BootloaderCDC.c 16.7 KB
Newer Older
1
2
/*
             LUFA Library
Dean Camera's avatar
Dean Camera committed
3
     Copyright (C) Dean Camera, 2010.
4
5
6
7
8
9
              
  dean [at] fourwalledcubicle [dot] com
      www.fourwalledcubicle.com
*/

/*
Dean Camera's avatar
Dean Camera committed
10
  Copyright 2010  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
13
14
15
16
17
18
  Permission to use, copy, modify, distribute, and sell this 
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in 
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting 
  documentation, and that the name of the author not be used in 
  advertising or publicity pertaining to distribution of the 
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
  software without specific, written prior permission.

  The author disclaim all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
 
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

/** Line coding options for the virtual serial port. Although the virtual serial port data is never
 *  sent through a physical serial port, the line encoding data must still be read and preserved from
 *  the host, or the host will detect a problem and fail to open the port. This structure contains the
 *  current encoding options, including baud rate, character format, parity mode and total number of 
 *  bits in each data chunk.
 */
45
46
47
48
CDC_Line_Coding_t LineCoding = { .BaudRateBPS = 9600,
                                 .CharFormat  = OneStopBit,
                                 .ParityType  = Parity_None,
                                 .DataBits    = 8            };
49
50
51
52
53

/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
54
uint32_t CurrAddress;
55
56

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
57
58
 *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
 *  loop until the AVR restarts and the application runs.
59
60
61
62
63
64
65
66
67
 */
bool RunBootloader = true;


/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously 
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
68
69
70
71
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

72
73
74
	/* Enable global interrupts so that the USB stack can function */
	sei();

75
76
77
78
79
80
	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
	
81
82
	/* Disconnect from the host - USB interface will be reset later along with the AVR */
	USB_Detach();
83

84
85
86
87
	/* Enable the watchdog and force a timeout to reset the AVR */
	wdt_enable(WDTO_250MS);

	for (;;);
88
89
90
91
}

/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
92
93
94
95
96
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

97
98
	/* Disable clock division */
	clock_prescale_set(clock_div_1);
99
100
101
102
103
104
105
	
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
	
	/* Initialize USB Subsystem */
	USB_Init();
106
}
107
108
109
110

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
111
void EVENT_USB_Device_ConfigurationChanged(void)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
		                       ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);

	Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
		                       ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
	                           ENDPOINT_BANK_SINGLE);
}

127
/** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
128
129
130
 *  control requests that are not handled internally by the USB library, so that they can be handled appropriately
 *  for the application.
 */
131
void EVENT_USB_Device_UnhandledControlRequest(void)
132
133
134
135
{
	uint8_t* LineCodingData = (uint8_t*)&LineCoding;

	/* Process CDC specific control requests */
136
	switch (USB_ControlRequest.bRequest)
137
138
	{
		case REQ_GetLineEncoding:
139
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
140
			{
141
				Endpoint_ClearSETUP();
142
143
144
145

				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  Endpoint_Write_Byte(*(LineCodingData++));	
				
146
				Endpoint_ClearIN();
147
				
148
				Endpoint_ClearStatusStage();
149
150
151
152
			}
			
			break;
		case REQ_SetLineEncoding:
153
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
154
			{
155
				Endpoint_ClearSETUP();
156

157
158
159
160
161
162
				while (!(Endpoint_IsOUTReceived()))
				{				
					if (USB_DeviceState == DEVICE_STATE_Unattached)
					  return;
				}
			
163
164
165
				for (uint8_t i = 0; i < sizeof(LineCoding); i++)
				  *(LineCodingData++) = Endpoint_Read_Byte();

166
				Endpoint_ClearOUT();
167

168
				Endpoint_ClearStatusStage();
169
170
171
172
			}
	
			break;
		case REQ_SetControlLineState:
173
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
174
			{
175
				Endpoint_ClearSETUP();
176
				
177
				Endpoint_ClearStatusStage();
178
179
180
181
182
183
184
185
186
			}
	
			break;
	}
}

/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
187
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
188
 */
189
static void ReadWriteMemoryBlock(const uint8_t Command)
190
191
192
193
194
195
196
197
198
199
200
201
{
	uint16_t BlockSize;
	char     MemoryType;
	
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
	
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
	
	MemoryType =  FetchNextCommandByte();

202
	if ((MemoryType != 'E') && (MemoryType != 'F'))
203
	{
204
205
206
207
208
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
		
		return;
	}
209

210
211
212
213
214
215
216
217
	/* Check if command is to read memory */
	if (Command == 'g')
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
218
			if (MemoryType == 'F')
219
220
			{
				/* Read the next FLASH byte from the current FLASH page */
221
				#if (FLASHEND > 0xFFFF)
222
223
224
225
226
227
228
229
230
231
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));					
				#endif
				
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
				
				HighByte = !HighByte;
232
			}
233
234
235
236
237
238
239
240
			else
			{
				/* Read the next EEPROM byte into the endpoint */
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(uint16_t)(CurrAddress >> 1)));

				/* Increment the address counter after use */
				CurrAddress += 2;
			}			
241
		}
242
243
244
245
246
247
248
249
250
251
252
253
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

		if (MemoryType == 'F')
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
		
		while (BlockSize--)
254
255
		{
			if (MemoryType == 'F')
256
257
258
			{	
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
259
				{
260
261
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
262
263

					/* Increment the address counter after use */
264
265
266
					CurrAddress += 2;

					HighByte = false;
267
268
				}
				else
269
270
271
272
				{
					LowByte = FetchNextCommandByte();
				
					HighByte = true;
273
274
				}
			}
275
			else
276
			{
277
278
279
280
281
				/* Write the next EEPROM byte from the endpoint */
				eeprom_write_byte((uint8_t*)(uint16_t)(CurrAddress >> 1), FetchNextCommandByte());					

				/* Increment the address counter after use */
				CurrAddress += 2;
282
283
			}
		}
284
285
286
287
288
289
290
291
292
293
294
295
296

		/* If in FLASH programming mode, commit the page after writing */
		if (MemoryType == 'F')
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
	
		/* Send response byte back to the host */
		WriteNextResponseByte('\r');		
297
298
299
300
301
302
303
304
305
306
307
308
309
310
	}
}

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
311
	while (!(Endpoint_IsReadWriteAllowed()))
312
	{
313
		Endpoint_ClearOUT();
314
315
316
317
318
319

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
320
321
322
323
324
325
326
327
328
	}
	
	/* Fetch the next byte from the OUT endpoint */
	return Endpoint_Read_Byte();
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
329
 *  \param[in] Response  Next response byte to send to the host
330
331
332
333
334
335
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
	Endpoint_SelectEndpoint(CDC_TX_EPNUM);
	
336
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
337
	if (!(Endpoint_IsReadWriteAllowed()))
338
	{
339
		Endpoint_ClearIN();
340
341
342
343
344
345
		
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
346
347
348
349
350
351
352
353
354
	}
	
	/* Write the next byte to the OUT endpoint */
	Endpoint_Write_Byte(Response);
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
355
void CDC_Task(void)
356
357
358
359
360
{
	/* Select the OUT endpoint */
	Endpoint_SelectEndpoint(CDC_RX_EPNUM);
	
	/* Check if endpoint has a command in it sent from the host */
361
	if (Endpoint_IsOUTReceived())
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
	{
		/* Read in the bootloader command (first byte sent from host) */
		uint8_t Command = FetchNextCommandByte();

		if ((Command == 'L') || (Command == 'P') || (Command == 'T') || (Command == 'E'))
		{
			if (Command == 'E')
			  RunBootloader = false;
			if (Command == 'T')
			  FetchNextCommandByte();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');			
		}
		else if (Command == 't')
		{
			/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
			WriteNextResponseByte(0x44);

			WriteNextResponseByte(0x00);
		}
		else if (Command == 'a')
		{
			/* Indicate auto-address increment is supported */
			WriteNextResponseByte('Y');
		}
		else if (Command == 'A')
		{
			/* Set the current address to that given by the host */
391
392
			CurrAddress   = (FetchNextCommandByte() << 9);
			CurrAddress  |= (FetchNextCommandByte() << 1);
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'p')
		{
			/* Indicate serial programmer back to the host */
			WriteNextResponseByte('S');		 
		}
		else if (Command == 'S')
		{
			/* Write the 7-byte software identifier to the endpoint */
			for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
			  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);		
		}
		else if (Command == 'V')
		{
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
			WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
		}
		else if (Command == 's')
		{
415
416
417
			WriteNextResponseByte(AVR_SIGNATURE_3);		
			WriteNextResponseByte(AVR_SIGNATURE_2);
			WriteNextResponseByte(AVR_SIGNATURE_1);
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
		}
		else if (Command == 'b')
		{
			WriteNextResponseByte('Y');
				
			/* Send block size to the host */
			WriteNextResponseByte(SPM_PAGESIZE >> 8);
			WriteNextResponseByte(SPM_PAGESIZE & 0xFF);		
		}
		else if (Command == 'e')
		{
			/* Clear the application section of flash */
			for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress++)
			{
				boot_page_erase(CurrFlashAddress);
				boot_spm_busy_wait();
				boot_page_write(CurrFlashAddress);
				boot_spm_busy_wait();

				CurrFlashAddress += SPM_PAGESIZE;
			}
			
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'l')
		{
			/* Set the lock bits to those given by the host */
			boot_lock_bits_set(FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');
		}
		else if (Command == 'r')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));		
		}
		else if (Command == 'F')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
		}
		else if (Command == 'N')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));		
		}
		else if (Command == 'Q')
		{
			WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));		
		}
467
468
		else if (Command == 'C')
		{			
469
			/* Write the high byte to the current flash page */
470
471
472
473
474
475
476
477
478
			boot_page_fill(CurrAddress, FetchNextCommandByte());

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'c')
		{			
			/* Write the low byte to the current flash page */
			boot_page_fill(CurrAddress | 1, FetchNextCommandByte());
479
			
480
481
482
			/* Increment the address */
			CurrAddress += 2;

483
484
485
486
487
488
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'm')
		{
			/* Commit the flash page to memory */
489
			boot_page_write(CurrAddress);
490
491
492
493
494
495
496
497
498
			
			/* Wait until write operation has completed */
			boot_spm_busy_wait();

			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if ((Command == 'B') || (Command == 'g'))
		{
499
			/* Delegate the block write/read to a separate function for clarity */
500
			ReadWriteMemoryBlock(Command);
501
502
503
		}
		else if (Command == 'R')
		{
504
			#if (FLASHEND > 0xFFFF)
505
			uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
506
			#else
507
			uint16_t ProgramWord = pgm_read_word(CurrAddress);			
508
509
510
511
512
513
514
515
			#endif
			
			WriteNextResponseByte(ProgramWord >> 8);
			WriteNextResponseByte(ProgramWord & 0xFF);
		}
		else if (Command == 'D')
		{
			/* Read the byte from the endpoint and write it to the EEPROM */
516
			eeprom_write_byte((uint8_t*)((uint16_t)(CurrAddress >> 1)), FetchNextCommandByte());
517
518
			
			/* Increment the address after use */			
519
			CurrAddress += 2;
520
521
522
523
524
525
526
	
			/* Send confirmation byte back to the host */
			WriteNextResponseByte('\r');		
		}
		else if (Command == 'd')
		{
			/* Read the EEPROM byte and write it to the endpoint */
527
			WriteNextResponseByte(eeprom_read_byte((uint8_t*)((uint16_t)(CurrAddress >> 1))));
528
529

			/* Increment the address after use */
530
			CurrAddress += 2;
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
		}
		else if (Command == 27)
		{
			/* Escape is sync, ignore */
		}
		else
		{
			/* Unknown command, return fail code */
			WriteNextResponseByte('?');
		}

		/* Select the IN endpoint */
		Endpoint_SelectEndpoint(CDC_TX_EPNUM);

		/* Remember if the endpoint is completely full before clearing it */
546
		bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
547
548

		/* Send the endpoint data to the host */
549
		Endpoint_ClearIN();
550
551
552
553
		
		/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
		if (IsEndpointFull)
		{
554
555
556
557
558
559
			while (!(Endpoint_IsINReady()))
			{				
				if (USB_DeviceState == DEVICE_STATE_Unattached)
				  return;
			}

560
			Endpoint_ClearIN();
561
		}
562
563

		/* Wait until the data has been sent to the host */
564
565
566
567
568
		while (!(Endpoint_IsINReady()))
		{				
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
569
570
571
572
573
		
		/* Select the OUT endpoint */
		Endpoint_SelectEndpoint(CDC_RX_EPNUM);

		/* Acknowledge the command from the host */
574
		Endpoint_ClearOUT();
575
576
	}
}