BootloaderCDC.c 18.9 KB
Newer Older
1
2
/*
             LUFA Library
3
     Copyright (C) Dean Camera, 2012.
4

5
  dean [at] fourwalledcubicle [dot] com
6
           www.lufa-lib.org
7
8
9
*/

/*
10
  Copyright 2012  Dean Camera (dean [at] fourwalledcubicle [dot] com)
11

12
  Permission to use, copy, modify, distribute, and sell this
13
  software and its documentation for any purpose is hereby granted
14
  without fee, provided that the above copyright notice appear in
15
  all copies and that both that the copyright notice and this
16
17
18
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
19
20
  software without specific, written prior permission.

21
  The author disclaims all warranties with regard to this
22
23
24
25
26
27
28
29
30
31
32
33
34
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
 */
35

36
37
38
#define  INCLUDE_FROM_BOOTLOADERCDC_C
#include "BootloaderCDC.h"

39
40
41
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
 *  operating systems will not open the port unless the settings can be set successfully.
 */
42
43
44
45
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
                                           .CharFormat  = CDC_LINEENCODING_OneStopBit,
                                           .ParityType  = CDC_PARITY_None,
                                           .DataBits    = 8                            };
46

47
48
49
50
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
 *  and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
 *  command.)
 */
51
static uint32_t CurrAddress;
52
53
54
55
56

/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
 *  via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
 *  loop until the AVR restarts and the application runs.
 */
57
static bool RunBootloader = true;
58

59
60
61
62
63
/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
 *  will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
 *  low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
 *  \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
 */
64
uint16_t MagicBootKey ATTR_NO_INIT;
65
66
67
68
69
70
71
72


/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
 *  start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
 *  this will force the user application to start via a software jump.
 */
void Application_Jump_Check(void)
{
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
	bool JumpToApplication = false;

	#if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
		/* Disable JTAG debugging */
		JTAG_DISABLE();

		/* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
		PORTF |= (1 << 4);
		Delay_MS(10);

		/* If the TCK pin is not jumpered to ground, start the user application instead */
		JumpToApplication |= ((PINF & (1 << 4)) != 0);

		/* Re-enable JTAG debugging */
		JTAG_ENABLE();
	#endif

90
	/* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
91
	if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
92
93
94
95
	  JumpToApplication |= true;

	/* If a request has been made to jump to the user application, honor it */
	if (JumpToApplication)
96
	{
97
98
99
100
101
		/* Turn off the watchdog */
		MCUSR &= ~(1<<WDRF);
		wdt_disable(); 

		/* Clear the boot key and jump to the user application */
102
		MagicBootKey = 0;
103

104
		// cppcheck-suppress constStatement
105
106
107
		((void (*)(void))0x0000)();
	}
}
108

109
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
110
111
112
113
114
115
116
117
 *  runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
 *  the loaded application code.
 */
int main(void)
{
	/* Setup hardware required for the bootloader */
	SetupHardware();

118
119
120
	/* Turn on first LED on the board to indicate that the bootloader has started */
	LEDs_SetAllLEDs(LEDS_LED1);

121
	/* Enable global interrupts so that the USB stack can function */
122
	GlobalInterruptEnable();
123
124
125
126
127
128

	while (RunBootloader)
	{
		CDC_Task();
		USB_USBTask();
	}
129

130
131
	/* Disconnect from the host - USB interface will be reset later along with the AVR */
	USB_Detach();
132
133
134
	
	/* Unlock the forced application start mode of the bootloader if it is restarted */
	MagicBootKey = MAGIC_BOOT_KEY;
135
136
137
138
139
140
141
142

	/* Enable the watchdog and force a timeout to reset the AVR */
	wdt_enable(WDTO_250MS);

	for (;;);
}

/** Configures all hardware required for the bootloader. */
143
static void SetupHardware(void)
144
145
146
147
148
149
150
{
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
151

152
153
154
	/* Relocate the interrupt vector table to the bootloader section */
	MCUCR = (1 << IVCE);
	MCUCR = (1 << IVSEL);
155

156
	/* Initialize the USB and other board hardware drivers */
157
	USB_Init();
158
	LEDs_Init();
159

160
161
	/* Bootloader active LED toggle timer initialization */
	TIMSK1 = (1 << TOIE1);
162
	TCCR1B = ((1 << CS11) | (1 << CS10));
163
164
165
166
167
168
}

/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
ISR(TIMER1_OVF_vect, ISR_BLOCK)
{
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
169
170
171
172
173
174
175
176
}

/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
 *  to relay data to and from the attached USB host.
 */
void EVENT_USB_Device_ConfigurationChanged(void)
{
	/* Setup CDC Notification, Rx and Tx Endpoints */
177
178
	Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
	                           CDC_NOTIFICATION_EPSIZE, 1);
179

180
	Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
181

182
	Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
183
184
}

185
186
187
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
 *  the device from the USB host before passing along unhandled control requests to the library for processing
 *  internally.
188
 */
189
void EVENT_USB_Device_ControlRequest(void)
190
{
191
192
193
194
195
196
197
	/* Ignore any requests that aren't directed to the CDC interface */
	if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
	    (REQTYPE_CLASS | REQREC_INTERFACE))
	{
		return;
	}

198
199
200
	/* Activity - toggle indicator LEDs */
	LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);

201
202
203
	/* Process CDC specific control requests */
	switch (USB_ControlRequest.bRequest)
	{
204
		case CDC_REQ_GetLineEncoding:
205
			if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
206
			{
207
208
209
				Endpoint_ClearSETUP();

				/* Write the line coding data to the control endpoint */
210
				Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
211
212
				Endpoint_ClearOUT();
			}
213

214
			break;
215
		case CDC_REQ_SetLineEncoding:
216
217
218
219
220
			if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
			{
				Endpoint_ClearSETUP();

				/* Read the line coding data in from the host into the global struct */
221
				Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
222
223
				Endpoint_ClearIN();
			}
224

225
226
227
228
			break;
	}
}

229
#if !defined(NO_BLOCK_SUPPORT)
230
231
232
233
234
235
236
237
238
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
 *  on the AVR910 protocol command issued.
 *
 *  \param[in] Command  Single character AVR910 protocol command indicating what memory operation to perform
 */
static void ReadWriteMemoryBlock(const uint8_t Command)
{
	uint16_t BlockSize;
	char     MemoryType;
239

240
241
	bool     HighByte = false;
	uint8_t  LowByte  = 0;
242

243
244
	BlockSize  = (FetchNextCommandByte() << 8);
	BlockSize |=  FetchNextCommandByte();
245

246
247
	MemoryType =  FetchNextCommandByte();

248
	if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
249
250
251
	{
		/* Send error byte back to the host */
		WriteNextResponseByte('?');
252

253
254
255
		return;
	}

256
257
	/* Check if command is to read a memory block */
	if (Command == AVR109_COMMAND_BlockRead)
258
259
260
261
262
263
	{
		/* Re-enable RWW section */
		boot_rww_enable();

		while (BlockSize--)
		{
264
			if (MemoryType == MEMORY_TYPE_FLASH)
265
266
267
268
269
			{
				/* Read the next FLASH byte from the current FLASH page */
				#if (FLASHEND > 0xFFFF)
				WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
				#else
270
				WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
271
				#endif
272

273
274
275
				/* If both bytes in current word have been read, increment the address counter */
				if (HighByte)
				  CurrAddress += 2;
276

277
278
279
280
281
				HighByte = !HighByte;
			}
			else
			{
				/* Read the next EEPROM byte into the endpoint */
282
				WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
283
284
285

				/* Increment the address counter after use */
				CurrAddress += 2;
286
			}
287
288
289
290
291
292
		}
	}
	else
	{
		uint32_t PageStartAddress = CurrAddress;

293
		if (MemoryType == MEMORY_TYPE_FLASH)
294
295
296
297
		{
			boot_page_erase(PageStartAddress);
			boot_spm_busy_wait();
		}
298

299
300
		while (BlockSize--)
		{
301
			if (MemoryType == MEMORY_TYPE_FLASH)
302
			{
303
304
305
306
307
308
309
310
311
312
313
314
315
				/* If both bytes in current word have been written, increment the address counter */
				if (HighByte)
				{
					/* Write the next FLASH word to the current FLASH page */
					boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));

					/* Increment the address counter after use */
					CurrAddress += 2;
				}
				else
				{
					LowByte = FetchNextCommandByte();
				}
316

317
				HighByte = !HighByte;
318
319
320
321
			}
			else
			{
				/* Write the next EEPROM byte from the endpoint */
322
				eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
323
324
325
326
327
328
329

				/* Increment the address counter after use */
				CurrAddress += 2;
			}
		}

		/* If in FLASH programming mode, commit the page after writing */
330
		if (MemoryType == MEMORY_TYPE_FLASH)
331
332
333
		{
			/* Commit the flash page to memory */
			boot_page_write(PageStartAddress);
334

335
336
337
			/* Wait until write operation has completed */
			boot_spm_busy_wait();
		}
338

339
		/* Send response byte back to the host */
340
		WriteNextResponseByte('\r');
341
342
	}
}
343
#endif
344
345
346
347
348
349
350
351
352

/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
 *  to allow reception of the next data packet from the host.
 *
 *  \return Next received byte from the host in the CDC data OUT endpoint
 */
static uint8_t FetchNextCommandByte(void)
{
	/* Select the OUT endpoint so that the next data byte can be read */
353
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
354

355
356
357
358
359
360
361
362
363
364
365
	/* If OUT endpoint empty, clear it and wait for the next packet from the host */
	while (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearOUT();

		while (!(Endpoint_IsOUTReceived()))
		{
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return 0;
		}
	}
366

367
	/* Fetch the next byte from the OUT endpoint */
368
	return Endpoint_Read_8();
369
370
371
372
373
374
375
376
377
378
}

/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
 *  bank when full ready for the next byte in the packet to the host.
 *
 *  \param[in] Response  Next response byte to send to the host
 */
static void WriteNextResponseByte(const uint8_t Response)
{
	/* Select the IN endpoint so that the next data byte can be written */
379
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
380

381
382
383
384
	/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	{
		Endpoint_ClearIN();
385

386
		while (!(Endpoint_IsINReady()))
387
		{
388
389
390
391
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
	}
392

393
	/* Write the next byte to the IN endpoint */
394
	Endpoint_Write_8(Response);
395
396
397
398
399
}

/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
 *  and send the appropriate response back to the host.
 */
400
static void CDC_Task(void)
401
402
{
	/* Select the OUT endpoint */
403
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
404

405
	/* Check if endpoint has a command in it sent from the host */
406
407
	if (!(Endpoint_IsOUTReceived()))
	  return;
408

409
410
	/* Read in the bootloader command (first byte sent from host) */
	uint8_t Command = FetchNextCommandByte();
411

412
	if (Command == AVR109_COMMAND_ExitBootloader)
413
414
	{
		RunBootloader = false;
415

416
417
418
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
419
420
	else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
	         (Command == AVR109_COMMAND_SelectDeviceType))
421
422
	{
		FetchNextCommandByte();
423

424
425
426
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
427
	else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
428
429
430
431
	{
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
432
	else if (Command == AVR109_COMMAND_ReadPartCode)
433
434
435
436
437
	{
		/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
		WriteNextResponseByte(0x44);
		WriteNextResponseByte(0x00);
	}
438
	else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
439
440
441
442
	{
		/* Indicate auto-address increment is supported */
		WriteNextResponseByte('Y');
	}
443
	else if (Command == AVR109_COMMAND_SetCurrentAddress)
444
445
446
447
448
449
450
451
	{
		/* Set the current address to that given by the host */
		CurrAddress   = (FetchNextCommandByte() << 9);
		CurrAddress  |= (FetchNextCommandByte() << 1);

		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
452
	else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
453
454
455
456
	{
		/* Indicate serial programmer back to the host */
		WriteNextResponseByte('S');
	}
457
	else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
458
459
460
461
462
	{
		/* Write the 7-byte software identifier to the endpoint */
		for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
		  WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
	}
463
	else if (Command == AVR109_COMMAND_ReadBootloaderVersion)
464
465
466
467
	{
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
		WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
	}
468
	else if (Command == AVR109_COMMAND_ReadSignature)
469
470
471
472
473
	{
		WriteNextResponseByte(AVR_SIGNATURE_3);
		WriteNextResponseByte(AVR_SIGNATURE_2);
		WriteNextResponseByte(AVR_SIGNATURE_1);
	}
474
	else if (Command == AVR109_COMMAND_EraseFLASH)
475
476
	{
		/* Clear the application section of flash */
477
		for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
478
		{
479
480
481
482
			boot_page_erase(CurrFlashAddress);
			boot_spm_busy_wait();
			boot_page_write(CurrFlashAddress);
			boot_spm_busy_wait();
483
		}
484

485
486
487
488
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
489
	else if (Command == AVR109_COMMAND_WriteLockbits)
490
491
492
	{
		/* Set the lock bits to those given by the host */
		boot_lock_bits_set(FetchNextCommandByte());
493

494
495
496
497
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
	#endif
498
	else if (Command == AVR109_COMMAND_ReadLockbits)
499
500
501
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
	}
502
	else if (Command == AVR109_COMMAND_ReadLowFuses)
503
504
505
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
	}
506
	else if (Command == AVR109_COMMAND_ReadHighFuses)
507
508
509
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
	}
510
	else if (Command == AVR109_COMMAND_ReadExtendedFuses)
511
512
513
514
	{
		WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
	}
	#if !defined(NO_BLOCK_SUPPORT)
515
	else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
516
517
	{
		WriteNextResponseByte('Y');
518

519
520
521
522
		/* Send block size to the host */
		WriteNextResponseByte(SPM_PAGESIZE >> 8);
		WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
	}
523
	else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
524
525
526
527
528
529
	{
		/* Delegate the block write/read to a separate function for clarity */
		ReadWriteMemoryBlock(Command);
	}
	#endif
	#if !defined(NO_FLASH_BYTE_SUPPORT)
530
	else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
531
532
533
	{
		/* Write the high byte to the current flash page */
		boot_page_fill(CurrAddress, FetchNextCommandByte());
534

535
536
537
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
538
	else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
539
540
541
	{
		/* Write the low byte to the current flash page */
		boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
542

543
544
		/* Increment the address */
		CurrAddress += 2;
545

546
547
548
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
549
	else if (Command == AVR109_COMMAND_WriteFlashPage)
550
551
552
	{
		/* Commit the flash page to memory */
		boot_page_write(CurrAddress);
553

554
555
		/* Wait until write operation has completed */
		boot_spm_busy_wait();
556

557
558
559
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
560
	else if (Command == AVR109_COMMAND_ReadFLASHWord)
561
562
563
564
565
	{
		#if (FLASHEND > 0xFFFF)
		uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
		#else
		uint16_t ProgramWord = pgm_read_word(CurrAddress);
566
		#endif
567

568
569
570
571
572
		WriteNextResponseByte(ProgramWord >> 8);
		WriteNextResponseByte(ProgramWord & 0xFF);
	}
	#endif
	#if !defined(NO_EEPROM_BYTE_SUPPORT)
573
	else if (Command == AVR109_COMMAND_WriteEEPROM)
574
575
576
	{
		/* Read the byte from the endpoint and write it to the EEPROM */
		eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
577

578
579
		/* Increment the address after use */
		CurrAddress += 2;
580

581
582
583
		/* Send confirmation byte back to the host */
		WriteNextResponseByte('\r');
	}
584
	else if (Command == AVR109_COMMAND_ReadEEPROM)
585
586
587
	{
		/* Read the EEPROM byte and write it to the endpoint */
		WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
588

589
590
591
592
		/* Increment the address after use */
		CurrAddress += 2;
	}
	#endif
593
	else if (Command != AVR109_COMMAND_Sync)
594
595
596
597
	{
		/* Unknown (non-sync) command, return fail code */
		WriteNextResponseByte('?');
	}
598

599
	/* Select the IN endpoint */
600
	Endpoint_SelectEndpoint(CDC_TX_EPADDR);
601

602
603
	/* Remember if the endpoint is completely full before clearing it */
	bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
604

605
606
	/* Send the endpoint data to the host */
	Endpoint_ClearIN();
607

608
609
610
	/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
	if (IsEndpointFull)
	{
611
		while (!(Endpoint_IsINReady()))
612
		{
613
614
615
			if (USB_DeviceState == DEVICE_STATE_Unattached)
			  return;
		}
616

617
618
		Endpoint_ClearIN();
	}
619

620
621
622
623
624
	/* Wait until the data has been sent to the host */
	while (!(Endpoint_IsINReady()))
	{
		if (USB_DeviceState == DEVICE_STATE_Unattached)
		  return;
625
	}
626
627

	/* Select the OUT endpoint */
628
	Endpoint_SelectEndpoint(CDC_RX_EPADDR);
629
630
631

	/* Acknowledge the command from the host */
	Endpoint_ClearOUT();
632
}
633