...
 
Commits (28)
[submodule "external/OneWire"]
path = external/OneWire
url = https://github.com/PaulStoffregen/OneWire.git
# This Makefile compiles and flashes four different programs:
# - led_on
# - button_contact
# - timer_test
# - button_toggle
# - button_serial
#
# To program a board, first make sure the PROGRAMMER variable is set correctly.
# (If you're using your own HTM(a)A programmer board, use usbtiny.) Each board
# will also have to have its fuses set once, which can be done by running
# "make program-fuses". Finally, run make program_<program_name>. For example,
# "make program_button_toggle" will build and flash the button_toggle program.
MMCU=attiny44
F_CPU = 20000000
CFLAGS=-mmcu=$(MMCU) -Wall -Os -DF_CPU=$(F_CPU) \
-I external/OneWire \
-I /usr/share/arduino/hardware/arduino/cores/arduino
#PROGRAMMER = atmelice_isp
PROGRAMMER = usbtiny
%.hex: %.elf
avr-objcopy -O ihex $< $@;\
avr-size --mcu=$(MMCU) --format=avr $@
#%.o: %.c
# avr-g++ $(CFLAGS) -I./ -o $@ $<
program_%: %.hex
avrdude -p t44 -P usb -c $(PROGRAMMER) -U flash:w:$<
external/OneWire/OneWire.o: external/OneWire/OneWire.cpp external/OneWire/OneWire.h
avr-g++ -c $(CFLAGS) -I./ -o $@ $<
button_serial.o: button_serial.c external/OneWire/OneWire.h
avr-g++ -c $(CFLAGS) -I./ -o $@ $<
button_serial.elf: button_serial.o OneWire.o
avr-g++ $(CFLAGS) -o $@ $^
.PHONY: default
#default: program_button_serial
default: button_serial.hex
program-fuses:
avrdude -p t44 -P usb -c $(PROGRAMMER) -U lfuse:w:0x5E:m
// Compile with
// avr-g++ -x c++ -mmcu=attiny44 -Wall -Os -c -DF_CPU=20000000 -I/usr/share/arduino/hardware/arduino/cores/arduino -I/usr/share/arduino/hardware/arduino/variants/standard blink.cpp
// avr-g++ -x c++ -mmcu=attiny44 -Wall -Os -c -DF_CPU=20000000 -I/usr/share/arduino/hardware/arduino/cores/arduino -I/usr/share/arduino/hardware/arduino/variants/standard /usr/share/arduino/hardware/arduino/cores/arduino/wiring.c
// avr-g++ -x c++ -mmcu=attiny44 -Wall -Os -c -DF_CPU=20000000 -I/usr/share/arduino/hardware/arduino/cores/arduino -I/usr/share/arduino/hardware/arduino/variants/standard /usr/share/arduino/hardware/arduino/cores/arduino/wiring_digital.c
// avr-ar rcs libcore.a hooks.o wiring.o wiring_digital.o
#include <Arduino.h>
void setup() {
pinMode(5, OUTPUT);
}
void loop() {
digitalWrite(5, LOW);
delay(1000);
digitalWrite(5, HIGH);
delay(400);
}
//
//
// serial_button.c
//
// 115200 baud FTDI connection that outputs '0' or '1' depending
// on the state of a physical button
//
// set lfuse to 0x5E for 20 MHz xtal
//
// Neil Gershenfeld
// 12/8/10
// Erik Strand
// 11/26/2018
//
#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#include "OneWire.h"
#define output(directions,pin) (directions |= pin) // set port direction for output
#define set(port,pin) (port |= pin) // set port pin
#define clear(port,pin) (port &= (~pin)) // clear port pin
#define pin_test(pins,pin) (pins & pin) // test for port pin
#define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set
#define bit_delay_time 8.5 // bit delay for 115200 with overhead
#define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay
#define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay
#define char_delay() _delay_ms(10) // char delay
#define delay(duration) _delay_ms(duration); // drop-in replacement for Arduino delay
#define serial_port PORTA
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
#define led_pin (1 << PB2)
#define button_pin (1 << PA7)
#define max_buffer 25
void put_char(volatile unsigned char *port, unsigned char pin, char txchar) {
//
// send character in txchar on port pin
// assumes line driver (inverts bits)
//
// start bit
//
clear(*port,pin);
bit_delay();
//
// unrolled loop to write data bits
//
if bit_test(txchar,0)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,1)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,2)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,3)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,4)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,5)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,6)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,7)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
//
// stop bit
//
set(*port,pin);
bit_delay();
//
// char delay
//
bit_delay();
}
void put_string(volatile unsigned char *port, unsigned char pin, char *str) {
//
// print a null-terminated string
//
static int index;
index = 0;
do {
put_char(port, pin, str[index]);
++index;
} while (str[index] != 0);
}
OneWire ds(11); // on pin 10 (a 4.7K resistor is necessary)
//void setup(void) {
// Serial.begin(9600);
//}
void loop(void) {
byte i;
byte present = 0;
byte type_s;
byte data[12];
byte addr[8];
float celsius, fahrenheit;
if ( !ds.search(addr)) {
put_string(&serial_port, serial_pin_out, "No more addresses.");
ds.reset_search();
delay(250);
return;
}
//Serial.print("ROM =");
put_string(&serial_port, serial_pin_out, "ROM=");
for( i = 0; i < 8; i++) {
put_char(&serial_port, serial_pin_out, ' ');
//Serial.print(addr[i], HEX);
put_string(&serial_port, serial_pin_out, "xxx");
//put_string(&serial_port, serial_pin_out, addr[i])
}
if (OneWire::crc8(addr, 7) != addr[7]) {
put_string(&serial_port, serial_pin_out, "CRC is not valid!");
return;
}
//Serial.println();
// the first ROM byte indicates which chip
switch (addr[0]) {
case 0x10:
put_string(&serial_port, serial_pin_out, " Chip = DS18S20"); // or old DS1820
type_s = 1;
break;
case 0x28:
put_string(&serial_port, serial_pin_out, " Chip = DS18B20");
type_s = 0;
break;
case 0x22:
put_string(&serial_port, serial_pin_out, " Chip = DS1822");
type_s = 0;
break;
default:
put_string(&serial_port, serial_pin_out, "Device is not a DS18x20 family device.");
return;
}
ds.reset();
ds.select(addr);
ds.write(0x44, 1); // start conversion, with parasite power on at the end
delay(1000); // maybe 750ms is enough, maybe not
// we might do a ds.depower() here, but the reset will take care of it.
present = ds.reset();
ds.select(addr);
ds.write(0xBE); // Read Scratchpad
put_string(&serial_port, serial_pin_out, " Data = ");
put_string(&serial_port, serial_pin_out, "xxx");
//put_string(&serial_port, serial_pin_out, present, HEX);
put_string(&serial_port, serial_pin_out, " ");
for ( i = 0; i < 9; i++) { // we need 9 bytes
data[i] = ds.read();
//Serial.print(data[i], HEX);
put_string(&serial_port, serial_pin_out, " thing");
}
put_string(&serial_port, serial_pin_out, " CRC=");
//put_string(&serial_port, serial_pin_out, OneWire::crc8(data, 8), HEX);
// Convert the data to actual temperature
// because the result is a 16 bit signed integer, it should
// be stored to an "int16_t" type, which is always 16 bits
// even when compiled on a 32 bit processor.
int16_t raw = (data[1] << 8) | data[0];
if (type_s) {
raw = raw << 3; // 9 bit resolution default
if (data[7] == 0x10) {
// "count remain" gives full 12 bit resolution
raw = (raw & 0xFFF0) + 12 - data[6];
}
} else {
byte cfg = (data[4] & 0x60);
// at lower res, the low bits are undefined, so let's zero them
if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
//// default is 12 bit resolution, 750 ms conversion time
}
celsius = (float)raw / 16.0;
fahrenheit = celsius * 1.8 + 32.0;
put_string(&serial_port, serial_pin_out, " Temperature = ");
//put_string(&serial_port, serial_pin_out, celsius);
put_string(&serial_port, serial_pin_out, " Celsius, ");
//put_string(&serial_port, serial_pin_out, fahrenheit);
put_string(&serial_port, serial_pin_out, " Fahrenheit");
}
int main(void) {
// Set clock divider to 1.
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
// Initialize output pins.
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
// Configure led pin as an output.
DDRB |= led_pin;
// Configure button_pin as an input.
DDRA &= ~button_pin;
// Activate button_pin's pullup resistor.
PORTA |= button_pin;
while (1) {
// Turn on the LED when the button is pressed.
if (PINA & button_pin) {
// Turn off the LED.
PORTB &= ~led_pin;
//put_char(&serial_port, serial_pin_out, '0');
} else {
PORTB |= led_pin;
//put_char(&serial_port, serial_pin_out, '1');
}
//_delay_us(10000);
loop();
}
}
Subproject commit dbc93eba80d1b777af2eefed8e607775f456e9fb
cmake_minimum_required(VERSION 3.13) # 3.13 is required for target_link_options
project(NodeBoard CXX)
if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE "Release")
endif()
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
include(cmake/shared_settings.cmake)
find_package(PNG REQUIRED)
add_executable(generate_node_board
main.cpp
png_writer.cpp
png_writer.h
)
target_include_directories(generate_node_board PUBLIC ${PNG_INCLUDE_DIR})
target_link_libraries(generate_node_board shared_settings ${PNG_LIBRARY})
target_compile_features(generate_node_board PUBLIC cxx_std_17)
# This file defines an interface library used to add common compile flags to all libraries and
# executables in FunkyCT.
add_library(shared_settings INTERFACE)
# Warning flags
target_compile_options(shared_settings INTERFACE
-Wall
-Wcast-align
-Wcast-qual
-Wextra
-Wundef
-Wuseless-cast
-Wzero-as-null-pointer-constant
-pedantic
)
# Speed flags
target_compile_options(shared_settings INTERFACE -march=native -ffast-math)
# Build type for profile generation
target_compile_options(shared_settings INTERFACE $<$<CONFIG:ProfileGenerate>:
-fprofile-generate
-O3
-DNDEBUG
>)
target_link_options(shared_settings INTERFACE $<$<CONFIG:ProfileGenerate>:-fprofile-generate>)
# Build type for profile use
target_compile_options(shared_settings INTERFACE $<$<CONFIG:ProfileUse>:
-fprofile-use
-O3
-DNDEBUG
>)
target_link_options(shared_settings INTERFACE $<$<CONFIG:ProfileUse>:-fprofile-use>)
#include "png_writer.h"
#include <iostream>
//--------------------------------------------------------------------------------------------------
struct Rectangle {
int32_t x_min;
int32_t x_max;
int32_t y_min;
int32_t y_max;
};
//--------------------------------------------------------------------------------------------------
class Board {
public:
Board(double width, double height, double pix_per_mm, double min_cut_thickness)
: width_(width), height_(height), pix_per_mm_(pix_per_mm),
min_cut_thickness_(min_cut_thickness), width_px_(to_px(width_)), height_px_(to_px(height_)),
min_cut_thickness_px_(to_px(min_cut_thickness_))
{
png_writer_.allocate(width_px_ + 4 * min_cut_thickness_px_,
height_px_ + 4 * min_cut_thickness_px_);
png_writer_.set_all_pixels(255);
draw_int_rectangle(0, width_px_, 0, height_px_, 0);
}
int32_t to_px(double x) {
return static_cast<int32_t>(pix_per_mm_ * x);
}
void set_pixel(int32_t x, int32_t y, uint8_t value = 255) {
x = std::max(-2 * min_cut_thickness_px_, x);
x = std::min(width_px_ + 2 * min_cut_thickness_px_, x);
y = std::max(-2 * min_cut_thickness_px_, y);
y = std::min(height_px_ + 2 * min_cut_thickness_px_, y);
png_writer_.set_pixel(2 * min_cut_thickness_px_ + x,
2 * min_cut_thickness_px_ + height_px_ - y - 1,
value);
}
void draw_int_rectangle(
int32_t x_min, int32_t x_max, int32_t y_min, int32_t y_max, uint8_t value = 255
) {
for (int32_t x = x_min; x < x_max; ++x) {
for (int32_t y = y_min; y < y_max; ++y) {
set_pixel(x, y, value);
}
}
}
void draw_rectangle(
double x_min, double x_max, double y_min, double y_max, uint8_t value = 255
) {
draw_int_rectangle(to_px(x_min), to_px(x_max), to_px(y_min), to_px(y_max), value);
}
void draw_rectangle(Rectangle const& r, uint8_t value = 255) {
draw_int_rectangle(r.x_min, r.x_max, r.y_min, r.y_max, value);
}
void draw_pad(double x_min, double x_max, double y_min, double y_max) {
draw_rectangle(x_min - min_cut_thickness_, x_max + min_cut_thickness_,
y_min - min_cut_thickness_, y_max + min_cut_thickness_,
0);
draw_rectangle(x_min, x_max, y_min, y_max, 255);
}
void save(char const* filename) {
png_writer_.write(filename);
}
void save_outline(char const* filename) {
png_writer_.set_all_pixels_black();
draw_int_rectangle(0, width_px_, 0, height_px_);
save(filename);
}
public:
PngWriter png_writer_;
double width_;
double height_;
double pix_per_mm_;
double min_cut_thickness_;
int32_t width_px_;
int32_t height_px_;
int32_t min_cut_thickness_px_;
};
//--------------------------------------------------------------------------------------------------
// All length measurements are in mm.
int main() {
// reused vars... dirty C style
double pad_x_min;
double pad_x_max;
double pad_y_min;
double pad_y_max;
// board params
// width is deduced later
double const height = 18;
double const ppmm = 50; // equivalent to 1270 ppi
double const min_cut_thickness = 0.38;
double const min_trace_thickness = 0.35;
// SOIC dims
double const pad_width = 0.6;
double const pad_height = 2.4;
double const soic_height = 7;
double const soic_pitch = 1.27;
double const soic_width = 3 * soic_pitch + pad_width;
// deduce width and make the board
double const width = soic_width + 3 * min_cut_thickness + 3 * min_trace_thickness;
std::cout << "Board width: " << width << "mm\n";
Board board(width, height, ppmm, min_cut_thickness);
// SOIC pads
double const soic_x_min = min_trace_thickness + min_cut_thickness;
double const soic_x_max = soic_x_min + 3 * soic_pitch + pad_width;
double const soic_btm_y = 0.5 * (height - soic_height);
double const soic_top_y = height - soic_btm_y;
for (int32_t i = 0; i < 4; ++i) {
pad_x_min = soic_x_min + i * soic_pitch;
pad_x_max = pad_x_min + pad_width;
pad_y_max = soic_btm_y + pad_height;
board.draw_rectangle(pad_x_min, pad_x_max, soic_btm_y, pad_y_max);
pad_y_min = soic_top_y - pad_height;
board.draw_rectangle(pad_x_min, pad_x_max, pad_y_min, soic_top_y);
}
// Ground pads and traces
double const cable_pad_width = (width - 2 * min_cut_thickness) / 3;
double const cable_pad_height = soic_btm_y - min_cut_thickness;
double const bridge_offset = 0.5 * (pad_width - min_trace_thickness);
board.draw_rectangle(0, cable_pad_width, 0, cable_pad_height);
board.draw_rectangle(0, min_trace_thickness, 0, height);
board.draw_rectangle(soic_x_min + bridge_offset,
soic_x_min + bridge_offset + min_trace_thickness,
cable_pad_height,
cable_pad_height + min_cut_thickness);
board.draw_rectangle(0,
cable_pad_width,
soic_top_y + 2 * min_cut_thickness + min_trace_thickness,
height);
// Data pads and traces
double const data_pad_x_min = cable_pad_width + min_cut_thickness;
double const data_pad_x_max = data_pad_x_min + cable_pad_width;
board.draw_rectangle(data_pad_x_min, data_pad_x_max, 0, cable_pad_height);
board.draw_rectangle(data_pad_x_max,
soic_x_max + min_cut_thickness + min_trace_thickness,
cable_pad_height - min_cut_thickness,
cable_pad_height);
board.draw_rectangle(soic_x_max + min_cut_thickness,
soic_x_max + min_cut_thickness + min_trace_thickness,
cable_pad_height,
soic_btm_y + pad_height + min_cut_thickness);
board.draw_rectangle(soic_x_min + bridge_offset,
soic_x_max + min_cut_thickness + min_trace_thickness,
soic_btm_y + pad_height + min_cut_thickness,
soic_btm_y + pad_height + min_cut_thickness + min_trace_thickness);
board.draw_rectangle(soic_x_min + bridge_offset,
soic_x_min + bridge_offset + min_trace_thickness,
soic_btm_y + pad_height + min_cut_thickness,
soic_top_y + min_cut_thickness);
board.draw_rectangle(soic_x_min + bridge_offset,
data_pad_x_max,
soic_top_y + min_cut_thickness,
soic_top_y + min_cut_thickness + min_trace_thickness);
board.draw_rectangle(data_pad_x_min, data_pad_x_max, soic_top_y + min_cut_thickness, height);
// VCC pads and traces
double const vcc_pad_x_min = 2 * (cable_pad_width + min_cut_thickness);
// pad 1
board.draw_rectangle(vcc_pad_x_min,
width,
0,
// Note the fudge factor... It makes mods happy.
cable_pad_height - min_cut_thickness - min_trace_thickness - 0.025);
board.draw_rectangle(width - min_trace_thickness, width, 0, height);
// pad 2
board.draw_rectangle(vcc_pad_x_min,
width,
height - cable_pad_height,
height);
// pad extension
board.draw_rectangle(soic_x_max + min_cut_thickness,
width,
soic_top_y - pad_height - min_cut_thickness,
height - cable_pad_height);
double const vcc_pin_x = soic_x_min + soic_pitch + bridge_offset;
board.draw_rectangle(vcc_pin_x,
width,
soic_top_y - pad_height - min_cut_thickness - min_trace_thickness,
soic_top_y - pad_height - min_cut_thickness);
board.draw_rectangle(vcc_pin_x,
vcc_pin_x + min_trace_thickness,
soic_top_y - pad_height - min_cut_thickness,
soic_top_y);
// Extend pad divisions
board.draw_rectangle(cable_pad_width,
cable_pad_width + min_cut_thickness,
-min_cut_thickness,
0,
0);
board.draw_rectangle(cable_pad_width,
cable_pad_width + min_cut_thickness,
height,
height + min_cut_thickness,
0);
board.draw_rectangle(width - cable_pad_width - min_cut_thickness,
width - cable_pad_width,
-min_cut_thickness,
0,
0);
board.draw_rectangle(width - cable_pad_width - min_cut_thickness,
width - cable_pad_width,
height,
height + min_cut_thickness,
0);
board.save("node_board_traces.png");
board.save_outline("node_board_outline.png");
return 0;
}
#include "png_writer.h"
#include <stdlib.h>
#include <stdio.h>
#include <cstring>
#include <iostream>
//..................................................................................................
PngWriter::PngWriter(): width_(0), height_(0), row_pointers_(nullptr) {}
//..................................................................................................
PngWriter::~PngWriter() {
if (row_pointers_ != nullptr) {
free();
}
}
//..................................................................................................
void PngWriter::free() {
for (int32_t y = 0; y < height_; y++) {
std::free(row_pointers_[y]);
}
std::free(row_pointers_);
width_ = 0;
height_ = 0;
}
//..................................................................................................
void PngWriter::allocate(int32_t width, int32_t height) {
if (row_pointers_ != nullptr) {
free();
}
width_ = width;
height_ = height;
row_pointers_ = (png_bytep*)malloc(sizeof(png_bytep) * height_);
for (int y = 0; y < height_; y++) {
row_pointers_[y] = (png_bytep)malloc(row_size());
}
}
//..................................................................................................
void PngWriter::set_pixel(int32_t x, int32_t y, uint8_t value) {
png_bytep row = row_pointers_[y];
png_bytep px = &(row[x * 3]);
px[0] = value;
px[1] = value;
px[2] = value;
}
//..................................................................................................
void PngWriter::set_all_pixels(uint8_t value) {
for (int y = 0; y < height_; y++) {
png_bytep row = row_pointers_[y];
for (int x = 0; x < width_; x++) {
png_bytep px = &(row[x * 3]);
px[0] = value;
px[1] = value;
px[2] = value;
}
}
}
//..................................................................................................
void PngWriter::set_all_pixels_black() {
for (int y = 0; y < height_; y++) {
std::memset(row_pointers_[y], 0, row_size());
}
}
//..................................................................................................
void PngWriter::write(char const* filename) {
auto fp = fopen(filename, "wb");
if (!fp) {
std::cout << "Couldn't make file\n";
abort();
}
png_structp png = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (!png) {
std::cout << "Couldn't make png_structp\n";
abort();
}
png_infop info = png_create_info_struct(png);
if (!info) {
std::cout << "Couldn't make png_structp\n";
abort();
}
if (setjmp(png_jmpbuf(png))) {
std::cout << "Couldn't set jump\n";
abort();
}
png_init_io(png, fp);
// Output is 8bit depth, RGB format.
png_set_IHDR(png,
info,
width_,
height_,
8,
PNG_COLOR_TYPE_RGB,
PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT
);
png_write_info(png, info);
if (png_get_rowbytes(png, info) != row_size()) {
std::cout << "Allocated bad amount of memory\n";
abort();
}
// To remove the alpha channel for PNG_COLOR_TYPE_RGB format,
// Use png_set_filler().
//png_set_filler(png_, 0, PNG_FILLER_AFTER);
png_write_image(png, row_pointers_);
png_write_end(png, NULL);
if (png && info) {
png_destroy_write_struct(&png, &info);
}
fclose(fp);
}
#include <png.h>
#include <cstdint>
//--------------------------------------------------------------------------------------------------
// This class is derived from code by Guillaume Cottenceau, copyright 2002-2010 and distributed
// under the X11 license. https://gist.github.com/niw/5963798
class PngWriter {
public:
PngWriter();
~PngWriter();
void free();
void allocate(int32_t width, int32_t height);
png_bytep* row_pointers() { return row_pointers_; }
void set_pixel(int32_t x, int32_t y, uint8_t value = 255);
void set_all_pixels(uint8_t value);
void set_all_pixels_black();
void write(char const* filename);
private:
uint32_t row_size() { return 3 * width_; }
int32_t width_;
int32_t height_;
png_bytep* row_pointers_;
};
/*
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
The latest version of this library may be found at:
http://www.pjrc.com/teensy/td_libs_OneWire.html
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
January 2010.
DO NOT EMAIL for technical support, especially not for ESP chips!
All project support questions must be posted on public forums
relevant to the board or chips used. If using Arduino, post on
Arduino's forum. If using ESP, post on the ESP community forums.
There is ABSOLUTELY NO TECH SUPPORT BY PRIVATE EMAIL!
Github's issue tracker for OneWire should be used only to report
specific bugs. DO NOT request project support via Github. All
project and tech support questions must be posted on forums, not
github issues. If you experience a problem and you are not
absolutely sure it's an issue with the library, ask on a forum
first. Only use github to report issues after experts have
confirmed the issue is with OneWire rather than your project.
Back in 2010, OneWire was in need of many bug fixes, but had
been abandoned the original author (Jim Studt). None of the known
contributors were interested in maintaining OneWire. Paul typically
works on OneWire every 6 to 12 months. Patches usually wait that
long. If anyone is interested in more actively maintaining OneWire,
please contact Paul (this is pretty much the only reason to use
private email about OneWire).
OneWire is now very mature code. No changes other than adding
definitions for newer hardware support are anticipated.
Version 2.3:
Unknown chip fallback mode, Roger Clark
Teensy-LC compatibility, Paul Stoffregen
Search bug fix, Love Nystrom
Version 2.2:
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
Fix DS18B20 example negative temperature
Fix DS18B20 example's low res modes, Ken Butcher
Improve reset timing, Mark Tillotson
Add const qualifiers, Bertrik Sikken
Add initial value input to crc16, Bertrik Sikken
Add target_search() function, Scott Roberts
Version 2.1:
Arduino 1.0 compatibility, Paul Stoffregen
Improve temperature example, Paul Stoffregen
DS250x_PROM example, Guillermo Lovato
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
Improvements from Glenn Trewitt:
- crc16() now works
- check_crc16() does all of calculation/checking work.
- Added read_bytes() and write_bytes(), to reduce tedious loops.
- Added ds2408 example.
Delete very old, out-of-date readme file (info is here)
Version 2.0: Modifications by Paul Stoffregen, January 2010:
http://www.pjrc.com/teensy/td_libs_OneWire.html
Search fix from Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Use direct optimized I/O in all cases
Disable interrupts during timing critical sections
(this solves many random communication errors)
Disable interrupts during read-modify-write I/O
Reduce RAM consumption by eliminating unnecessary
variables and trimming many to 8 bits
Optimize both crc8 - table version moved to flash
Modified to work with larger numbers of devices - avoids loop.
Tested in Arduino 11 alpha with 12 sensors.
26 Sept 2008 -- Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20
Modified to calculate the 8-bit CRC directly, avoiding the need for
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
-- Tom Pollard, Jan 23, 2008
Jim Studt's original library was modified by Josh Larios.
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains. In any event that was..
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/
#include <Arduino.h>
#include "OneWireMod.h"
#include "OneWire_direct_gpio.h"
void OneWire::begin(uint8_t pin)
{
pinMode(pin, INPUT);
bitmask = PIN_TO_BITMASK(pin);
baseReg = PIN_TO_BASEREG(pin);
#if ONEWIRE_SEARCH
reset_search();
#endif
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset(void)
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
uint8_t retries = 125;
noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !DIRECT_READ(reg, mask));
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
delayMicroseconds(480);
noInterrupts();
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(70);
r = !DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(410);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWire::write_bit(uint8_t v)
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
if (v & 1) {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(10);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(55);
} else {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(65);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(5);
}
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit(void)
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
noInterrupts();
DIRECT_MODE_OUTPUT(reg, mask);
DIRECT_WRITE_LOW(reg, mask);
delayMicroseconds(3);
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
delayMicroseconds(10);
r = DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(53);
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
for (uint16_t i = 0 ; i < count ; i++)
write(buf[i]);
if (!power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
//
// Read a byte
//
uint8_t OneWire::read() {
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( OneWire::read_bit()) r |= bitMask;
}
return r;
}
void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
for (uint16_t i = 0 ; i < count ; i++)
buf[i] = read();
}
//
// Do a ROM select
//
void OneWire::select(const uint8_t rom[8])
{
uint8_t i;
write(0x55); // Choose ROM
for (i = 0; i < 8; i++) write(rom[i]);
}
//
// Do a ROM skip
//
void OneWire::skip()
{
write(0xCC); // Skip ROM
}
void OneWire::depower()
{
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
interrupts();
}
#if ONEWIRE_SEARCH
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
for(int i = 7; ; i--) {
ROM_NO[i] = 0;
if ( i == 0) break;
}
}
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
//
void OneWire::target_search(uint8_t family_code)
{
// set the search state to find SearchFamily type devices
ROM_NO[0] = family_code;
for (uint8_t i = 1; i < 8; i++)
ROM_NO[i] = 0;
LastDiscrepancy = 64;
LastFamilyDiscrepancy = 0;
LastDeviceFlag = false;
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use OneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
{
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number;
bool search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = false;
// if the last call was not the last one
if (!LastDeviceFlag) {
// 1-Wire reset
if (!reset()) {
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
return false;
}
// issue the search command
if (search_mode == true) {
write(0xF0); // NORMAL SEARCH
} else {
write(0xEC); // CONDITIONAL SEARCH
}
// loop to do the search
do
{
// read a bit and its complement
id_bit = read_bit();
cmp_id_bit = read_bit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1)) {
break;
} else {
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit) {
search_direction = id_bit; // bit write value for search
} else {
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy) {
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
} else {
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
}
// if 0 was picked then record its position in LastZero
if (search_direction == 0) {
last_zero = id_bit_number;
// check for Last discrepancy in family
if (last_zero < 9)
LastFamilyDiscrepancy = last_zero;
}
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction == 1)
ROM_NO[rom_byte_number] |= rom_byte_mask;
else
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
write_bit(search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0) {
rom_byte_number++;
rom_byte_mask = 1;
}
}
}
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65)) {
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0) {
LastDeviceFlag = true;
}
search_result = true;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !ROM_NO[0]) {
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
search_result = false;
} else {
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
}
return search_result;
}
#endif
#if ONEWIRE_CRC
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//
#if ONEWIRE_CRC8_TABLE
// Dow-CRC using polynomial X^8 + X^5 + X^4 + X^0
// Tiny 2x16 entry CRC table created by Arjen Lentz
// See http://lentz.com.au/blog/calculating-crc-with-a-tiny-32-entry-lookup-table
static const uint8_t PROGMEM dscrc2x16_table[] = {
0x00, 0x5E, 0xBC, 0xE2, 0x61, 0x3F, 0xDD, 0x83,
0xC2, 0x9C, 0x7E, 0x20, 0xA3, 0xFD, 0x1F, 0x41,
0x00, 0x9D, 0x23, 0xBE, 0x46, 0xDB, 0x65, 0xF8,
0x8C, 0x11, 0xAF, 0x32, 0xCA, 0x57, 0xE9, 0x74
};
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (Use tiny 2x16 entry CRC table)
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
crc = *addr++ ^ crc; // just re-using crc as intermediate
crc = pgm_read_byte(dscrc2x16_table + (crc & 0x0f)) ^
pgm_read_byte(dscrc2x16_table + 16 + ((crc >> 4) & 0x0f));
}
return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but a little smaller, than the lookup table.
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
#if defined(__AVR__)
crc = _crc_ibutton_update(crc, *addr++);
#else
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
#endif
}
return crc;
}
#endif
#if ONEWIRE_CRC16
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
{
crc = ~crc16(input, len, crc);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
{
#if defined(__AVR__)
for (uint16_t i = 0 ; i < len ; i++) {
crc = _crc16_update(crc, input[i]);
}
#else
static const uint8_t oddparity[16] =
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
for (uint16_t i = 0 ; i < len ; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ crc) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
#endif
return crc;
}
#endif
#endif
#ifndef OneWire_h
#define OneWire_h
#ifdef __cplusplus
#include <stdint.h>
#if defined(__AVR__)
#include <util/crc16.h>
#endif
#if ARDUINO >= 100
#include <Arduino.h> // for delayMicroseconds, digitalPinToBitMask, etc
#else
#include "WProgram.h" // for delayMicroseconds
#include "pins_arduino.h" // for digitalPinToBitMask, etc
#endif
// You can exclude certain features from OneWire. In theory, this
// might save some space. In practice, the compiler automatically
// removes unused code (technically, the linker, using -fdata-sections
// and -ffunction-sections when compiling, and Wl,--gc-sections
// when linking), so most of these will not result in any code size
// reduction. Well, unless you try to use the missing features
// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
// is the exception, because it selects a fast but large algorithm
// or a small but slow algorithm.
// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif
// You can exclude CRC checks altogether by defining this to 0
#ifndef ONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif
// Select the table-lookup method of computing the 8-bit CRC
// by setting this to 1. The lookup table enlarges code size by
// about 250 bytes. It does NOT consume RAM (but did in very
// old versions of OneWire). If you disable this, a slower
// but very compact algorithm is used.
//#ifndef ONEWIRE_CRC8_TABLE
//#define ONEWIRE_CRC8_TABLE 1
//#endif
// You can allow 16-bit CRC checks by defining this to 1
// (Note that ONEWIRE_CRC must also be 1.)
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 1
#endif
// Board-specific macros for direct GPIO
#include "OneWire_direct_regtype.h"
class OneWire
{
private:
IO_REG_TYPE bitmask;
volatile IO_REG_TYPE *baseReg;
#if ONEWIRE_SEARCH
// global search state
unsigned char ROM_NO[8];
uint8_t LastDiscrepancy;
uint8_t LastFamilyDiscrepancy;
bool LastDeviceFlag;
#endif
public:
OneWire(uint8_t pin) { begin(pin); }
void begin(uint8_t pin);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
uint8_t reset(void);
// Issue a 1-Wire rom select command, you do the reset first.
void select(const uint8_t rom[8]);
// Issue a 1-Wire rom skip command, to address all on bus.
void skip(void);
// Write a byte. If 'power' is one then the wire is held high at
// the end for parasitically powered devices. You are responsible
// for eventually depowering it by calling depower() or doing
// another read or write.
void write(uint8_t v, uint8_t power = 0);
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
// Read a byte.
uint8_t read(void);
void read_bytes(uint8_t *buf, uint16_t count);
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void write_bit(uint8_t v);
// Read a bit.
uint8_t read_bit(void);
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather
// not leave this powered if you don't have to, just in case
// someone shorts your bus.
void depower(void);
#if ONEWIRE_SEARCH
// Clear the search state so that if will start from the beginning again.
void reset_search();
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
void target_search(uint8_t family_code);
// Look for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are
// no devices, or you have already retrieved all of them. It
// might be a good idea to check the CRC to make sure you didn't
// get garbage. The order is deterministic. You will always get
// the same devices in the same order.
bool search(uint8_t *newAddr, bool search_mode = true);
#endif
#if ONEWIRE_CRC
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
// ROM and scratchpad registers.
static uint8_t crc8(const uint8_t *addr, uint8_t len);
#if ONEWIRE_CRC16
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return True, iff the CRC matches.
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
#endif
#endif
};
// Prevent this name from leaking into Arduino sketches
#ifdef IO_REG_TYPE
#undef IO_REG_TYPE
#endif
#endif // __cplusplus
#endif // OneWire_h
#ifndef OneWire_Direct_GPIO_h
#define OneWire_Direct_GPIO_h
// This header should ONLY be included by OneWire.cpp. These defines are
// meant to be private, used within OneWire.cpp, but not exposed to Arduino
// sketches or other libraries which may include OneWire.h.
#include <stdint.h>
// Platform specific I/O definitions
#if defined(__AVR__)
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_BASE_ATTR asm("r30")
#define IO_REG_MASK_ATTR
#if defined(__AVR_ATmega4809__)
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)-8)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)-8)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)-4)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)-4)) |= (mask))
#else
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
#endif