step_cl.cpp 9.54 KB
Newer Older
Jake Read's avatar
Jake Read committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/*
osap/drivers/step_cl.cpp

stepper in closed loop mode 

Jake Read at the Center for Bits and Atoms
(c) Massachusetts Institute of Technology 2020

This work may be reproduced, modified, distributed, performed, and
displayed for any purpose, but must acknowledge the squidworks and ponyo
projects. Copyright is retained and must be preserved. The work is provided as
is; no warranty is provided, and users accept all liability.
*/

#include "step_cl.h"
Jake Read's avatar
Jake Read committed
16
#include "../utils/FlashStorage.h"
Jake Read's avatar
Jake Read committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Step_CL* Step_CL::instance = 0;

Step_CL* Step_CL::getInstance(void){
    if(instance == 0){
        instance = new Step_CL();
    }
    return instance;
}

Step_CL* step_cl = Step_CL::getInstance();

// https://github.com/cmaglie/FlashStorage
// flash LUT
// FlashStorage(flash_lut, step_cl_calib_table_t);
// float __attribute__((__aligned__(256))) lut[16384];

Step_CL::Step_CL(void){}

#define CALIB_CSCALE 0.4F
37
#define CALIB_STEP_DELAY 10
38
#define CALIB_SETTLE_DELAY 1
39
40
41
#define CALIB_SAMPLE_PER_TICK 10 

#define ENCODER_COUNTS 16384
Jake Read's avatar
Jake Read committed
42
43
44
45
46
47
48
49

void Step_CL::init(void){
    stepper_hw->init(false, 0.4);
    enc_as5047->init();
    // this lut == stored lut 
    //lut = flash_lut.read();
}

Jake Read's avatar
Jake Read committed
50
51
52
#define BYTES_PER_PAGE 512 
#define FLOATS_PER_PAGE 128
#define PAGES_PER_BLOCK 16 // for 8192 bytes / block 
53
#define LUT_SIZE 2048
Jake Read's avatar
Jake Read committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

//const float __attribute__((__aligned__(BYTES_PER_PAGE))) lut[LUT_SIZE] = {}; 
//const void* page_ptr; 
//static float buffer[FLOATS_PER_PAGE];
//static uint32_t bi;

//FlashClass flashClass((const uint8_t*)lut, BYTES_PER_PAGE); // try w/ constructor values ? 

typedef struct {
    float f[LUT_SIZE];
} flts;

flts inbuf;
uint32_t bi = 0;

FlashStorage(flash_storage, flts);
70

Jake Read's avatar
Jake Read committed
71
void flash_write_init(void){
72
    bi = 0;
73
74
}

Jake Read's avatar
Jake Read committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
void flash_write_page(void){
    sysError("writing");
    flash_storage.write(inbuf);
    sysError("written");
    // sysError("unlocking block");
    // NVMCTRL->ADDR.reg = (uint32_t)((const uint8_t*)(lut));
    // NVMCTRL->CTRLB.reg = NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_UR;
    // while(NVMCTRL->STATUS.bit.READY == 0);
    // sysError("erasing block");
    // //flashClass.erase((const uint8_t*)lut, 0);
    // NVMCTRL->ADDR.reg = (uint32_t)((const uint8_t*)(lut));
    // NVMCTRL->CTRLB.reg = NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_EB;
    // // is it hung, or is there an error to catch ? 
    // // hung !
    // //while(NVMCTRL->STATUS.bit.READY == 0);
    // sysError("writing page");
    // flashClass.write((const uint8_t*)lut, (const uint8_t*)buffer, BYTES_PER_PAGE);
}

Jake Read's avatar
Jake Read committed
94
void flash_write_value(float val){
Jake Read's avatar
Jake Read committed
95
96
97
98
    inbuf.f[bi ++] = val;
    if(bi >= LUT_SIZE){
        flash_write_page();
    }
99
100
}

Jake Read's avatar
Jake Read committed
101
void Step_CL::print_table(void){
Jake Read's avatar
Jake Read committed
102
103
104
105
    sysError("reading");
    flts read = flash_storage.read();
    for(uint16_t e = 0; e < LUT_SIZE; e ++){
        sysError(String(read.f[e]));
Jake Read's avatar
Jake Read committed
106
        delay(5);
107
    }
108
109
110
}

// the calib routine 
111
boolean Step_CL::calibrate(void){
Jake Read's avatar
Jake Read committed
112
    flash_write_init();
113
    for(uint32_t i = 0; i < LUT_SIZE; i ++){
Jake Read's avatar
Jake Read committed
114
115
        flash_write_value(i * 1.1F);
    }
Jake Read's avatar
Jake Read committed
116
    return true;
117
118
    // (1) first, build a table for 200 full steps w/ encoder averaged values at each step 
    float phase_angle = 0.0F;
Jake Read's avatar
Jake Read committed
119
    for(uint8_t i = 0; i < 200; i ++){ 
120
121
122
        // pt to new angle 
        stepper_hw->point(phase_angle, CALIB_CSCALE);
        // wait to settle / go slowly 
Jake Read's avatar
Jake Read committed
123
        delay(CALIB_STEP_DELAY);
124
125
126
127
128
129
130
131
132
133
134
        // do readings 
        float x = 0.0F;
        float y = 0.0F;
        for(uint8_t s = 0; s < CALIB_SAMPLE_PER_TICK; s ++){
            enc_as5047->trigger_read();
            while(!enc_as5047->is_read_complete()); // do this synchronously 
            float reading = enc_as5047->get_reading();
            x += cos((reading / (float)(ENCODER_COUNTS)) * 2 * PI);
            y += sin((reading / (float)(ENCODER_COUNTS)) * 2 * PI);
            // this is odd, I know, but it allows a new measurement to settle
            // so we get a real average 
135
            delay(CALIB_SETTLE_DELAY); 
136
137
138
139
140
141
142
143
        }
        // push reading, average removes the wraps added to readings. 
        calib_readings[i] = atan2(y, x);//(reading / (float)CALIB_SAMPLE_PER_TICK) - ENCODER_COUNTS;
        if(calib_readings[i] < 0) calib_readings[i] = 2 * PI + calib_readings[i]; // wrap the circle 
        calib_readings[i] = (calib_readings[i] * ENCODER_COUNTS) / (2 * PI);
        // rotate 
        phase_angle += 0.25F;
        if(phase_angle >= 1.0F) phase_angle = 0.0F;
Jake Read's avatar
Jake Read committed
144
    } // end measurement taking 
145
146
    // tack end-wrap together, to easily find the wrap-at-indice interval 
    calib_readings[200] = calib_readings[0];
Jake Read's avatar
Jake Read committed
147
    if(false){ // debug print intervals 
148
        for(uint8_t i = 0; i < 200; i ++){
149
150
151
152
153
            sysError("int: " + String(i) 
                        + " " + String(calib_readings[i], 4)
                        + " " + String(calib_readings[i + 1], 4));
            delay(2);
        }
Jake Read's avatar
Jake Read committed
154
    }
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    // check sign of readings 
    // the sign will help identify the wrapping interval
    // might get unlucky and find the wrap, so take majority vote of three 
    boolean s1 = (calib_readings[1] - calib_readings[0]) > 0 ? true : false;
    boolean s2 = (calib_readings[2] - calib_readings[1]) > 0 ? true : false;
    boolean s3 = (calib_readings[3] - calib_readings[2]) > 0 ? true : false;
    boolean sign = false;
    if((s1 && s2) || (s2 && s3) || (s1 && s3)){
        sign = true;
    } else {
        sign = false;
    }
    sysError("calib sign: " + String(sign));

Jake Read's avatar
Jake Read committed
169
    // (2) build the table, walk all encoder counts... 
170
171
    // now to build the actual table... 
    // want to start with the 0 indice, 
172
173
    flash_write_init();
    for(uint16_t e = 0; e < 4; e ++){
Jake Read's avatar
Jake Read committed
174
175
        // find the interval that spans this sample
        boolean bi = false; 
176
        int16_t interval = -1;
177
        for(uint8_t i = 0; i < 200; i ++){
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
            if(sign){ // +ve slope readings, left < right 
                if(calib_readings[i] < e && e <= calib_readings[i + 1]){
                    interval = i;
                    break;
                }
            } else { // -ve slope readings, left > right 
                if(calib_readings[i] > e && e >= calib_readings[i + 1]){
                    interval = i;
                    break;
                }
            }
        }
        // log intervals 
        if(interval >= 0){
            // sysError(String(e) + " inter: " + String(interval) 
            //                 + " " + String(calib_readings[interval]) 
            //                 + " " + String(calib_readings[interval + 1]));
        } else {
196
            // no proper interval found, must be the bi 
197
            // find the opposite-sign interval 
198
            for(uint8_t i = 0; i < 200; i ++){
199
200
201
                boolean intSign = (calib_readings[i + 1] - calib_readings[i]) > 0 ? true : false;
                if(intSign != sign){
                    interval = i;
Jake Read's avatar
Jake Read committed
202
                    bi = true; // mark the bad interval
203
204
205
                    break;
                }
            }
Jake Read's avatar
Jake Read committed
206
207
208
209
210
211
            if(!bi){
                // truly strange 
                sysError("missing interval, exiting");
                return false;
            }
            /*
212
213
214
215
            sysError("bad interval at: " + String(e) 
                    + " " + String(interval)
                    + " " + String(calib_readings[interval]) 
                    + " " + String(calib_readings[interval + 1]));
Jake Read's avatar
Jake Read committed
216
            */
217
        }
218
219
220

        // (3) have the interval (one is bad), 
        // find real angles (ra0, ra1)
221
222
        float ra0 = 360.0F * ((float)interval / 200);          // real angle at left of interval 
        float ra1 = 360.0F * ((float)(interval + 1) / 200);    // real angle at right of interval 
223
224
225
226
227
228
        // interval spans these readings (er0, er1)
        float er0 = calib_readings[interval];
        float er1 = calib_readings[interval + 1];

        // (4) for the bad interval, some more work to do to modify interp. points 
        float spot = e;
Jake Read's avatar
Jake Read committed
229
        if(bi){
230
231
232
233
234
235
            if(sign){ // wrap the tail *up*, do same for pts past zero crossing 
                er1 += (float)ENCODER_COUNTS;
                if(spot < er0) spot += (float)ENCODER_COUNTS;
            } else { // wrap the tail *down*, do same for pts past zero crossing 
                er1 -= (float)ENCODER_COUNTS;
                if(spot > er0) spot -= (float)ENCODER_COUNTS;
Jake Read's avatar
Jake Read committed
236
237
            }
        }
238
239
240
241
242
243

        // (5) continue w/ (ra0, ra1) and (er0, er1) to interpolate for spot 
        // check we are not abt to div / 0: this could happen if motor did not turn during measurement 
        float intSpan = er1 - er0;
        if(intSpan < 0.01F && intSpan > -0.01F){
            sysError("near zero interval, exiting");
244
245
246
            return false;
        }
        // find pos. inside of interval 
247
        float offset = (spot - er0) / intSpan;
Jake Read's avatar
Jake Read committed
248
        // find real angle offset at e, modulo for the bad interval 
249
        float ra = (ra0 + (ra1 - ra0) * offset);
250
        // log those 
251
252
253
254
255
256
257
258
259
260
261
        if(false){
            if(bi){
                sysError("e: " + String(e) + " ra: " + String(ra, 4) + " BI");
                //     + " span: " + String(intSpan) + " offset: " + String(offset));
                // sysError("i0: " + String(interval) + " " + String(calib_readings[interval])
                //     + " i1: " + String(calib_readings[interval + 1])
                //     + " BI");
            } else {
                sysError("e: " + String(e) + " ra: " + String(ra, 4));
            }
            delay(10);            
Jake Read's avatar
Jake Read committed
262
        }
263
        // ok, have the real angle (ra) at the encoder tick (e), now write it 
Jake Read's avatar
Jake Read committed
264
        //flash_write_value(ra); // this just happens in order, we zeroe'd out global counters at the start 
265
    } // end sweep thru 2^14 pts 
Jake Read's avatar
Jake Read committed
266
    sysError("calib complete");
267
    return true; // went OK 
268
269
}