BootloaderCDC.c 17.4 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2012.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2012  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
35

36
37
38
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

39
40
41
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
 *  operating systems will not open the port unless the settings can be set successfully.
 */
42
43
44
45
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
                                           .CharFormat  = CDC_LINEENCODING_OneStopBit,
                                           .ParityType  = CDC_PARITY_None,
                                           .DataBits    = 8                            };
46

47
48
49
50
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
51
static uint32_t CurrAddress;
52
53
54
55
56

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
 *  loop until the AVR restarts and the application runs.
 */
57
static bool RunBootloader = true;
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
 *  will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
 *  low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
 *  \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
 */
uint32_t MagicBootKey ATTR_NO_INIT;


/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
 *  start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
 *  this will force the user application to start via a software jump.
 */
void Application_Jump_Check(void)
{
73
	/* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
74
75
	if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
	{
76
77
78
79
80
		/* Turn off the watchdog */
		MCUSR &= ~(1<<WDRF);
		wdt_disable(); 

		/* Clear the boot key and jump to the user application */
81
		MagicBootKey = 0;
82

83
		// cppcheck-suppress constStatement
84
85
86
		((void (*)(void))0x0000)();
	}
}
87

88
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
89
90
91
92
93
94
95
96
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

97
98
99
	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1);

100
101
102
103
104
105
106
107
	/* Enable global interrupts so that the USB stack can function */
	sei();

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
108

109
110
	/* Disconnect from the host - USB interface will be reset later along with the AVR */
	USB_Detach();
111
112
113
	
	/* Unlock the forced application start mode of the bootloader if it is restarted */
	MagicBootKey = MAGIC_BOOT_KEY;
114
115
116
117
118
119
120
121

	/* Enable the watchdog and force a timeout to reset the AVR */
	wdt_enable(WDTO_250MS);

	for (;;);
}

/** Configures all hardware required for the bootloader. */
122
static void SetupHardware(void)
123
124
125
126
127
128
129
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
130

131
132
133
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
134

135
	/* Initialize the USB and other board hardware drivers */
136
	USB_Init();
137
	LEDs_Init();
138

139
140
	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
141
	TCCR1B = ((1 << CS11) | (1 << CS10));
142
143
144
145
146
147
}

/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
148
149
150
151
152
153
154
155
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
void EVENT_USB_Device_ConfigurationChanged(void)
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
156
157
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
	                           CDC_NOTIFICATION_EPSIZE, 1);
158

159
	Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
160

161
	Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
162
163
}

164
165
166
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
167
 */
168
void EVENT_USB_Device_ControlRequest(void)
169
{
170
171
172
173
174
175
176
	/* Ignore any requests that aren't directed to the CDC interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}

177
178
179
	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

180
181
182
	/* Process CDC specific control requests */
	switch (USB_ControlRequest.bRequest)
	{
183
		case CDC_REQ_GetLineEncoding:
184
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
185
			{
186
187
188
				Endpoint_ClearSETUP();

				/* Write the line coding data to the control endpoint */
189
				Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
190
191
				Endpoint_ClearOUT();
			}
192

193
			break;
194
		case CDC_REQ_SetLineEncoding:
195
196
197
198
199
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
			{
				Endpoint_ClearSETUP();

				/* Read the line coding data in from the host into the global struct */
200
				Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
201
202
				Endpoint_ClearIN();
			}
203

204
205
206
207
			break;
	}
}

208
#if !defined(NO_BLOCK_SUPPORT)
209
210
211
212
213
214
215
216
217
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
 */
static void ReadWriteMemoryBlock(const uint8_t Command)
{
	uint16_t BlockSize;
	char     MemoryType;
218

219
220
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
221

222
223
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
224

225
226
227
228
229
230
	MemoryType =  FetchNextCommandByte();

	if ((MemoryType != 'E') && (MemoryType != 'F'))
	{
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
		return;
	}

	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
			if (MemoryType == 'F')
			{
				/* Read the next FLASH byte from the current FLASH page */
				#if (FLASHEND > 0xFFFF)
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
249
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
250
				#endif
251

252
253
254
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
255

256
257
258
259
260
				HighByte = !HighByte;
			}
			else
			{
				/* Read the next EEPROM byte into the endpoint */
261
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
262
263
264

				/* Increment the address counter after use */
				CurrAddress += 2;
265
			}
266
267
268
269
270
271
272
273
274
275
276
		}
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
277

278
279
280
		while (BlockSize--)
		{
			if (MemoryType == 'F')
281
			{
282
283
284
285
286
287
288
289
290
291
292
293
294
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
				{
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));

					/* Increment the address counter after use */
					CurrAddress += 2;
				}
				else
				{
					LowByte = FetchNextCommandByte();
				}
295

296
				HighByte = !HighByte;
297
298
299
300
			}
			else
			{
				/* Write the next EEPROM byte from the endpoint */
301
				eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
302
303
304
305
306
307
308
309
310
311
312

				/* Increment the address counter after use */
				CurrAddress += 2;
			}
		}

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
313

314
315
316
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
317

318
		/* Send response byte back to the host */
319
		WriteNextResponseByte('\r');
320
321
	}
}
322
#endif
323
324
325
326
327
328
329
330
331

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
332
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
333

334
335
336
337
338
339
340
341
342
343
344
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
	while (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearOUT();

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
	}
345

346
	/* Fetch the next byte from the OUT endpoint */
347
	return Endpoint_Read_8();
348
349
350
351
352
353
354
355
356
357
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
 *  \param[in] Response  Next response byte to send to the host
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
358
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
359

360
361
362
363
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearIN();
364

365
		while (!(Endpoint_IsINReady()))
366
		{
367
368
369
370
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
	}
371

372
	/* Write the next byte to the IN endpoint */
373
	Endpoint_Write_8(Response);
374
375
376
377
378
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
379
static void CDC_Task(void)
380
381
{
	/* Select the OUT endpoint */
382
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
383

384
	/* Check if endpoint has a command in it sent from the host */
385
386
	if (!(Endpoint_IsOUTReceived()))
	  return;
387

388
389
	/* Read in the bootloader command (first byte sent from host) */
	uint8_t Command = FetchNextCommandByte();
390

391
392
393
	if (Command == 'E')
	{
		RunBootloader = false;
394

395
396
397
398
399
400
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'T')
	{
		FetchNextCommandByte();
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if ((Command == 'L') || (Command == 'P'))
	{
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 't')
	{
		/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
		WriteNextResponseByte(0x44);
		WriteNextResponseByte(0x00);
	}
	else if (Command == 'a')
	{
		/* Indicate auto-address increment is supported */
		WriteNextResponseByte('Y');
	}
	else if (Command == 'A')
	{
		/* Set the current address to that given by the host */
		CurrAddress   = (FetchNextCommandByte() << 9);
		CurrAddress  |= (FetchNextCommandByte() << 1);

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'p')
	{
		/* Indicate serial programmer back to the host */
		WriteNextResponseByte('S');
	}
	else if (Command == 'S')
	{
		/* Write the 7-byte software identifier to the endpoint */
		for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
		  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
	}
	else if (Command == 'V')
	{
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
	}
	else if (Command == 's')
	{
		WriteNextResponseByte(AVR_SIGNATURE_3);
		WriteNextResponseByte(AVR_SIGNATURE_2);
		WriteNextResponseByte(AVR_SIGNATURE_1);
	}
	else if (Command == 'e')
	{
		/* Clear the application section of flash */
		for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
456
		{
457
458
459
460
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();
461
		}
462

463
464
465
466
467
468
469
470
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
	else if (Command == 'l')
	{
		/* Set the lock bits to those given by the host */
		boot_lock_bits_set(FetchNextCommandByte());
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#endif
	else if (Command == 'r')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
	}
	else if (Command == 'F')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
	}
	else if (Command == 'N')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
	}
	else if (Command == 'Q')
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
	}
	#if !defined(NO_BLOCK_SUPPORT)
	else if (Command == 'b')
	{
		WriteNextResponseByte('Y');
496

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
		/* Send block size to the host */
		WriteNextResponseByte(SPM_PAGESIZE >> 8);
		WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
	}
	else if ((Command == 'B') || (Command == 'g'))
	{
		/* Delegate the block write/read to a separate function for clarity */
		ReadWriteMemoryBlock(Command);
	}
	#endif
	#if !defined(NO_FLASH_BYTE_SUPPORT)
	else if (Command == 'C')
	{
		/* Write the high byte to the current flash page */
		boot_page_fill(CurrAddress, FetchNextCommandByte());
512

513
514
515
516
517
518
519
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'c')
	{
		/* Write the low byte to the current flash page */
		boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
520

521
522
		/* Increment the address */
		CurrAddress += 2;
523

524
525
526
527
528
529
530
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'm')
	{
		/* Commit the flash page to memory */
		boot_page_write(CurrAddress);
531

532
533
		/* Wait until write operation has completed */
		boot_spm_busy_wait();
534

535
536
537
538
539
540
541
542
543
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'R')
	{
		#if (FLASHEND > 0xFFFF)
		uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
		#else
		uint16_t ProgramWord = pgm_read_word(CurrAddress);
544
		#endif
545

546
547
548
549
550
551
552
553
554
		WriteNextResponseByte(ProgramWord >> 8);
		WriteNextResponseByte(ProgramWord & 0xFF);
	}
	#endif
	#if !defined(NO_EEPROM_BYTE_SUPPORT)
	else if (Command == 'D')
	{
		/* Read the byte from the endpoint and write it to the EEPROM */
		eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
555

556
557
		/* Increment the address after use */
		CurrAddress += 2;
558

559
560
561
562
563
564
565
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	else if (Command == 'd')
	{
		/* Read the EEPROM byte and write it to the endpoint */
		WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
566

567
568
569
570
571
572
573
574
575
		/* Increment the address after use */
		CurrAddress += 2;
	}
	#endif
	else if (Command != 27)
	{
		/* Unknown (non-sync) command, return fail code */
		WriteNextResponseByte('?');
	}
576

577
	/* Select the IN endpoint */
578
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
579

580
581
	/* Remember if the endpoint is completely full before clearing it */
	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
582

583
584
	/* Send the endpoint data to the host */
	Endpoint_ClearIN();
585

586
587
588
	/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
	if (IsEndpointFull)
	{
589
		while (!(Endpoint_IsINReady()))
590
		{
591
592
593
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
594

595
596
		Endpoint_ClearIN();
	}
597

598
599
600
601
602
	/* Wait until the data has been sent to the host */
	while (!(Endpoint_IsINReady()))
	{
		if (USB_DeviceState == DEVICE_STATE_Unattached)
		  return;
603
	}
604
605

	/* Select the OUT endpoint */
606
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
607
608
609

	/* Acknowledge the command from the host */
	Endpoint_ClearOUT();
610
}
611