373
374
	}
	
	/* Write the next byte to the OUT endpoint */
	Endpoint_Write_Byte(Response);
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
375
void CDC_Task(void)
376
377
378
379
380
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* Check if endpoint has a command in it sent from the host */
381
	if (Endpoint_IsOUTReceived())
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
	{
		/* Read in the bootloader command (first byte sent from host) */
		uint8_t Command = FetchNextCommandByte();

		if ((Command == 'L') || (Command == 'P') || (Command == 'T') || (Command == 'E'))
		{
			if (Command == 'E')
			  RunBootloader = false;
			if (Command == 'T')
			  FetchNextCommandByte();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');			
		}
		else if (Command == 't')
		{
			/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
			WriteNextResponseByte(0x44);

			WriteNextResponseByte(0x00);
		}
		else if (Command == 'a')
		{
			/* Indicate auto-address increment is supported */
			WriteNextResponseByte('Y');
		}
		else if (Command == 'A')
		{
			/* Set the current address to that given by the host */
411
412
			CurrAddress   = (FetchNextCommandByte() << 9);
			CurrAddress  |= (FetchNextCommandByte() << 1);
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'p')
		{
			/* Indicate serial programmer back to the host */
			WriteNextResponseByte('S');		 
		}
		else if (Command == 'S')
		{
			/* Write the 7-byte software identifier to the endpoint */
			for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
			  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);		
		}
		else if (Command == 'V')
		{
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
		}
		else if (Command == 's')
		{
435
436
437
			WriteNextResponseByte(AVR_SIGNATURE_3);		
			WriteNextResponseByte(AVR_SIGNATURE_2);
			WriteNextResponseByte(AVR_SIGNATURE_1);
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
		}
		else if (Command == 'b')
		{
			WriteNextResponseByte('Y');
				
			/* Send block size to the host */
			WriteNextResponseByte(SPM_PAGESIZE >> 8);
			WriteNextResponseByte(SPM_PAGESIZE & 0xFF);		
		}
		else if (Command == 'e')
		{
			/* Clear the application section of flash */
			for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress++)
			{
				boot_page_erase(CurrFlashAddress);
				boot_spm_busy_wait();
				boot_page_write(CurrFlashAddress);
				boot_spm_busy_wait();

				CurrFlashAddress += SPM_PAGESIZE;
			}
			
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'l')
		{
			/* Set the lock bits to those given by the host */
			boot_lock_bits_set(FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'r')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));		
		}
		else if (Command == 'F')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
		}
		else if (Command == 'N')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));		
		}
		else if (Command == 'Q')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));		
		}
487
488
		else if (Command == 'C')
		{			
489
			/* Write the high byte to the current flash page */
490
491
492
493
494
495
496
497
498
			boot_page_fill(CurrAddress, FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'c')
		{			
			/* Write the low byte to the current flash page */
			boot_page_fill(CurrAddress | 1, FetchNextCommandByte());
499
			
500
501
502
			/* Increment the address */
			CurrAddress += 2;

503
504
505
506
507
508
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'm')
		{
			/* Commit the flash page to memory */
509
			boot_page_write(CurrAddress);
510
511
512
513
514
515
516
517
518
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if ((Command == 'B') || (Command == 'g'))
		{
519
			/* Delegate the block write/read to a separate function for clarity */
520
			ReadWriteMemoryBlock(Command);
521
522
523
		}
		else if (Command == 'R')
		{
524
			#if (FLASHEND > 0xFFFF)
525
			uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
526
			#else
527
			uint16_t ProgramWord = pgm_read_word(CurrAddress);			
528
529
530
531
532
533
534
535
			#endif
			
			WriteNextResponseByte(ProgramWord >> 8);
			WriteNextResponseByte(ProgramWord & 0xFF);
		}
		else if (Command == 'D')
		{
			/* Read the byte from the endpoint and write it to the EEPROM */
536
			eeprom_write_byte((uint8_t*)(uint16_t)(CurrAddress >> 1), FetchNextCommandByte());
537
538
			
			/* Increment the address after use */			
539
			CurrAddress += 2;
540
541
542
543
544
545
546
	
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'd')
		{
			/* Read the EEPROM byte and write it to the endpoint */
547
			WriteNextResponseByte(eeprom_read_byte((uint8_t*)(uint16_t)(CurrAddress >> 1)));
548
549

			/* Increment the address after use */
550
			CurrAddress += 2;
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
		}
		else if (Command == 27)
		{
			/* Escape is sync, ignore */
		}
		else
		{
			/* Unknown command, return fail code */
			WriteNextResponseByte('?');
		}

		/* Select the IN endpoint */
		Endpoint_SelectEndpoint(CDC_TX_EPNUM);

		/* Remember if the endpoint is completely full before clearing it */
566
		bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
567
568

		/* Send the endpoint data to the host */
569
		Endpoint_ClearIN();
570
571
572
573
		
		/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
		if (IsEndpointFull)
		{
574
575
576
577
578
579
			while (!(Endpoint_IsINReady()))
			{				
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

580
			Endpoint_ClearIN();
581
		}
582
583

		/* Wait until the data has been sent to the host */
584
585
586
587
588
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
589
590
591
592
593
		
		/* Select the OUT endpoint */
		Endpoint_SelectEndpoint(CDC_RX_EPNUM);

		/* Acknowledge the command from the host */
594
		Endpoint_ClearOUT();
595
596
	}
}