Skip to content
Snippets Groups Projects
Select Git revision
  • 6c8c31fd6b82257934de9b62919bdce22a7242c1
  • master default
  • dev
3 results

main.js

Blame
  • three.js 1,008.35 KiB
    (function (global, factory) {
    	typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
    	typeof define === 'function' && define.amd ? define(['exports'], factory) :
    	(factory((global.THREE = global.THREE || {})));
    }(this, (function (exports) { 'use strict';
    
    	// Polyfills
    
    	if ( Number.EPSILON === undefined ) {
    
    		Number.EPSILON = Math.pow( 2, - 52 );
    
    	}
    
    	if ( Number.isInteger === undefined ) {
    
    		// Missing in IE
    		// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger
    
    		Number.isInteger = function ( value ) {
    
    			return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;
    
    		};
    
    	}
    
    	//
    
    	if ( Math.sign === undefined ) {
    
    		// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign
    
    		Math.sign = function ( x ) {
    
    			return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;
    
    		};
    
    	}
    
    	if ( Function.prototype.name === undefined ) {
    
    		// Missing in IE
    		// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
    
    		Object.defineProperty( Function.prototype, 'name', {
    
    			get: function () {
    
    				return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];
    
    			}
    
    		} );
    
    	}
    
    	if ( Object.assign === undefined ) {
    
    		// Missing in IE
    		// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
    
    		( function () {
    
    			Object.assign = function ( target ) {
    
    				'use strict';
    
    				if ( target === undefined || target === null ) {
    
    					throw new TypeError( 'Cannot convert undefined or null to object' );
    
    				}
    
    				var output = Object( target );
    
    				for ( var index = 1; index < arguments.length; index ++ ) {
    
    					var source = arguments[ index ];
    
    					if ( source !== undefined && source !== null ) {
    
    						for ( var nextKey in source ) {
    
    							if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {
    
    								output[ nextKey ] = source[ nextKey ];
    
    							}
    
    						}
    
    					}
    
    				}
    
    				return output;
    
    			};
    
    		} )();
    
    	}
    
    	/**
    	 * https://github.com/mrdoob/eventdispatcher.js/
    	 */
    
    	function EventDispatcher() {}
    
    	Object.assign( EventDispatcher.prototype, {
    
    		addEventListener: function ( type, listener ) {
    
    			if ( this._listeners === undefined ) this._listeners = {};
    
    			var listeners = this._listeners;
    
    			if ( listeners[ type ] === undefined ) {
    
    				listeners[ type ] = [];
    
    			}
    
    			if ( listeners[ type ].indexOf( listener ) === - 1 ) {
    
    				listeners[ type ].push( listener );
    
    			}
    
    		},
    
    		hasEventListener: function ( type, listener ) {
    
    			if ( this._listeners === undefined ) return false;
    
    			var listeners = this._listeners;
    
    			return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;
    
    		},
    
    		removeEventListener: function ( type, listener ) {
    
    			if ( this._listeners === undefined ) return;
    
    			var listeners = this._listeners;
    			var listenerArray = listeners[ type ];
    
    			if ( listenerArray !== undefined ) {
    
    				var index = listenerArray.indexOf( listener );
    
    				if ( index !== - 1 ) {
    
    					listenerArray.splice( index, 1 );
    
    				}
    
    			}
    
    		},
    
    		dispatchEvent: function ( event ) {
    
    			if ( this._listeners === undefined ) return;
    
    			var listeners = this._listeners;
    			var listenerArray = listeners[ event.type ];
    
    			if ( listenerArray !== undefined ) {
    
    				event.target = this;
    
    				var array = [], i = 0;
    				var length = listenerArray.length;
    
    				for ( i = 0; i < length; i ++ ) {
    
    					array[ i ] = listenerArray[ i ];
    
    				}
    
    				for ( i = 0; i < length; i ++ ) {
    
    					array[ i ].call( this, event );
    
    				}
    
    			}
    
    		}
    
    	} );
    
    	var REVISION = '85';
    	var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 };
    	var CullFaceNone = 0;
    	var CullFaceBack = 1;
    	var CullFaceFront = 2;
    	var CullFaceFrontBack = 3;
    	var FrontFaceDirectionCW = 0;
    	var FrontFaceDirectionCCW = 1;
    	var BasicShadowMap = 0;
    	var PCFShadowMap = 1;
    	var PCFSoftShadowMap = 2;
    	var FrontSide = 0;
    	var BackSide = 1;
    	var DoubleSide = 2;
    	var FlatShading = 1;
    	var SmoothShading = 2;
    	var NoColors = 0;
    	var FaceColors = 1;
    	var VertexColors = 2;
    	var NoBlending = 0;
    	var NormalBlending = 1;
    	var AdditiveBlending = 2;
    	var SubtractiveBlending = 3;
    	var MultiplyBlending = 4;
    	var CustomBlending = 5;
    	var AddEquation = 100;
    	var SubtractEquation = 101;
    	var ReverseSubtractEquation = 102;
    	var MinEquation = 103;
    	var MaxEquation = 104;
    	var ZeroFactor = 200;
    	var OneFactor = 201;
    	var SrcColorFactor = 202;
    	var OneMinusSrcColorFactor = 203;
    	var SrcAlphaFactor = 204;
    	var OneMinusSrcAlphaFactor = 205;
    	var DstAlphaFactor = 206;
    	var OneMinusDstAlphaFactor = 207;
    	var DstColorFactor = 208;
    	var OneMinusDstColorFactor = 209;
    	var SrcAlphaSaturateFactor = 210;
    	var NeverDepth = 0;
    	var AlwaysDepth = 1;
    	var LessDepth = 2;
    	var LessEqualDepth = 3;
    	var EqualDepth = 4;
    	var GreaterEqualDepth = 5;
    	var GreaterDepth = 6;
    	var NotEqualDepth = 7;
    	var MultiplyOperation = 0;
    	var MixOperation = 1;
    	var AddOperation = 2;
    	var NoToneMapping = 0;
    	var LinearToneMapping = 1;
    	var ReinhardToneMapping = 2;
    	var Uncharted2ToneMapping = 3;
    	var CineonToneMapping = 4;
    	var UVMapping = 300;
    	var CubeReflectionMapping = 301;
    	var CubeRefractionMapping = 302;
    	var EquirectangularReflectionMapping = 303;
    	var EquirectangularRefractionMapping = 304;
    	var SphericalReflectionMapping = 305;
    	var CubeUVReflectionMapping = 306;
    	var CubeUVRefractionMapping = 307;
    	var RepeatWrapping = 1000;
    	var ClampToEdgeWrapping = 1001;
    	var MirroredRepeatWrapping = 1002;
    	var NearestFilter = 1003;
    	var NearestMipMapNearestFilter = 1004;
    	var NearestMipMapLinearFilter = 1005;
    	var LinearFilter = 1006;
    	var LinearMipMapNearestFilter = 1007;
    	var LinearMipMapLinearFilter = 1008;
    	var UnsignedByteType = 1009;
    	var ByteType = 1010;
    	var ShortType = 1011;
    	var UnsignedShortType = 1012;
    	var IntType = 1013;
    	var UnsignedIntType = 1014;
    	var FloatType = 1015;
    	var HalfFloatType = 1016;
    	var UnsignedShort4444Type = 1017;
    	var UnsignedShort5551Type = 1018;
    	var UnsignedShort565Type = 1019;
    	var UnsignedInt248Type = 1020;
    	var AlphaFormat = 1021;
    	var RGBFormat = 1022;
    	var RGBAFormat = 1023;
    	var LuminanceFormat = 1024;
    	var LuminanceAlphaFormat = 1025;
    	var RGBEFormat = RGBAFormat;
    	var DepthFormat = 1026;
    	var DepthStencilFormat = 1027;
    	var RGB_S3TC_DXT1_Format = 2001;
    	var RGBA_S3TC_DXT1_Format = 2002;
    	var RGBA_S3TC_DXT3_Format = 2003;
    	var RGBA_S3TC_DXT5_Format = 2004;
    	var RGB_PVRTC_4BPPV1_Format = 2100;
    	var RGB_PVRTC_2BPPV1_Format = 2101;
    	var RGBA_PVRTC_4BPPV1_Format = 2102;
    	var RGBA_PVRTC_2BPPV1_Format = 2103;
    	var RGB_ETC1_Format = 2151;
    	var LoopOnce = 2200;
    	var LoopRepeat = 2201;
    	var LoopPingPong = 2202;
    	var InterpolateDiscrete = 2300;
    	var InterpolateLinear = 2301;
    	var InterpolateSmooth = 2302;
    	var ZeroCurvatureEnding = 2400;
    	var ZeroSlopeEnding = 2401;
    	var WrapAroundEnding = 2402;
    	var TrianglesDrawMode = 0;
    	var TriangleStripDrawMode = 1;
    	var TriangleFanDrawMode = 2;
    	var LinearEncoding = 3000;
    	var sRGBEncoding = 3001;
    	var GammaEncoding = 3007;
    	var RGBEEncoding = 3002;
    	var LogLuvEncoding = 3003;
    	var RGBM7Encoding = 3004;
    	var RGBM16Encoding = 3005;
    	var RGBDEncoding = 3006;
    	var BasicDepthPacking = 3200;
    	var RGBADepthPacking = 3201;
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	var _Math = {
    
    		DEG2RAD: Math.PI / 180,
    		RAD2DEG: 180 / Math.PI,
    
    		generateUUID: function () {
    
    			// http://www.broofa.com/Tools/Math.uuid.htm
    
    			var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' );
    			var uuid = new Array( 36 );
    			var rnd = 0, r;
    
    			return function generateUUID() {
    
    				for ( var i = 0; i < 36; i ++ ) {
    
    					if ( i === 8 || i === 13 || i === 18 || i === 23 ) {
    
    						uuid[ i ] = '-';
    
    					} else if ( i === 14 ) {
    
    						uuid[ i ] = '4';
    
    					} else {
    
    						if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0;
    						r = rnd & 0xf;
    						rnd = rnd >> 4;
    						uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ];
    
    					}
    
    				}
    
    				return uuid.join( '' );
    
    			};
    
    		}(),
    
    		clamp: function ( value, min, max ) {
    
    			return Math.max( min, Math.min( max, value ) );
    
    		},
    
    		// compute euclidian modulo of m % n
    		// https://en.wikipedia.org/wiki/Modulo_operation
    
    		euclideanModulo: function ( n, m ) {
    
    			return ( ( n % m ) + m ) % m;
    
    		},
    
    		// Linear mapping from range <a1, a2> to range <b1, b2>
    
    		mapLinear: function ( x, a1, a2, b1, b2 ) {
    
    			return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
    
    		},
    
    		// https://en.wikipedia.org/wiki/Linear_interpolation
    
    		lerp: function ( x, y, t ) {
    
    			return ( 1 - t ) * x + t * y;
    
    		},
    
    		// http://en.wikipedia.org/wiki/Smoothstep
    
    		smoothstep: function ( x, min, max ) {
    
    			if ( x <= min ) return 0;
    			if ( x >= max ) return 1;
    
    			x = ( x - min ) / ( max - min );
    
    			return x * x * ( 3 - 2 * x );
    
    		},
    
    		smootherstep: function ( x, min, max ) {
    
    			if ( x <= min ) return 0;
    			if ( x >= max ) return 1;
    
    			x = ( x - min ) / ( max - min );
    
    			return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
    
    		},
    
    		// Random integer from <low, high> interval
    
    		randInt: function ( low, high ) {
    
    			return low + Math.floor( Math.random() * ( high - low + 1 ) );
    
    		},
    
    		// Random float from <low, high> interval
    
    		randFloat: function ( low, high ) {
    
    			return low + Math.random() * ( high - low );
    
    		},
    
    		// Random float from <-range/2, range/2> interval
    
    		randFloatSpread: function ( range ) {
    
    			return range * ( 0.5 - Math.random() );
    
    		},
    
    		degToRad: function ( degrees ) {
    
    			return degrees * _Math.DEG2RAD;
    
    		},
    
    		radToDeg: function ( radians ) {
    
    			return radians * _Math.RAD2DEG;
    
    		},
    
    		isPowerOfTwo: function ( value ) {
    
    			return ( value & ( value - 1 ) ) === 0 && value !== 0;
    
    		},
    
    		nearestPowerOfTwo: function ( value ) {
    
    			return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) );
    
    		},
    
    		nextPowerOfTwo: function ( value ) {
    
    			value --;
    			value |= value >> 1;
    			value |= value >> 2;
    			value |= value >> 4;
    			value |= value >> 8;
    			value |= value >> 16;
    			value ++;
    
    			return value;
    
    		}
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author philogb / http://blog.thejit.org/
    	 * @author egraether / http://egraether.com/
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 */
    
    	function Vector2( x, y ) {
    
    		this.x = x || 0;
    		this.y = y || 0;
    
    	}
    
    	Object.defineProperties( Vector2.prototype, {
    
    		"width" : {
    
    			get: function () {
    
    				return this.x;
    
    			},
    
    			set: function ( value ) {
    
    				this.x = value;
    
    			}
    
    		},
    
    		"height" : {
    
    			get: function () {
    
    				return this.y;
    
    			},
    
    			set: function ( value ) {
    
    				this.y = value;
    
    			}
    
    		}
    
    	} );
    
    	Object.assign( Vector2.prototype, {
    
    		isVector2: true,
    
    		set: function ( x, y ) {
    
    			this.x = x;
    			this.y = y;
    
    			return this;
    
    		},
    
    		setScalar: function ( scalar ) {
    
    			this.x = scalar;
    			this.y = scalar;
    
    			return this;
    
    		},
    
    		setX: function ( x ) {
    
    			this.x = x;
    
    			return this;
    
    		},
    
    		setY: function ( y ) {
    
    			this.y = y;
    
    			return this;
    
    		},
    
    		setComponent: function ( index, value ) {
    
    			switch ( index ) {
    
    				case 0: this.x = value; break;
    				case 1: this.y = value; break;
    				default: throw new Error( 'index is out of range: ' + index );
    
    			}
    
    			return this;
    
    		},
    
    		getComponent: function ( index ) {
    
    			switch ( index ) {
    
    				case 0: return this.x;
    				case 1: return this.y;
    				default: throw new Error( 'index is out of range: ' + index );
    
    			}
    
    		},
    
    		clone: function () {
    
    			return new this.constructor( this.x, this.y );
    
    		},
    
    		copy: function ( v ) {
    
    			this.x = v.x;
    			this.y = v.y;
    
    			return this;
    
    		},
    
    		add: function ( v, w ) {
    
    			if ( w !== undefined ) {
    
    				console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
    				return this.addVectors( v, w );
    
    			}
    
    			this.x += v.x;
    			this.y += v.y;
    
    			return this;
    
    		},
    
    		addScalar: function ( s ) {
    
    			this.x += s;
    			this.y += s;
    
    			return this;
    
    		},
    
    		addVectors: function ( a, b ) {
    
    			this.x = a.x + b.x;
    			this.y = a.y + b.y;
    
    			return this;
    
    		},
    
    		addScaledVector: function ( v, s ) {
    
    			this.x += v.x * s;
    			this.y += v.y * s;
    
    			return this;
    
    		},
    
    		sub: function ( v, w ) {
    
    			if ( w !== undefined ) {
    
    				console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
    				return this.subVectors( v, w );
    
    			}
    
    			this.x -= v.x;
    			this.y -= v.y;
    
    			return this;
    
    		},
    
    		subScalar: function ( s ) {
    
    			this.x -= s;
    			this.y -= s;
    
    			return this;
    
    		},
    
    		subVectors: function ( a, b ) {
    
    			this.x = a.x - b.x;
    			this.y = a.y - b.y;
    
    			return this;
    
    		},
    
    		multiply: function ( v ) {
    
    			this.x *= v.x;
    			this.y *= v.y;
    
    			return this;
    
    		},
    
    		multiplyScalar: function ( scalar ) {
    
    			this.x *= scalar;
    			this.y *= scalar;
    
    			return this;
    
    		},
    
    		divide: function ( v ) {
    
    			this.x /= v.x;
    			this.y /= v.y;
    
    			return this;
    
    		},
    
    		divideScalar: function ( scalar ) {
    
    			return this.multiplyScalar( 1 / scalar );
    
    		},
    
    		min: function ( v ) {
    
    			this.x = Math.min( this.x, v.x );
    			this.y = Math.min( this.y, v.y );
    
    			return this;
    
    		},
    
    		max: function ( v ) {
    
    			this.x = Math.max( this.x, v.x );
    			this.y = Math.max( this.y, v.y );
    
    			return this;
    
    		},
    
    		clamp: function ( min, max ) {
    
    			// This function assumes min < max, if this assumption isn't true it will not operate correctly
    
    			this.x = Math.max( min.x, Math.min( max.x, this.x ) );
    			this.y = Math.max( min.y, Math.min( max.y, this.y ) );
    
    			return this;
    
    		},
    
    		clampScalar: function () {
    
    			var min = new Vector2();
    			var max = new Vector2();
    
    			return function clampScalar( minVal, maxVal ) {
    
    				min.set( minVal, minVal );
    				max.set( maxVal, maxVal );
    
    				return this.clamp( min, max );
    
    			};
    
    		}(),
    
    		clampLength: function ( min, max ) {
    
    			var length = this.length();
    
    			return this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length );
    
    		},
    
    		floor: function () {
    
    			this.x = Math.floor( this.x );
    			this.y = Math.floor( this.y );
    
    			return this;
    
    		},
    
    		ceil: function () {
    
    			this.x = Math.ceil( this.x );
    			this.y = Math.ceil( this.y );
    
    			return this;
    
    		},
    
    		round: function () {
    
    			this.x = Math.round( this.x );
    			this.y = Math.round( this.y );
    
    			return this;
    
    		},
    
    		roundToZero: function () {
    
    			this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
    			this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
    
    			return this;
    
    		},
    
    		negate: function () {
    
    			this.x = - this.x;
    			this.y = - this.y;
    
    			return this;
    
    		},
    
    		dot: function ( v ) {
    
    			return this.x * v.x + this.y * v.y;
    
    		},
    
    		lengthSq: function () {
    
    			return this.x * this.x + this.y * this.y;
    
    		},
    
    		length: function () {
    
    			return Math.sqrt( this.x * this.x + this.y * this.y );
    
    		},
    
    		lengthManhattan: function() {
    
    			return Math.abs( this.x ) + Math.abs( this.y );
    
    		},
    
    		normalize: function () {
    
    			return this.divideScalar( this.length() );
    
    		},
    
    		angle: function () {
    
    			// computes the angle in radians with respect to the positive x-axis
    
    			var angle = Math.atan2( this.y, this.x );
    
    			if ( angle < 0 ) angle += 2 * Math.PI;
    
    			return angle;
    
    		},
    
    		distanceTo: function ( v ) {
    
    			return Math.sqrt( this.distanceToSquared( v ) );
    
    		},
    
    		distanceToSquared: function ( v ) {
    
    			var dx = this.x - v.x, dy = this.y - v.y;
    			return dx * dx + dy * dy;
    
    		},
    
    		distanceToManhattan: function ( v ) {
    
    			return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
    
    		},
    
    		setLength: function ( length ) {
    
    			return this.multiplyScalar( length / this.length() );
    
    		},
    
    		lerp: function ( v, alpha ) {
    
    			this.x += ( v.x - this.x ) * alpha;
    			this.y += ( v.y - this.y ) * alpha;
    
    			return this;
    
    		},
    
    		lerpVectors: function ( v1, v2, alpha ) {
    
    			return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
    
    		},
    
    		equals: function ( v ) {
    
    			return ( ( v.x === this.x ) && ( v.y === this.y ) );
    
    		},
    
    		fromArray: function ( array, offset ) {
    
    			if ( offset === undefined ) offset = 0;
    
    			this.x = array[ offset ];
    			this.y = array[ offset + 1 ];
    
    			return this;
    
    		},
    
    		toArray: function ( array, offset ) {
    
    			if ( array === undefined ) array = [];
    			if ( offset === undefined ) offset = 0;
    
    			array[ offset ] = this.x;
    			array[ offset + 1 ] = this.y;
    
    			return array;
    
    		},
    
    		fromBufferAttribute: function ( attribute, index, offset ) {
    
    			if ( offset !== undefined ) {
    
    				console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );
    
    			}
    
    			this.x = attribute.getX( index );
    			this.y = attribute.getY( index );
    
    			return this;
    
    		},
    
    		rotateAround: function ( center, angle ) {
    
    			var c = Math.cos( angle ), s = Math.sin( angle );
    
    			var x = this.x - center.x;
    			var y = this.y - center.y;
    
    			this.x = x * c - y * s + center.x;
    			this.y = x * s + y * c + center.y;
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author szimek / https://github.com/szimek/
    	 */
    
    	var textureId = 0;
    
    	function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
    
    		Object.defineProperty( this, 'id', { value: textureId ++ } );
    
    		this.uuid = _Math.generateUUID();
    
    		this.name = '';
    
    		this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;
    		this.mipmaps = [];
    
    		this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;
    
    		this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;
    		this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;
    
    		this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
    		this.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter;
    
    		this.anisotropy = anisotropy !== undefined ? anisotropy : 1;
    
    		this.format = format !== undefined ? format : RGBAFormat;
    		this.type = type !== undefined ? type : UnsignedByteType;
    
    		this.offset = new Vector2( 0, 0 );
    		this.repeat = new Vector2( 1, 1 );
    
    		this.generateMipmaps = true;
    		this.premultiplyAlpha = false;
    		this.flipY = true;
    		this.unpackAlignment = 4;	// valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
    
    		// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
    		//
    		// Also changing the encoding after already used by a Material will not automatically make the Material
    		// update.  You need to explicitly call Material.needsUpdate to trigger it to recompile.
    		this.encoding = encoding !== undefined ? encoding : LinearEncoding;
    
    		this.version = 0;
    		this.onUpdate = null;
    
    	}
    
    	Texture.DEFAULT_IMAGE = undefined;
    	Texture.DEFAULT_MAPPING = UVMapping;
    
    	Object.defineProperty( Texture.prototype, "needsUpdate", {
    
    		set: function ( value ) {
    
    			if ( value === true ) this.version ++;
    
    		}
    
    	} );
    
    	Object.assign( Texture.prototype, EventDispatcher.prototype, {
    
    		constructor: Texture,
    
    		isTexture: true,
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( source ) {
    
    			this.name = source.name;
    
    			this.image = source.image;
    			this.mipmaps = source.mipmaps.slice( 0 );
    
    			this.mapping = source.mapping;
    
    			this.wrapS = source.wrapS;
    			this.wrapT = source.wrapT;
    
    			this.magFilter = source.magFilter;
    			this.minFilter = source.minFilter;
    
    			this.anisotropy = source.anisotropy;
    
    			this.format = source.format;
    			this.type = source.type;
    
    			this.offset.copy( source.offset );
    			this.repeat.copy( source.repeat );
    
    			this.generateMipmaps = source.generateMipmaps;
    			this.premultiplyAlpha = source.premultiplyAlpha;
    			this.flipY = source.flipY;
    			this.unpackAlignment = source.unpackAlignment;
    			this.encoding = source.encoding;
    
    			return this;
    
    		},
    
    		toJSON: function ( meta ) {
    
    			if ( meta.textures[ this.uuid ] !== undefined ) {
    
    				return meta.textures[ this.uuid ];
    
    			}
    
    			function getDataURL( image ) {
    
    				var canvas;
    
    				if ( image.toDataURL !== undefined ) {
    
    					canvas = image;
    
    				} else {
    
    					canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
    					canvas.width = image.width;
    					canvas.height = image.height;
    
    					canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height );
    
    				}
    
    				if ( canvas.width > 2048 || canvas.height > 2048 ) {
    
    					return canvas.toDataURL( 'image/jpeg', 0.6 );
    
    				} else {
    
    					return canvas.toDataURL( 'image/png' );
    
    				}
    
    			}
    
    			var output = {
    				metadata: {
    					version: 4.5,
    					type: 'Texture',
    					generator: 'Texture.toJSON'
    				},
    
    				uuid: this.uuid,
    				name: this.name,
    
    				mapping: this.mapping,
    
    				repeat: [ this.repeat.x, this.repeat.y ],
    				offset: [ this.offset.x, this.offset.y ],
    				wrap: [ this.wrapS, this.wrapT ],
    
    				minFilter: this.minFilter,
    				magFilter: this.magFilter,
    				anisotropy: this.anisotropy,
    
    				flipY: this.flipY
    			};
    
    			if ( this.image !== undefined ) {
    
    				// TODO: Move to THREE.Image
    
    				var image = this.image;
    
    				if ( image.uuid === undefined ) {
    
    					image.uuid = _Math.generateUUID(); // UGH
    
    				}
    
    				if ( meta.images[ image.uuid ] === undefined ) {
    
    					meta.images[ image.uuid ] = {
    						uuid: image.uuid,
    						url: getDataURL( image )
    					};
    
    				}
    
    				output.image = image.uuid;
    
    			}
    
    			meta.textures[ this.uuid ] = output;
    
    			return output;
    
    		},
    
    		dispose: function () {
    
    			this.dispatchEvent( { type: 'dispose' } );
    
    		},
    
    		transformUv: function ( uv ) {
    
    			if ( this.mapping !== UVMapping ) return;
    
    			uv.multiply( this.repeat );
    			uv.add( this.offset );
    
    			if ( uv.x < 0 || uv.x > 1 ) {
    
    				switch ( this.wrapS ) {
    
    					case RepeatWrapping:
    
    						uv.x = uv.x - Math.floor( uv.x );
    						break;
    
    					case ClampToEdgeWrapping:
    
    						uv.x = uv.x < 0 ? 0 : 1;
    						break;
    
    					case MirroredRepeatWrapping:
    
    						if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
    
    							uv.x = Math.ceil( uv.x ) - uv.x;
    
    						} else {
    
    							uv.x = uv.x - Math.floor( uv.x );
    
    						}
    						break;
    
    				}
    
    			}
    
    			if ( uv.y < 0 || uv.y > 1 ) {
    
    				switch ( this.wrapT ) {
    
    					case RepeatWrapping:
    
    						uv.y = uv.y - Math.floor( uv.y );
    						break;
    
    					case ClampToEdgeWrapping:
    
    						uv.y = uv.y < 0 ? 0 : 1;
    						break;
    
    					case MirroredRepeatWrapping:
    
    						if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
    
    							uv.y = Math.ceil( uv.y ) - uv.y;
    
    						} else {
    
    							uv.y = uv.y - Math.floor( uv.y );
    
    						}
    						break;
    
    				}
    
    			}
    
    			if ( this.flipY ) {
    
    				uv.y = 1 - uv.y;
    
    			}
    
    		}
    
    	} );
    
    	/**
    	 * @author supereggbert / http://www.paulbrunt.co.uk/
    	 * @author philogb / http://blog.thejit.org/
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author egraether / http://egraether.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	 */
    
    	function Vector4( x, y, z, w ) {
    
    		this.x = x || 0;
    		this.y = y || 0;
    		this.z = z || 0;
    		this.w = ( w !== undefined ) ? w : 1;
    
    	}
    
    	Object.assign( Vector4.prototype, {
    
    		isVector4: true,
    
    		set: function ( x, y, z, w ) {
    
    			this.x = x;
    			this.y = y;
    			this.z = z;
    			this.w = w;
    
    			return this;
    
    		},
    
    		setScalar: function ( scalar ) {
    
    			this.x = scalar;
    			this.y = scalar;
    			this.z = scalar;
    			this.w = scalar;
    
    			return this;
    
    		},
    
    		setX: function ( x ) {
    
    			this.x = x;
    
    			return this;
    
    		},
    
    		setY: function ( y ) {
    
    			this.y = y;
    
    			return this;
    
    		},
    
    		setZ: function ( z ) {
    
    			this.z = z;
    
    			return this;
    
    		},
    
    		setW: function ( w ) {
    
    			this.w = w;
    
    			return this;
    
    		},
    
    		setComponent: function ( index, value ) {
    
    			switch ( index ) {
    
    				case 0: this.x = value; break;
    				case 1: this.y = value; break;
    				case 2: this.z = value; break;
    				case 3: this.w = value; break;
    				default: throw new Error( 'index is out of range: ' + index );
    
    			}
    
    			return this;
    
    		},
    
    		getComponent: function ( index ) {
    
    			switch ( index ) {
    
    				case 0: return this.x;
    				case 1: return this.y;
    				case 2: return this.z;
    				case 3: return this.w;
    				default: throw new Error( 'index is out of range: ' + index );
    
    			}
    
    		},
    
    		clone: function () {
    
    			return new this.constructor( this.x, this.y, this.z, this.w );
    
    		},
    
    		copy: function ( v ) {
    
    			this.x = v.x;
    			this.y = v.y;
    			this.z = v.z;
    			this.w = ( v.w !== undefined ) ? v.w : 1;
    
    			return this;
    
    		},
    
    		add: function ( v, w ) {
    
    			if ( w !== undefined ) {
    
    				console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
    				return this.addVectors( v, w );
    
    			}
    
    			this.x += v.x;
    			this.y += v.y;
    			this.z += v.z;
    			this.w += v.w;
    
    			return this;
    
    		},
    
    		addScalar: function ( s ) {
    
    			this.x += s;
    			this.y += s;
    			this.z += s;
    			this.w += s;
    
    			return this;
    
    		},
    
    		addVectors: function ( a, b ) {
    
    			this.x = a.x + b.x;
    			this.y = a.y + b.y;
    			this.z = a.z + b.z;
    			this.w = a.w + b.w;
    
    			return this;
    
    		},
    
    		addScaledVector: function ( v, s ) {
    
    			this.x += v.x * s;
    			this.y += v.y * s;
    			this.z += v.z * s;
    			this.w += v.w * s;
    
    			return this;
    
    		},
    
    		sub: function ( v, w ) {
    
    			if ( w !== undefined ) {
    
    				console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
    				return this.subVectors( v, w );
    
    			}
    
    			this.x -= v.x;
    			this.y -= v.y;
    			this.z -= v.z;
    			this.w -= v.w;
    
    			return this;
    
    		},
    
    		subScalar: function ( s ) {
    
    			this.x -= s;
    			this.y -= s;
    			this.z -= s;
    			this.w -= s;
    
    			return this;
    
    		},
    
    		subVectors: function ( a, b ) {
    
    			this.x = a.x - b.x;
    			this.y = a.y - b.y;
    			this.z = a.z - b.z;
    			this.w = a.w - b.w;
    
    			return this;
    
    		},
    
    		multiplyScalar: function ( scalar ) {
    
    			this.x *= scalar;
    			this.y *= scalar;
    			this.z *= scalar;
    			this.w *= scalar;
    
    			return this;
    
    		},
    
    		applyMatrix4: function ( m ) {
    
    			var x = this.x, y = this.y, z = this.z, w = this.w;
    			var e = m.elements;
    
    			this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
    			this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
    			this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
    			this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
    
    			return this;
    
    		},
    
    		divideScalar: function ( scalar ) {
    
    			return this.multiplyScalar( 1 / scalar );
    
    		},
    
    		setAxisAngleFromQuaternion: function ( q ) {
    
    			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
    
    			// q is assumed to be normalized
    
    			this.w = 2 * Math.acos( q.w );
    
    			var s = Math.sqrt( 1 - q.w * q.w );
    
    			if ( s < 0.0001 ) {
    
    				 this.x = 1;
    				 this.y = 0;
    				 this.z = 0;
    
    			} else {
    
    				 this.x = q.x / s;
    				 this.y = q.y / s;
    				 this.z = q.z / s;
    
    			}
    
    			return this;
    
    		},
    
    		setAxisAngleFromRotationMatrix: function ( m ) {
    
    			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
    
    			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
    
    			var angle, x, y, z,		// variables for result
    				epsilon = 0.01,		// margin to allow for rounding errors
    				epsilon2 = 0.1,		// margin to distinguish between 0 and 180 degrees
    
    				te = m.elements,
    
    				m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
    				m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
    				m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
    
    			if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
    			     ( Math.abs( m13 - m31 ) < epsilon ) &&
    			     ( Math.abs( m23 - m32 ) < epsilon ) ) {
    
    				// singularity found
    				// first check for identity matrix which must have +1 for all terms
    				// in leading diagonal and zero in other terms
    
    				if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
    				     ( Math.abs( m13 + m31 ) < epsilon2 ) &&
    				     ( Math.abs( m23 + m32 ) < epsilon2 ) &&
    				     ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
    
    					// this singularity is identity matrix so angle = 0
    
    					this.set( 1, 0, 0, 0 );
    
    					return this; // zero angle, arbitrary axis
    
    				}
    
    				// otherwise this singularity is angle = 180
    
    				angle = Math.PI;
    
    				var xx = ( m11 + 1 ) / 2;
    				var yy = ( m22 + 1 ) / 2;
    				var zz = ( m33 + 1 ) / 2;
    				var xy = ( m12 + m21 ) / 4;
    				var xz = ( m13 + m31 ) / 4;
    				var yz = ( m23 + m32 ) / 4;
    
    				if ( ( xx > yy ) && ( xx > zz ) ) {
    
    					// m11 is the largest diagonal term
    
    					if ( xx < epsilon ) {
    
    						x = 0;
    						y = 0.707106781;
    						z = 0.707106781;
    
    					} else {
    
    						x = Math.sqrt( xx );
    						y = xy / x;
    						z = xz / x;
    
    					}
    
    				} else if ( yy > zz ) {
    
    					// m22 is the largest diagonal term
    
    					if ( yy < epsilon ) {
    
    						x = 0.707106781;
    						y = 0;
    						z = 0.707106781;
    
    					} else {
    
    						y = Math.sqrt( yy );
    						x = xy / y;
    						z = yz / y;
    
    					}
    
    				} else {
    
    					// m33 is the largest diagonal term so base result on this
    
    					if ( zz < epsilon ) {
    
    						x = 0.707106781;
    						y = 0.707106781;
    						z = 0;
    
    					} else {
    
    						z = Math.sqrt( zz );
    						x = xz / z;
    						y = yz / z;
    
    					}
    
    				}
    
    				this.set( x, y, z, angle );
    
    				return this; // return 180 deg rotation
    
    			}
    
    			// as we have reached here there are no singularities so we can handle normally
    
    			var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
    			                   ( m13 - m31 ) * ( m13 - m31 ) +
    			                   ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
    
    			if ( Math.abs( s ) < 0.001 ) s = 1;
    
    			// prevent divide by zero, should not happen if matrix is orthogonal and should be
    			// caught by singularity test above, but I've left it in just in case
    
    			this.x = ( m32 - m23 ) / s;
    			this.y = ( m13 - m31 ) / s;
    			this.z = ( m21 - m12 ) / s;
    			this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
    
    			return this;
    
    		},
    
    		min: function ( v ) {
    
    			this.x = Math.min( this.x, v.x );
    			this.y = Math.min( this.y, v.y );
    			this.z = Math.min( this.z, v.z );
    			this.w = Math.min( this.w, v.w );
    
    			return this;
    
    		},
    
    		max: function ( v ) {
    
    			this.x = Math.max( this.x, v.x );
    			this.y = Math.max( this.y, v.y );
    			this.z = Math.max( this.z, v.z );
    			this.w = Math.max( this.w, v.w );
    
    			return this;
    
    		},
    
    		clamp: function ( min, max ) {
    
    			// This function assumes min < max, if this assumption isn't true it will not operate correctly
    
    			this.x = Math.max( min.x, Math.min( max.x, this.x ) );
    			this.y = Math.max( min.y, Math.min( max.y, this.y ) );
    			this.z = Math.max( min.z, Math.min( max.z, this.z ) );
    			this.w = Math.max( min.w, Math.min( max.w, this.w ) );
    
    			return this;
    
    		},
    
    		clampScalar: function () {
    
    			var min = new Vector4();
    			var max = new Vector4();
    
    			return function clampScalar( minVal, maxVal ) {
    
    				min.set( minVal, minVal, minVal, minVal );
    				max.set( maxVal, maxVal, maxVal, maxVal );
    
    				return this.clamp( min, max );
    
    			};
    
    		}(),
    
    		floor: function () {
    
    			this.x = Math.floor( this.x );
    			this.y = Math.floor( this.y );
    			this.z = Math.floor( this.z );
    			this.w = Math.floor( this.w );
    
    			return this;
    
    		},
    
    		ceil: function () {
    
    			this.x = Math.ceil( this.x );
    			this.y = Math.ceil( this.y );
    			this.z = Math.ceil( this.z );
    			this.w = Math.ceil( this.w );
    
    			return this;
    
    		},
    
    		round: function () {
    
    			this.x = Math.round( this.x );
    			this.y = Math.round( this.y );
    			this.z = Math.round( this.z );
    			this.w = Math.round( this.w );
    
    			return this;
    
    		},
    
    		roundToZero: function () {
    
    			this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
    			this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
    			this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
    			this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
    
    			return this;
    
    		},
    
    		negate: function () {
    
    			this.x = - this.x;
    			this.y = - this.y;
    			this.z = - this.z;
    			this.w = - this.w;
    
    			return this;
    
    		},
    
    		dot: function ( v ) {
    
    			return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
    
    		},
    
    		lengthSq: function () {
    
    			return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
    
    		},
    
    		length: function () {
    
    			return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
    
    		},
    
    		lengthManhattan: function () {
    
    			return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
    
    		},
    
    		normalize: function () {
    
    			return this.divideScalar( this.length() );
    
    		},
    
    		setLength: function ( length ) {
    
    			return this.multiplyScalar( length / this.length() );
    
    		},
    
    		lerp: function ( v, alpha ) {
    
    			this.x += ( v.x - this.x ) * alpha;
    			this.y += ( v.y - this.y ) * alpha;
    			this.z += ( v.z - this.z ) * alpha;
    			this.w += ( v.w - this.w ) * alpha;
    
    			return this;
    
    		},
    
    		lerpVectors: function ( v1, v2, alpha ) {
    
    			return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
    
    		},
    
    		equals: function ( v ) {
    
    			return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
    
    		},
    
    		fromArray: function ( array, offset ) {
    
    			if ( offset === undefined ) offset = 0;
    
    			this.x = array[ offset ];
    			this.y = array[ offset + 1 ];
    			this.z = array[ offset + 2 ];
    			this.w = array[ offset + 3 ];
    
    			return this;
    
    		},
    
    		toArray: function ( array, offset ) {
    
    			if ( array === undefined ) array = [];
    			if ( offset === undefined ) offset = 0;
    
    			array[ offset ] = this.x;
    			array[ offset + 1 ] = this.y;
    			array[ offset + 2 ] = this.z;
    			array[ offset + 3 ] = this.w;
    
    			return array;
    
    		},
    
    		fromBufferAttribute: function ( attribute, index, offset ) {
    
    			if ( offset !== undefined ) {
    
    				console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );
    
    			}
    
    			this.x = attribute.getX( index );
    			this.y = attribute.getY( index );
    			this.z = attribute.getZ( index );
    			this.w = attribute.getW( index );
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author szimek / https://github.com/szimek/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author Marius Kintel / https://github.com/kintel
    	 */
    
    	/*
    	 In options, we can specify:
    	 * Texture parameters for an auto-generated target texture
    	 * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
    	*/
    	function WebGLRenderTarget( width, height, options ) {
    
    		this.uuid = _Math.generateUUID();
    
    		this.width = width;
    		this.height = height;
    
    		this.scissor = new Vector4( 0, 0, width, height );
    		this.scissorTest = false;
    
    		this.viewport = new Vector4( 0, 0, width, height );
    
    		options = options || {};
    
    		if ( options.minFilter === undefined ) options.minFilter = LinearFilter;
    
    		this.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );
    
    		this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
    		this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
    		this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
    
    	}
    
    	Object.assign( WebGLRenderTarget.prototype, EventDispatcher.prototype, {
    
    		isWebGLRenderTarget: true,
    
    		setSize: function ( width, height ) {
    
    			if ( this.width !== width || this.height !== height ) {
    
    				this.width = width;
    				this.height = height;
    
    				this.dispose();
    
    			}
    
    			this.viewport.set( 0, 0, width, height );
    			this.scissor.set( 0, 0, width, height );
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( source ) {
    
    			this.width = source.width;
    			this.height = source.height;
    
    			this.viewport.copy( source.viewport );
    
    			this.texture = source.texture.clone();
    
    			this.depthBuffer = source.depthBuffer;
    			this.stencilBuffer = source.stencilBuffer;
    			this.depthTexture = source.depthTexture;
    
    			return this;
    
    		},
    
    		dispose: function () {
    
    			this.dispatchEvent( { type: 'dispose' } );
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com
    	 */
    
    	function WebGLRenderTargetCube( width, height, options ) {
    
    		WebGLRenderTarget.call( this, width, height, options );
    
    		this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5
    		this.activeMipMapLevel = 0;
    
    	}
    
    	WebGLRenderTargetCube.prototype = Object.create( WebGLRenderTarget.prototype );
    	WebGLRenderTargetCube.prototype.constructor = WebGLRenderTargetCube;
    
    	WebGLRenderTargetCube.prototype.isWebGLRenderTargetCube = true;
    
    	/**
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	 * @author bhouston / http://clara.io
    	 */
    
    	function Quaternion( x, y, z, w ) {
    
    		this._x = x || 0;
    		this._y = y || 0;
    		this._z = z || 0;
    		this._w = ( w !== undefined ) ? w : 1;
    
    	}
    
    	Object.assign( Quaternion, {
    
    		slerp: function ( qa, qb, qm, t ) {
    
    			return qm.copy( qa ).slerp( qb, t );
    
    		},
    
    		slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
    
    			// fuzz-free, array-based Quaternion SLERP operation
    
    			var x0 = src0[ srcOffset0 + 0 ],
    				y0 = src0[ srcOffset0 + 1 ],
    				z0 = src0[ srcOffset0 + 2 ],
    				w0 = src0[ srcOffset0 + 3 ],
    
    				x1 = src1[ srcOffset1 + 0 ],
    				y1 = src1[ srcOffset1 + 1 ],
    				z1 = src1[ srcOffset1 + 2 ],
    				w1 = src1[ srcOffset1 + 3 ];
    
    			if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
    
    				var s = 1 - t,
    
    					cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
    
    					dir = ( cos >= 0 ? 1 : - 1 ),
    					sqrSin = 1 - cos * cos;
    
    				// Skip the Slerp for tiny steps to avoid numeric problems:
    				if ( sqrSin > Number.EPSILON ) {
    
    					var sin = Math.sqrt( sqrSin ),
    						len = Math.atan2( sin, cos * dir );
    
    					s = Math.sin( s * len ) / sin;
    					t = Math.sin( t * len ) / sin;
    
    				}
    
    				var tDir = t * dir;
    
    				x0 = x0 * s + x1 * tDir;
    				y0 = y0 * s + y1 * tDir;
    				z0 = z0 * s + z1 * tDir;
    				w0 = w0 * s + w1 * tDir;
    
    				// Normalize in case we just did a lerp:
    				if ( s === 1 - t ) {
    
    					var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
    
    					x0 *= f;
    					y0 *= f;
    					z0 *= f;
    					w0 *= f;
    
    				}
    
    			}
    
    			dst[ dstOffset ] = x0;
    			dst[ dstOffset + 1 ] = y0;
    			dst[ dstOffset + 2 ] = z0;
    			dst[ dstOffset + 3 ] = w0;
    
    		}
    
    	} );
    
    	Object.defineProperties( Quaternion.prototype, {
    
    		x: {
    
    			get: function () {
    
    				return this._x;
    
    			},
    
    			set: function ( value ) {
    
    				this._x = value;
    				this.onChangeCallback();
    
    			}
    
    		},
    
    		y: {
    
    			get: function () {
    
    				return this._y;
    
    			},
    
    			set: function ( value ) {
    
    				this._y = value;
    				this.onChangeCallback();
    
    			}
    
    		},
    
    		z: {
    
    			get: function () {
    
    				return this._z;
    
    			},
    
    			set: function ( value ) {
    
    				this._z = value;
    				this.onChangeCallback();
    
    			}
    
    		},
    
    		w: {
    
    			get: function () {
    
    				return this._w;
    
    			},
    
    			set: function ( value ) {
    
    				this._w = value;
    				this.onChangeCallback();
    
    			}
    
    		}
    
    	} );
    
    	Object.assign( Quaternion.prototype, {
    
    		set: function ( x, y, z, w ) {
    
    			this._x = x;
    			this._y = y;
    			this._z = z;
    			this._w = w;
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor( this._x, this._y, this._z, this._w );
    
    		},
    
    		copy: function ( quaternion ) {
    
    			this._x = quaternion.x;
    			this._y = quaternion.y;
    			this._z = quaternion.z;
    			this._w = quaternion.w;
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		setFromEuler: function ( euler, update ) {
    
    			if ( ( euler && euler.isEuler ) === false ) {
    
    				throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );
    
    			}
    
    			var x = euler._x, y = euler._y, z = euler._z, order = euler.order;
    
    			// http://www.mathworks.com/matlabcentral/fileexchange/
    			// 	20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
    			//	content/SpinCalc.m
    
    			var cos = Math.cos;
    			var sin = Math.sin;
    
    			var c1 = cos( x / 2 );
    			var c2 = cos( y / 2 );
    			var c3 = cos( z / 2 );
    
    			var s1 = sin( x / 2 );
    			var s2 = sin( y / 2 );
    			var s3 = sin( z / 2 );
    
    			if ( order === 'XYZ' ) {
    
    				this._x = s1 * c2 * c3 + c1 * s2 * s3;
    				this._y = c1 * s2 * c3 - s1 * c2 * s3;
    				this._z = c1 * c2 * s3 + s1 * s2 * c3;
    				this._w = c1 * c2 * c3 - s1 * s2 * s3;
    
    			} else if ( order === 'YXZ' ) {
    
    				this._x = s1 * c2 * c3 + c1 * s2 * s3;
    				this._y = c1 * s2 * c3 - s1 * c2 * s3;
    				this._z = c1 * c2 * s3 - s1 * s2 * c3;
    				this._w = c1 * c2 * c3 + s1 * s2 * s3;
    
    			} else if ( order === 'ZXY' ) {
    
    				this._x = s1 * c2 * c3 - c1 * s2 * s3;
    				this._y = c1 * s2 * c3 + s1 * c2 * s3;
    				this._z = c1 * c2 * s3 + s1 * s2 * c3;
    				this._w = c1 * c2 * c3 - s1 * s2 * s3;
    
    			} else if ( order === 'ZYX' ) {
    
    				this._x = s1 * c2 * c3 - c1 * s2 * s3;
    				this._y = c1 * s2 * c3 + s1 * c2 * s3;
    				this._z = c1 * c2 * s3 - s1 * s2 * c3;
    				this._w = c1 * c2 * c3 + s1 * s2 * s3;
    
    			} else if ( order === 'YZX' ) {
    
    				this._x = s1 * c2 * c3 + c1 * s2 * s3;
    				this._y = c1 * s2 * c3 + s1 * c2 * s3;
    				this._z = c1 * c2 * s3 - s1 * s2 * c3;
    				this._w = c1 * c2 * c3 - s1 * s2 * s3;
    
    			} else if ( order === 'XZY' ) {
    
    				this._x = s1 * c2 * c3 - c1 * s2 * s3;
    				this._y = c1 * s2 * c3 - s1 * c2 * s3;
    				this._z = c1 * c2 * s3 + s1 * s2 * c3;
    				this._w = c1 * c2 * c3 + s1 * s2 * s3;
    
    			}
    
    			if ( update !== false ) this.onChangeCallback();
    
    			return this;
    
    		},
    
    		setFromAxisAngle: function ( axis, angle ) {
    
    			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
    
    			// assumes axis is normalized
    
    			var halfAngle = angle / 2, s = Math.sin( halfAngle );
    
    			this._x = axis.x * s;
    			this._y = axis.y * s;
    			this._z = axis.z * s;
    			this._w = Math.cos( halfAngle );
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		setFromRotationMatrix: function ( m ) {
    
    			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
    
    			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
    
    			var te = m.elements,
    
    				m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
    				m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
    				m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
    
    				trace = m11 + m22 + m33,
    				s;
    
    			if ( trace > 0 ) {
    
    				s = 0.5 / Math.sqrt( trace + 1.0 );
    
    				this._w = 0.25 / s;
    				this._x = ( m32 - m23 ) * s;
    				this._y = ( m13 - m31 ) * s;
    				this._z = ( m21 - m12 ) * s;
    
    			} else if ( m11 > m22 && m11 > m33 ) {
    
    				s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
    
    				this._w = ( m32 - m23 ) / s;
    				this._x = 0.25 * s;
    				this._y = ( m12 + m21 ) / s;
    				this._z = ( m13 + m31 ) / s;
    
    			} else if ( m22 > m33 ) {
    
    				s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
    
    				this._w = ( m13 - m31 ) / s;
    				this._x = ( m12 + m21 ) / s;
    				this._y = 0.25 * s;
    				this._z = ( m23 + m32 ) / s;
    
    			} else {
    
    				s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
    
    				this._w = ( m21 - m12 ) / s;
    				this._x = ( m13 + m31 ) / s;
    				this._y = ( m23 + m32 ) / s;
    				this._z = 0.25 * s;
    
    			}
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		setFromUnitVectors: function () {
    
    			// assumes direction vectors vFrom and vTo are normalized
    
    			var v1 = new Vector3();
    			var r;
    
    			var EPS = 0.000001;
    
    			return function setFromUnitVectors( vFrom, vTo ) {
    
    				if ( v1 === undefined ) v1 = new Vector3();
    
    				r = vFrom.dot( vTo ) + 1;
    
    				if ( r < EPS ) {
    
    					r = 0;
    
    					if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
    
    						v1.set( - vFrom.y, vFrom.x, 0 );
    
    					} else {
    
    						v1.set( 0, - vFrom.z, vFrom.y );
    
    					}
    
    				} else {
    
    					v1.crossVectors( vFrom, vTo );
    
    				}
    
    				this._x = v1.x;
    				this._y = v1.y;
    				this._z = v1.z;
    				this._w = r;
    
    				return this.normalize();
    
    			};
    
    		}(),
    
    		inverse: function () {
    
    			return this.conjugate().normalize();
    
    		},
    
    		conjugate: function () {
    
    			this._x *= - 1;
    			this._y *= - 1;
    			this._z *= - 1;
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		dot: function ( v ) {
    
    			return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
    
    		},
    
    		lengthSq: function () {
    
    			return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
    
    		},
    
    		length: function () {
    
    			return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
    
    		},
    
    		normalize: function () {
    
    			var l = this.length();
    
    			if ( l === 0 ) {
    
    				this._x = 0;
    				this._y = 0;
    				this._z = 0;
    				this._w = 1;
    
    			} else {
    
    				l = 1 / l;
    
    				this._x = this._x * l;
    				this._y = this._y * l;
    				this._z = this._z * l;
    				this._w = this._w * l;
    
    			}
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		multiply: function ( q, p ) {
    
    			if ( p !== undefined ) {
    
    				console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
    				return this.multiplyQuaternions( q, p );
    
    			}
    
    			return this.multiplyQuaternions( this, q );
    
    		},
    
    		premultiply: function ( q ) {
    
    			return this.multiplyQuaternions( q, this );
    
    		},
    
    		multiplyQuaternions: function ( a, b ) {
    
    			// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
    
    			var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
    			var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
    
    			this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
    			this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
    			this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
    			this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		slerp: function ( qb, t ) {
    
    			if ( t === 0 ) return this;
    			if ( t === 1 ) return this.copy( qb );
    
    			var x = this._x, y = this._y, z = this._z, w = this._w;
    
    			// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
    
    			var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
    
    			if ( cosHalfTheta < 0 ) {
    
    				this._w = - qb._w;
    				this._x = - qb._x;
    				this._y = - qb._y;
    				this._z = - qb._z;
    
    				cosHalfTheta = - cosHalfTheta;
    
    			} else {
    
    				this.copy( qb );
    
    			}
    
    			if ( cosHalfTheta >= 1.0 ) {
    
    				this._w = w;
    				this._x = x;
    				this._y = y;
    				this._z = z;
    
    				return this;
    
    			}
    
    			var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );
    
    			if ( Math.abs( sinHalfTheta ) < 0.001 ) {
    
    				this._w = 0.5 * ( w + this._w );
    				this._x = 0.5 * ( x + this._x );
    				this._y = 0.5 * ( y + this._y );
    				this._z = 0.5 * ( z + this._z );
    
    				return this;
    
    			}
    
    			var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
    			var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
    				ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
    
    			this._w = ( w * ratioA + this._w * ratioB );
    			this._x = ( x * ratioA + this._x * ratioB );
    			this._y = ( y * ratioA + this._y * ratioB );
    			this._z = ( z * ratioA + this._z * ratioB );
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		equals: function ( quaternion ) {
    
    			return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
    
    		},
    
    		fromArray: function ( array, offset ) {
    
    			if ( offset === undefined ) offset = 0;
    
    			this._x = array[ offset ];
    			this._y = array[ offset + 1 ];
    			this._z = array[ offset + 2 ];
    			this._w = array[ offset + 3 ];
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		toArray: function ( array, offset ) {
    
    			if ( array === undefined ) array = [];
    			if ( offset === undefined ) offset = 0;
    
    			array[ offset ] = this._x;
    			array[ offset + 1 ] = this._y;
    			array[ offset + 2 ] = this._z;
    			array[ offset + 3 ] = this._w;
    
    			return array;
    
    		},
    
    		onChange: function ( callback ) {
    
    			this.onChangeCallback = callback;
    
    			return this;
    
    		},
    
    		onChangeCallback: function () {}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author *kile / http://kile.stravaganza.org/
    	 * @author philogb / http://blog.thejit.org/
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author egraether / http://egraether.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	 */
    
    	function Vector3( x, y, z ) {
    
    		this.x = x || 0;
    		this.y = y || 0;
    		this.z = z || 0;
    
    	}
    
    	Object.assign( Vector3.prototype, {
    
    		isVector3: true,
    
    		set: function ( x, y, z ) {
    
    			this.x = x;
    			this.y = y;
    			this.z = z;
    
    			return this;
    
    		},
    
    		setScalar: function ( scalar ) {
    
    			this.x = scalar;
    			this.y = scalar;
    			this.z = scalar;
    
    			return this;
    
    		},
    
    		setX: function ( x ) {
    
    			this.x = x;
    
    			return this;
    
    		},
    
    		setY: function ( y ) {
    
    			this.y = y;
    
    			return this;
    
    		},
    
    		setZ: function ( z ) {
    
    			this.z = z;
    
    			return this;
    
    		},
    
    		setComponent: function ( index, value ) {
    
    			switch ( index ) {
    
    				case 0: this.x = value; break;
    				case 1: this.y = value; break;
    				case 2: this.z = value; break;
    				default: throw new Error( 'index is out of range: ' + index );
    
    			}
    
    			return this;
    
    		},
    
    		getComponent: function ( index ) {
    
    			switch ( index ) {
    
    				case 0: return this.x;
    				case 1: return this.y;
    				case 2: return this.z;
    				default: throw new Error( 'index is out of range: ' + index );
    
    			}
    
    		},
    
    		clone: function () {
    
    			return new this.constructor( this.x, this.y, this.z );
    
    		},
    
    		copy: function ( v ) {
    
    			this.x = v.x;
    			this.y = v.y;
    			this.z = v.z;
    
    			return this;
    
    		},
    
    		add: function ( v, w ) {
    
    			if ( w !== undefined ) {
    
    				console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
    				return this.addVectors( v, w );
    
    			}
    
    			this.x += v.x;
    			this.y += v.y;
    			this.z += v.z;
    
    			return this;
    
    		},
    
    		addScalar: function ( s ) {
    
    			this.x += s;
    			this.y += s;
    			this.z += s;
    
    			return this;
    
    		},
    
    		addVectors: function ( a, b ) {
    
    			this.x = a.x + b.x;
    			this.y = a.y + b.y;
    			this.z = a.z + b.z;
    
    			return this;
    
    		},
    
    		addScaledVector: function ( v, s ) {
    
    			this.x += v.x * s;
    			this.y += v.y * s;
    			this.z += v.z * s;
    
    			return this;
    
    		},
    
    		sub: function ( v, w ) {
    
    			if ( w !== undefined ) {
    
    				console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
    				return this.subVectors( v, w );
    
    			}
    
    			this.x -= v.x;
    			this.y -= v.y;
    			this.z -= v.z;
    
    			return this;
    
    		},
    
    		subScalar: function ( s ) {
    
    			this.x -= s;
    			this.y -= s;
    			this.z -= s;
    
    			return this;
    
    		},
    
    		subVectors: function ( a, b ) {
    
    			this.x = a.x - b.x;
    			this.y = a.y - b.y;
    			this.z = a.z - b.z;
    
    			return this;
    
    		},
    
    		multiply: function ( v, w ) {
    
    			if ( w !== undefined ) {
    
    				console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
    				return this.multiplyVectors( v, w );
    
    			}
    
    			this.x *= v.x;
    			this.y *= v.y;
    			this.z *= v.z;
    
    			return this;
    
    		},
    
    		multiplyScalar: function ( scalar ) {
    
    			this.x *= scalar;
    			this.y *= scalar;
    			this.z *= scalar;
    
    			return this;
    
    		},
    
    		multiplyVectors: function ( a, b ) {
    
    			this.x = a.x * b.x;
    			this.y = a.y * b.y;
    			this.z = a.z * b.z;
    
    			return this;
    
    		},
    
    		applyEuler: function () {
    
    			var quaternion = new Quaternion();
    
    			return function applyEuler( euler ) {
    
    				if ( ( euler && euler.isEuler ) === false ) {
    
    					console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );
    
    				}
    
    				return this.applyQuaternion( quaternion.setFromEuler( euler ) );
    
    			};
    
    		}(),
    
    		applyAxisAngle: function () {
    
    			var quaternion = new Quaternion();
    
    			return function applyAxisAngle( axis, angle ) {
    
    				return this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );
    
    			};
    
    		}(),
    
    		applyMatrix3: function ( m ) {
    
    			var x = this.x, y = this.y, z = this.z;
    			var e = m.elements;
    
    			this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
    			this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
    			this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
    
    			return this;
    
    		},
    
    		applyMatrix4: function ( m ) {
    
    			var x = this.x, y = this.y, z = this.z;
    			var e = m.elements;
    
    			this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ]  * z + e[ 12 ];
    			this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ]  * z + e[ 13 ];
    			this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ];
    			var w =  e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ];
    
    			return this.divideScalar( w );
    
    		},
    
    		applyQuaternion: function ( q ) {
    
    			var x = this.x, y = this.y, z = this.z;
    			var qx = q.x, qy = q.y, qz = q.z, qw = q.w;
    
    			// calculate quat * vector
    
    			var ix =  qw * x + qy * z - qz * y;
    			var iy =  qw * y + qz * x - qx * z;
    			var iz =  qw * z + qx * y - qy * x;
    			var iw = - qx * x - qy * y - qz * z;
    
    			// calculate result * inverse quat
    
    			this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
    			this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
    			this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
    
    			return this;
    
    		},
    
    		project: function () {
    
    			var matrix = new Matrix4();
    
    			return function project( camera ) {
    
    				matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) );
    				return this.applyMatrix4( matrix );
    
    			};
    
    		}(),
    
    		unproject: function () {
    
    			var matrix = new Matrix4();
    
    			return function unproject( camera ) {
    
    				matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) );
    				return this.applyMatrix4( matrix );
    
    			};
    
    		}(),
    
    		transformDirection: function ( m ) {
    
    			// input: THREE.Matrix4 affine matrix
    			// vector interpreted as a direction
    
    			var x = this.x, y = this.y, z = this.z;
    			var e = m.elements;
    
    			this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ]  * z;
    			this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ]  * z;
    			this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
    
    			return this.normalize();
    
    		},
    
    		divide: function ( v ) {
    
    			this.x /= v.x;
    			this.y /= v.y;
    			this.z /= v.z;
    
    			return this;
    
    		},
    
    		divideScalar: function ( scalar ) {
    
    			return this.multiplyScalar( 1 / scalar );
    
    		},
    
    		min: function ( v ) {
    
    			this.x = Math.min( this.x, v.x );
    			this.y = Math.min( this.y, v.y );
    			this.z = Math.min( this.z, v.z );
    
    			return this;
    
    		},
    
    		max: function ( v ) {
    
    			this.x = Math.max( this.x, v.x );
    			this.y = Math.max( this.y, v.y );
    			this.z = Math.max( this.z, v.z );
    
    			return this;
    
    		},
    
    		clamp: function ( min, max ) {
    
    			// This function assumes min < max, if this assumption isn't true it will not operate correctly
    
    			this.x = Math.max( min.x, Math.min( max.x, this.x ) );
    			this.y = Math.max( min.y, Math.min( max.y, this.y ) );
    			this.z = Math.max( min.z, Math.min( max.z, this.z ) );
    
    			return this;
    
    		},
    
    		clampScalar: function () {
    
    			var min = new Vector3();
    			var max = new Vector3();
    
    			return function clampScalar( minVal, maxVal ) {
    
    				min.set( minVal, minVal, minVal );
    				max.set( maxVal, maxVal, maxVal );
    
    				return this.clamp( min, max );
    
    			};
    
    		}(),
    
    		clampLength: function ( min, max ) {
    
    			var length = this.length();
    
    			return this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length );
    
    		},
    
    		floor: function () {
    
    			this.x = Math.floor( this.x );
    			this.y = Math.floor( this.y );
    			this.z = Math.floor( this.z );
    
    			return this;
    
    		},
    
    		ceil: function () {
    
    			this.x = Math.ceil( this.x );
    			this.y = Math.ceil( this.y );
    			this.z = Math.ceil( this.z );
    
    			return this;
    
    		},
    
    		round: function () {
    
    			this.x = Math.round( this.x );
    			this.y = Math.round( this.y );
    			this.z = Math.round( this.z );
    
    			return this;
    
    		},
    
    		roundToZero: function () {
    
    			this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
    			this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
    			this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
    
    			return this;
    
    		},
    
    		negate: function () {
    
    			this.x = - this.x;
    			this.y = - this.y;
    			this.z = - this.z;
    
    			return this;
    
    		},
    
    		dot: function ( v ) {
    
    			return this.x * v.x + this.y * v.y + this.z * v.z;
    
    		},
    
    		// TODO lengthSquared?
    
    		lengthSq: function () {
    
    			return this.x * this.x + this.y * this.y + this.z * this.z;
    
    		},
    
    		length: function () {
    
    			return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
    
    		},
    
    		lengthManhattan: function () {
    
    			return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
    
    		},
    
    		normalize: function () {
    
    			return this.divideScalar( this.length() );
    
    		},
    
    		setLength: function ( length ) {
    
    			return this.multiplyScalar( length / this.length() );
    
    		},
    
    		lerp: function ( v, alpha ) {
    
    			this.x += ( v.x - this.x ) * alpha;
    			this.y += ( v.y - this.y ) * alpha;
    			this.z += ( v.z - this.z ) * alpha;
    
    			return this;
    
    		},
    
    		lerpVectors: function ( v1, v2, alpha ) {
    
    			return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
    
    		},
    
    		cross: function ( v, w ) {
    
    			if ( w !== undefined ) {
    
    				console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
    				return this.crossVectors( v, w );
    
    			}
    
    			var x = this.x, y = this.y, z = this.z;
    
    			this.x = y * v.z - z * v.y;
    			this.y = z * v.x - x * v.z;
    			this.z = x * v.y - y * v.x;
    
    			return this;
    
    		},
    
    		crossVectors: function ( a, b ) {
    
    			var ax = a.x, ay = a.y, az = a.z;
    			var bx = b.x, by = b.y, bz = b.z;
    
    			this.x = ay * bz - az * by;
    			this.y = az * bx - ax * bz;
    			this.z = ax * by - ay * bx;
    
    			return this;
    
    		},
    
    		projectOnVector: function ( vector ) {
    
    			var scalar = vector.dot( this ) / vector.lengthSq();
    
    			return this.copy( vector ).multiplyScalar( scalar );
    
    		},
    
    		projectOnPlane: function () {
    
    			var v1 = new Vector3();
    
    			return function projectOnPlane( planeNormal ) {
    
    				v1.copy( this ).projectOnVector( planeNormal );
    
    				return this.sub( v1 );
    
    			};
    
    		}(),
    
    		reflect: function () {
    
    			// reflect incident vector off plane orthogonal to normal
    			// normal is assumed to have unit length
    
    			var v1 = new Vector3();
    
    			return function reflect( normal ) {
    
    				return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
    
    			};
    
    		}(),
    
    		angleTo: function ( v ) {
    
    			var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );
    
    			// clamp, to handle numerical problems
    
    			return Math.acos( _Math.clamp( theta, - 1, 1 ) );
    
    		},
    
    		distanceTo: function ( v ) {
    
    			return Math.sqrt( this.distanceToSquared( v ) );
    
    		},
    
    		distanceToSquared: function ( v ) {
    
    			var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
    
    			return dx * dx + dy * dy + dz * dz;
    
    		},
    
    		distanceToManhattan: function ( v ) {
    
    			return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
    
    		},
    
    		setFromSpherical: function ( s ) {
    
    			var sinPhiRadius = Math.sin( s.phi ) * s.radius;
    
    			this.x = sinPhiRadius * Math.sin( s.theta );
    			this.y = Math.cos( s.phi ) * s.radius;
    			this.z = sinPhiRadius * Math.cos( s.theta );
    
    			return this;
    
    		},
    
    		setFromCylindrical: function ( c ) {
    
    			this.x = c.radius * Math.sin( c.theta );
    			this.y = c.y;
    			this.z = c.radius * Math.cos( c.theta );
    
    			return this;
    
    		},
    
    		setFromMatrixPosition: function ( m ) {
    
    			return this.setFromMatrixColumn( m, 3 );
    
    		},
    
    		setFromMatrixScale: function ( m ) {
    
    			var sx = this.setFromMatrixColumn( m, 0 ).length();
    			var sy = this.setFromMatrixColumn( m, 1 ).length();
    			var sz = this.setFromMatrixColumn( m, 2 ).length();
    
    			this.x = sx;
    			this.y = sy;
    			this.z = sz;
    
    			return this;
    
    		},
    
    		setFromMatrixColumn: function ( m, index ) {
    
    
    			return this.fromArray( m.elements, index * 4 );
    
    		},
    
    		equals: function ( v ) {
    
    			return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
    
    		},
    
    		fromArray: function ( array, offset ) {
    
    			if ( offset === undefined ) offset = 0;
    
    			this.x = array[ offset ];
    			this.y = array[ offset + 1 ];
    			this.z = array[ offset + 2 ];
    
    			return this;
    
    		},
    
    		toArray: function ( array, offset ) {
    
    			if ( array === undefined ) array = [];
    			if ( offset === undefined ) offset = 0;
    
    			array[ offset ] = this.x;
    			array[ offset + 1 ] = this.y;
    			array[ offset + 2 ] = this.z;
    
    			return array;
    
    		},
    
    		fromBufferAttribute: function ( attribute, index, offset ) {
    
    			if ( offset !== undefined ) {
    
    				console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );
    
    			}
    
    			this.x = attribute.getX( index );
    			this.y = attribute.getY( index );
    			this.z = attribute.getZ( index );
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author supereggbert / http://www.paulbrunt.co.uk/
    	 * @author philogb / http://blog.thejit.org/
    	 * @author jordi_ros / http://plattsoft.com
    	 * @author D1plo1d / http://github.com/D1plo1d
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author timknip / http://www.floorplanner.com/
    	 * @author bhouston / http://clara.io
    	 * @author WestLangley / http://github.com/WestLangley
    	 */
    
    	function Matrix4() {
    
    		this.elements = [
    
    			1, 0, 0, 0,
    			0, 1, 0, 0,
    			0, 0, 1, 0,
    			0, 0, 0, 1
    
    		];
    
    		if ( arguments.length > 0 ) {
    
    			console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
    
    		}
    
    	}
    
    	Object.assign( Matrix4.prototype, {
    
    		isMatrix4: true,
    
    		set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
    
    			var te = this.elements;
    
    			te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
    			te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
    			te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
    			te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
    
    			return this;
    
    		},
    
    		identity: function () {
    
    			this.set(
    
    				1, 0, 0, 0,
    				0, 1, 0, 0,
    				0, 0, 1, 0,
    				0, 0, 0, 1
    
    			);
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new Matrix4().fromArray( this.elements );
    
    		},
    
    		copy: function ( m ) {
    
    			var te = this.elements;
    			var me = m.elements;
    
    			te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
    			te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
    			te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
    			te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
    
    			return this;
    
    		},
    
    		copyPosition: function ( m ) {
    
    			var te = this.elements, me = m.elements;
    
    			te[ 12 ] = me[ 12 ];
    			te[ 13 ] = me[ 13 ];
    			te[ 14 ] = me[ 14 ];
    
    			return this;
    
    		},
    
    		extractBasis: function ( xAxis, yAxis, zAxis ) {
    
    			xAxis.setFromMatrixColumn( this, 0 );
    			yAxis.setFromMatrixColumn( this, 1 );
    			zAxis.setFromMatrixColumn( this, 2 );
    
    			return this;
    
    		},
    
    		makeBasis: function ( xAxis, yAxis, zAxis ) {
    
    			this.set(
    				xAxis.x, yAxis.x, zAxis.x, 0,
    				xAxis.y, yAxis.y, zAxis.y, 0,
    				xAxis.z, yAxis.z, zAxis.z, 0,
    				0,       0,       0,       1
    			);
    
    			return this;
    
    		},
    
    		extractRotation: function () {
    
    			var v1 = new Vector3();
    
    			return function extractRotation( m ) {
    
    				var te = this.elements;
    				var me = m.elements;
    
    				var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();
    				var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();
    				var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();
    
    				te[ 0 ] = me[ 0 ] * scaleX;
    				te[ 1 ] = me[ 1 ] * scaleX;
    				te[ 2 ] = me[ 2 ] * scaleX;
    
    				te[ 4 ] = me[ 4 ] * scaleY;
    				te[ 5 ] = me[ 5 ] * scaleY;
    				te[ 6 ] = me[ 6 ] * scaleY;
    
    				te[ 8 ] = me[ 8 ] * scaleZ;
    				te[ 9 ] = me[ 9 ] * scaleZ;
    				te[ 10 ] = me[ 10 ] * scaleZ;
    
    				return this;
    
    			};
    
    		}(),
    
    		makeRotationFromEuler: function ( euler ) {
    
    			if ( ( euler && euler.isEuler ) === false ) {
    
    				console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
    
    			}
    
    			var te = this.elements;
    
    			var x = euler.x, y = euler.y, z = euler.z;
    			var a = Math.cos( x ), b = Math.sin( x );
    			var c = Math.cos( y ), d = Math.sin( y );
    			var e = Math.cos( z ), f = Math.sin( z );
    
    			if ( euler.order === 'XYZ' ) {
    
    				var ae = a * e, af = a * f, be = b * e, bf = b * f;
    
    				te[ 0 ] = c * e;
    				te[ 4 ] = - c * f;
    				te[ 8 ] = d;
    
    				te[ 1 ] = af + be * d;
    				te[ 5 ] = ae - bf * d;
    				te[ 9 ] = - b * c;
    
    				te[ 2 ] = bf - ae * d;
    				te[ 6 ] = be + af * d;
    				te[ 10 ] = a * c;
    
    			} else if ( euler.order === 'YXZ' ) {
    
    				var ce = c * e, cf = c * f, de = d * e, df = d * f;
    
    				te[ 0 ] = ce + df * b;
    				te[ 4 ] = de * b - cf;
    				te[ 8 ] = a * d;
    
    				te[ 1 ] = a * f;
    				te[ 5 ] = a * e;
    				te[ 9 ] = - b;
    
    				te[ 2 ] = cf * b - de;
    				te[ 6 ] = df + ce * b;
    				te[ 10 ] = a * c;
    
    			} else if ( euler.order === 'ZXY' ) {
    
    				var ce = c * e, cf = c * f, de = d * e, df = d * f;
    
    				te[ 0 ] = ce - df * b;
    				te[ 4 ] = - a * f;
    				te[ 8 ] = de + cf * b;
    
    				te[ 1 ] = cf + de * b;
    				te[ 5 ] = a * e;
    				te[ 9 ] = df - ce * b;
    
    				te[ 2 ] = - a * d;
    				te[ 6 ] = b;
    				te[ 10 ] = a * c;
    
    			} else if ( euler.order === 'ZYX' ) {
    
    				var ae = a * e, af = a * f, be = b * e, bf = b * f;
    
    				te[ 0 ] = c * e;
    				te[ 4 ] = be * d - af;
    				te[ 8 ] = ae * d + bf;
    
    				te[ 1 ] = c * f;
    				te[ 5 ] = bf * d + ae;
    				te[ 9 ] = af * d - be;
    
    				te[ 2 ] = - d;
    				te[ 6 ] = b * c;
    				te[ 10 ] = a * c;
    
    			} else if ( euler.order === 'YZX' ) {
    
    				var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
    
    				te[ 0 ] = c * e;
    				te[ 4 ] = bd - ac * f;
    				te[ 8 ] = bc * f + ad;
    
    				te[ 1 ] = f;
    				te[ 5 ] = a * e;
    				te[ 9 ] = - b * e;
    
    				te[ 2 ] = - d * e;
    				te[ 6 ] = ad * f + bc;
    				te[ 10 ] = ac - bd * f;
    
    			} else if ( euler.order === 'XZY' ) {
    
    				var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
    
    				te[ 0 ] = c * e;
    				te[ 4 ] = - f;
    				te[ 8 ] = d * e;
    
    				te[ 1 ] = ac * f + bd;
    				te[ 5 ] = a * e;
    				te[ 9 ] = ad * f - bc;
    
    				te[ 2 ] = bc * f - ad;
    				te[ 6 ] = b * e;
    				te[ 10 ] = bd * f + ac;
    
    			}
    
    			// last column
    			te[ 3 ] = 0;
    			te[ 7 ] = 0;
    			te[ 11 ] = 0;
    
    			// bottom row
    			te[ 12 ] = 0;
    			te[ 13 ] = 0;
    			te[ 14 ] = 0;
    			te[ 15 ] = 1;
    
    			return this;
    
    		},
    
    		makeRotationFromQuaternion: function ( q ) {
    
    			var te = this.elements;
    
    			var x = q._x, y = q._y, z = q._z, w = q._w;
    			var x2 = x + x, y2 = y + y, z2 = z + z;
    			var xx = x * x2, xy = x * y2, xz = x * z2;
    			var yy = y * y2, yz = y * z2, zz = z * z2;
    			var wx = w * x2, wy = w * y2, wz = w * z2;
    
    			te[ 0 ] = 1 - ( yy + zz );
    			te[ 4 ] = xy - wz;
    			te[ 8 ] = xz + wy;
    
    			te[ 1 ] = xy + wz;
    			te[ 5 ] = 1 - ( xx + zz );
    			te[ 9 ] = yz - wx;
    
    			te[ 2 ] = xz - wy;
    			te[ 6 ] = yz + wx;
    			te[ 10 ] = 1 - ( xx + yy );
    
    			// last column
    			te[ 3 ] = 0;
    			te[ 7 ] = 0;
    			te[ 11 ] = 0;
    
    			// bottom row
    			te[ 12 ] = 0;
    			te[ 13 ] = 0;
    			te[ 14 ] = 0;
    			te[ 15 ] = 1;
    
    			return this;
    
    		},
    
    		lookAt: function () {
    
    			var x = new Vector3();
    			var y = new Vector3();
    			var z = new Vector3();
    
    			return function lookAt( eye, target, up ) {
    
    				var te = this.elements;
    
    				z.subVectors( eye, target );
    
    				if ( z.lengthSq() === 0 ) {
    
    					// eye and target are in the same position
    
    					z.z = 1;
    
    				}
    
    				z.normalize();
    				x.crossVectors( up, z );
    
    				if ( x.lengthSq() === 0 ) {
    
    					// eye and target are in the same vertical
    
    					z.z += 0.0001;
    					x.crossVectors( up, z );
    
    				}
    
    				x.normalize();
    				y.crossVectors( z, x );
    
    				te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
    				te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
    				te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;
    
    				return this;
    
    			};
    
    		}(),
    
    		multiply: function ( m, n ) {
    
    			if ( n !== undefined ) {
    
    				console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
    				return this.multiplyMatrices( m, n );
    
    			}
    
    			return this.multiplyMatrices( this, m );
    
    		},
    
    		premultiply: function ( m ) {
    
    			return this.multiplyMatrices( m, this );
    
    		},
    
    		multiplyMatrices: function ( a, b ) {
    
    			var ae = a.elements;
    			var be = b.elements;
    			var te = this.elements;
    
    			var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
    			var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
    			var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
    			var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
    
    			var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
    			var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
    			var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
    			var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
    
    			te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
    			te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
    			te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
    			te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
    
    			te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
    			te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
    			te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
    			te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
    
    			te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
    			te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
    			te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
    			te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
    
    			te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
    			te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
    			te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
    			te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
    
    			return this;
    
    		},
    
    		multiplyScalar: function ( s ) {
    
    			var te = this.elements;
    
    			te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
    			te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
    			te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
    			te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
    
    			return this;
    
    		},
    
    		applyToBufferAttribute: function () {
    
    			var v1 = new Vector3();
    
    			return function applyToBufferAttribute( attribute ) {
    
    				for ( var i = 0, l = attribute.count; i < l; i ++ ) {
    
    					v1.x = attribute.getX( i );
    					v1.y = attribute.getY( i );
    					v1.z = attribute.getZ( i );
    
    					v1.applyMatrix4( this );
    
    					attribute.setXYZ( i, v1.x, v1.y, v1.z );
    
    				}
    
    				return attribute;
    
    			};
    
    		}(),
    
    		determinant: function () {
    
    			var te = this.elements;
    
    			var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
    			var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
    			var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
    			var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
    
    			//TODO: make this more efficient
    			//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
    
    			return (
    				n41 * (
    					+ n14 * n23 * n32
    					 - n13 * n24 * n32
    					 - n14 * n22 * n33
    					 + n12 * n24 * n33
    					 + n13 * n22 * n34
    					 - n12 * n23 * n34
    				) +
    				n42 * (
    					+ n11 * n23 * n34
    					 - n11 * n24 * n33
    					 + n14 * n21 * n33
    					 - n13 * n21 * n34
    					 + n13 * n24 * n31
    					 - n14 * n23 * n31
    				) +
    				n43 * (
    					+ n11 * n24 * n32
    					 - n11 * n22 * n34
    					 - n14 * n21 * n32
    					 + n12 * n21 * n34
    					 + n14 * n22 * n31
    					 - n12 * n24 * n31
    				) +
    				n44 * (
    					- n13 * n22 * n31
    					 - n11 * n23 * n32
    					 + n11 * n22 * n33
    					 + n13 * n21 * n32
    					 - n12 * n21 * n33
    					 + n12 * n23 * n31
    				)
    
    			);
    
    		},
    
    		transpose: function () {
    
    			var te = this.elements;
    			var tmp;
    
    			tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
    			tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
    			tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
    
    			tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
    			tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
    			tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
    
    			return this;
    
    		},
    
    		setPosition: function ( v ) {
    
    			var te = this.elements;
    
    			te[ 12 ] = v.x;
    			te[ 13 ] = v.y;
    			te[ 14 ] = v.z;
    
    			return this;
    
    		},
    
    		getInverse: function ( m, throwOnDegenerate ) {
    
    			// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
    			var te = this.elements,
    				me = m.elements,
    
    				n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
    				n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
    				n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
    				n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],
    
    				t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
    				t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
    				t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
    				t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
    
    			var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
    
    			if ( det === 0 ) {
    
    				var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0";
    
    				if ( throwOnDegenerate === true ) {
    
    					throw new Error( msg );
    
    				} else {
    
    					console.warn( msg );
    
    				}
    
    				return this.identity();
    
    			}
    
    			var detInv = 1 / det;
    
    			te[ 0 ] = t11 * detInv;
    			te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
    			te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
    			te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
    
    			te[ 4 ] = t12 * detInv;
    			te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
    			te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
    			te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
    
    			te[ 8 ] = t13 * detInv;
    			te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
    			te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
    			te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
    
    			te[ 12 ] = t14 * detInv;
    			te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
    			te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
    			te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
    
    			return this;
    
    		},
    
    		scale: function ( v ) {
    
    			var te = this.elements;
    			var x = v.x, y = v.y, z = v.z;
    
    			te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
    			te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
    			te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
    			te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
    
    			return this;
    
    		},
    
    		getMaxScaleOnAxis: function () {
    
    			var te = this.elements;
    
    			var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
    			var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
    			var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
    
    			return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
    
    		},
    
    		makeTranslation: function ( x, y, z ) {
    
    			this.set(
    
    				1, 0, 0, x,
    				0, 1, 0, y,
    				0, 0, 1, z,
    				0, 0, 0, 1
    
    			);
    
    			return this;
    
    		},
    
    		makeRotationX: function ( theta ) {
    
    			var c = Math.cos( theta ), s = Math.sin( theta );
    
    			this.set(
    
    				1, 0,  0, 0,
    				0, c, - s, 0,
    				0, s,  c, 0,
    				0, 0,  0, 1
    
    			);
    
    			return this;
    
    		},
    
    		makeRotationY: function ( theta ) {
    
    			var c = Math.cos( theta ), s = Math.sin( theta );
    
    			this.set(
    
    				 c, 0, s, 0,
    				 0, 1, 0, 0,
    				- s, 0, c, 0,
    				 0, 0, 0, 1
    
    			);
    
    			return this;
    
    		},
    
    		makeRotationZ: function ( theta ) {
    
    			var c = Math.cos( theta ), s = Math.sin( theta );
    
    			this.set(
    
    				c, - s, 0, 0,
    				s,  c, 0, 0,
    				0,  0, 1, 0,
    				0,  0, 0, 1
    
    			);
    
    			return this;
    
    		},
    
    		makeRotationAxis: function ( axis, angle ) {
    
    			// Based on http://www.gamedev.net/reference/articles/article1199.asp
    
    			var c = Math.cos( angle );
    			var s = Math.sin( angle );
    			var t = 1 - c;
    			var x = axis.x, y = axis.y, z = axis.z;
    			var tx = t * x, ty = t * y;
    
    			this.set(
    
    				tx * x + c, tx * y - s * z, tx * z + s * y, 0,
    				tx * y + s * z, ty * y + c, ty * z - s * x, 0,
    				tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
    				0, 0, 0, 1
    
    			);
    
    			 return this;
    
    		},
    
    		makeScale: function ( x, y, z ) {
    
    			this.set(
    
    				x, 0, 0, 0,
    				0, y, 0, 0,
    				0, 0, z, 0,
    				0, 0, 0, 1
    
    			);
    
    			return this;
    
    		},
    
    		makeShear: function ( x, y, z ) {
    
    			this.set(
    
    				1, y, z, 0,
    				x, 1, z, 0,
    				x, y, 1, 0,
    				0, 0, 0, 1
    
    			);
    
    			return this;
    
    		},
    
    		compose: function ( position, quaternion, scale ) {
    
    			this.makeRotationFromQuaternion( quaternion );
    			this.scale( scale );
    			this.setPosition( position );
    
    			return this;
    
    		},
    
    		decompose: function () {
    
    			var vector = new Vector3();
    			var matrix = new Matrix4();
    
    			return function decompose( position, quaternion, scale ) {
    
    				var te = this.elements;
    
    				var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
    				var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
    				var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
    
    				// if determine is negative, we need to invert one scale
    				var det = this.determinant();
    				if ( det < 0 ) sx = - sx;
    
    				position.x = te[ 12 ];
    				position.y = te[ 13 ];
    				position.z = te[ 14 ];
    
    				// scale the rotation part
    				matrix.copy( this );
    
    				var invSX = 1 / sx;
    				var invSY = 1 / sy;
    				var invSZ = 1 / sz;
    
    				matrix.elements[ 0 ] *= invSX;
    				matrix.elements[ 1 ] *= invSX;
    				matrix.elements[ 2 ] *= invSX;
    
    				matrix.elements[ 4 ] *= invSY;
    				matrix.elements[ 5 ] *= invSY;
    				matrix.elements[ 6 ] *= invSY;
    
    				matrix.elements[ 8 ] *= invSZ;
    				matrix.elements[ 9 ] *= invSZ;
    				matrix.elements[ 10 ] *= invSZ;
    
    				quaternion.setFromRotationMatrix( matrix );
    
    				scale.x = sx;
    				scale.y = sy;
    				scale.z = sz;
    
    				return this;
    
    			};
    
    		}(),
    
    		makePerspective: function ( left, right, top, bottom, near, far ) {
    
    			if ( far === undefined ) {
    
    				console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );
    
    			}
    
    			var te = this.elements;
    			var x = 2 * near / ( right - left );
    			var y = 2 * near / ( top - bottom );
    
    			var a = ( right + left ) / ( right - left );
    			var b = ( top + bottom ) / ( top - bottom );
    			var c = - ( far + near ) / ( far - near );
    			var d = - 2 * far * near / ( far - near );
    
    			te[ 0 ] = x;	te[ 4 ] = 0;	te[ 8 ] = a;	te[ 12 ] = 0;
    			te[ 1 ] = 0;	te[ 5 ] = y;	te[ 9 ] = b;	te[ 13 ] = 0;
    			te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = c;	te[ 14 ] = d;
    			te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = - 1;	te[ 15 ] = 0;
    
    			return this;
    
    		},
    
    		makeOrthographic: function ( left, right, top, bottom, near, far ) {
    
    			var te = this.elements;
    			var w = 1.0 / ( right - left );
    			var h = 1.0 / ( top - bottom );
    			var p = 1.0 / ( far - near );
    
    			var x = ( right + left ) * w;
    			var y = ( top + bottom ) * h;
    			var z = ( far + near ) * p;
    
    			te[ 0 ] = 2 * w;	te[ 4 ] = 0;	te[ 8 ] = 0;	te[ 12 ] = - x;
    			te[ 1 ] = 0;	te[ 5 ] = 2 * h;	te[ 9 ] = 0;	te[ 13 ] = - y;
    			te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = - 2 * p;	te[ 14 ] = - z;
    			te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = 0;	te[ 15 ] = 1;
    
    			return this;
    
    		},
    
    		equals: function ( matrix ) {
    
    			var te = this.elements;
    			var me = matrix.elements;
    
    			for ( var i = 0; i < 16; i ++ ) {
    
    				if ( te[ i ] !== me[ i ] ) return false;
    
    			}
    
    			return true;
    
    		},
    
    		fromArray: function ( array, offset ) {
    
    			if ( offset === undefined ) offset = 0;
    
    			for ( var i = 0; i < 16; i ++ ) {
    
    				this.elements[ i ] = array[ i + offset ];
    
    			}
    
    			return this;
    
    		},
    
    		toArray: function ( array, offset ) {
    
    			if ( array === undefined ) array = [];
    			if ( offset === undefined ) offset = 0;
    
    			var te = this.elements;
    
    			array[ offset ] = te[ 0 ];
    			array[ offset + 1 ] = te[ 1 ];
    			array[ offset + 2 ] = te[ 2 ];
    			array[ offset + 3 ] = te[ 3 ];
    
    			array[ offset + 4 ] = te[ 4 ];
    			array[ offset + 5 ] = te[ 5 ];
    			array[ offset + 6 ] = te[ 6 ];
    			array[ offset + 7 ] = te[ 7 ];
    
    			array[ offset + 8 ] = te[ 8 ];
    			array[ offset + 9 ] = te[ 9 ];
    			array[ offset + 10 ] = te[ 10 ];
    			array[ offset + 11 ] = te[ 11 ];
    
    			array[ offset + 12 ] = te[ 12 ];
    			array[ offset + 13 ] = te[ 13 ];
    			array[ offset + 14 ] = te[ 14 ];
    			array[ offset + 15 ] = te[ 15 ];
    
    			return array;
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
    
    		Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
    
    		this.image = { data: data, width: width, height: height };
    
    		this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
    		this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
    
    		this.generateMipmaps = false;
    		this.flipY = false;
    		this.unpackAlignment = 1;
    
    	}
    
    	DataTexture.prototype = Object.create( Texture.prototype );
    	DataTexture.prototype.constructor = DataTexture;
    
    	DataTexture.prototype.isDataTexture = true;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
    
    		images = images !== undefined ? images : [];
    		mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
    
    		Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
    
    		this.flipY = false;
    
    	}
    
    	CubeTexture.prototype = Object.create( Texture.prototype );
    	CubeTexture.prototype.constructor = CubeTexture;
    
    	CubeTexture.prototype.isCubeTexture = true;
    
    	Object.defineProperty( CubeTexture.prototype, 'images', {
    
    		get: function () {
    
    			return this.image;
    
    		},
    
    		set: function ( value ) {
    
    			this.image = value;
    
    		}
    
    	} );
    
    	/**
    	 * @author tschw
    	 *
    	 * Uniforms of a program.
    	 * Those form a tree structure with a special top-level container for the root,
    	 * which you get by calling 'new WebGLUniforms( gl, program, renderer )'.
    	 *
    	 *
    	 * Properties of inner nodes including the top-level container:
    	 *
    	 * .seq - array of nested uniforms
    	 * .map - nested uniforms by name
    	 *
    	 *
    	 * Methods of all nodes except the top-level container:
    	 *
    	 * .setValue( gl, value, [renderer] )
    	 *
    	 * 		uploads a uniform value(s)
    	 *  	the 'renderer' parameter is needed for sampler uniforms
    	 *
    	 *
    	 * Static methods of the top-level container (renderer factorizations):
    	 *
    	 * .upload( gl, seq, values, renderer )
    	 *
    	 * 		sets uniforms in 'seq' to 'values[id].value'
    	 *
    	 * .seqWithValue( seq, values ) : filteredSeq
    	 *
    	 * 		filters 'seq' entries with corresponding entry in values
    	 *
    	 *
    	 * Methods of the top-level container (renderer factorizations):
    	 *
    	 * .setValue( gl, name, value )
    	 *
    	 * 		sets uniform with  name 'name' to 'value'
    	 *
    	 * .set( gl, obj, prop )
    	 *
    	 * 		sets uniform from object and property with same name than uniform
    	 *
    	 * .setOptional( gl, obj, prop )
    	 *
    	 * 		like .set for an optional property of the object
    	 *
    	 */
    
    	var emptyTexture = new Texture();
    	var emptyCubeTexture = new CubeTexture();
    
    	// --- Base for inner nodes (including the root) ---
    
    	function UniformContainer() {
    
    		this.seq = [];
    		this.map = {};
    
    	}
    
    	// --- Utilities ---
    
    	// Array Caches (provide typed arrays for temporary by size)
    
    	var arrayCacheF32 = [];
    	var arrayCacheI32 = [];
    
    	// Float32Array caches used for uploading Matrix uniforms
    
    	var mat4array = new Float32Array( 16 );
    	var mat3array = new Float32Array( 9 );
    
    	// Flattening for arrays of vectors and matrices
    
    	function flatten( array, nBlocks, blockSize ) {
    
    		var firstElem = array[ 0 ];
    
    		if ( firstElem <= 0 || firstElem > 0 ) return array;
    		// unoptimized: ! isNaN( firstElem )
    		// see http://jacksondunstan.com/articles/983
    
    		var n = nBlocks * blockSize,
    			r = arrayCacheF32[ n ];
    
    		if ( r === undefined ) {
    
    			r = new Float32Array( n );
    			arrayCacheF32[ n ] = r;
    
    		}
    
    		if ( nBlocks !== 0 ) {
    
    			firstElem.toArray( r, 0 );
    
    			for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {
    
    				offset += blockSize;
    				array[ i ].toArray( r, offset );
    
    			}
    
    		}
    
    		return r;
    
    	}
    
    	// Texture unit allocation
    
    	function allocTexUnits( renderer, n ) {
    
    		var r = arrayCacheI32[ n ];
    
    		if ( r === undefined ) {
    
    			r = new Int32Array( n );
    			arrayCacheI32[ n ] = r;
    
    		}
    
    		for ( var i = 0; i !== n; ++ i )
    			r[ i ] = renderer.allocTextureUnit();
    
    		return r;
    
    	}
    
    	// --- Setters ---
    
    	// Note: Defining these methods externally, because they come in a bunch
    	// and this way their names minify.
    
    	// Single scalar
    
    	function setValue1f( gl, v ) { gl.uniform1f( this.addr, v ); }
    	function setValue1i( gl, v ) { gl.uniform1i( this.addr, v ); }
    
    	// Single float vector (from flat array or THREE.VectorN)
    
    	function setValue2fv( gl, v ) {
    
    		if ( v.x === undefined ) gl.uniform2fv( this.addr, v );
    		else gl.uniform2f( this.addr, v.x, v.y );
    
    	}
    
    	function setValue3fv( gl, v ) {
    
    		if ( v.x !== undefined )
    			gl.uniform3f( this.addr, v.x, v.y, v.z );
    		else if ( v.r !== undefined )
    			gl.uniform3f( this.addr, v.r, v.g, v.b );
    		else
    			gl.uniform3fv( this.addr, v );
    
    	}
    
    	function setValue4fv( gl, v ) {
    
    		if ( v.x === undefined ) gl.uniform4fv( this.addr, v );
    		else gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );
    
    	}
    
    	// Single matrix (from flat array or MatrixN)
    
    	function setValue2fm( gl, v ) {
    
    		gl.uniformMatrix2fv( this.addr, false, v.elements || v );
    
    	}
    
    	function setValue3fm( gl, v ) {
    
    		if ( v.elements === undefined ) {
    
    			gl.uniformMatrix3fv( this.addr, false, v );
    
    		} else {
    
    			mat3array.set( v.elements );
    			gl.uniformMatrix3fv( this.addr, false, mat3array );
    
    		}
    
    	}
    
    	function setValue4fm( gl, v ) {
    
    		if ( v.elements === undefined ) {
    
    			gl.uniformMatrix4fv( this.addr, false, v );
    
    		} else {
    
    			mat4array.set( v.elements );
    			gl.uniformMatrix4fv( this.addr, false, mat4array );
    
    		}
    
    	}
    
    	// Single texture (2D / Cube)
    
    	function setValueT1( gl, v, renderer ) {
    
    		var unit = renderer.allocTextureUnit();
    		gl.uniform1i( this.addr, unit );
    		renderer.setTexture2D( v || emptyTexture, unit );
    
    	}
    
    	function setValueT6( gl, v, renderer ) {
    
    		var unit = renderer.allocTextureUnit();
    		gl.uniform1i( this.addr, unit );
    		renderer.setTextureCube( v || emptyCubeTexture, unit );
    
    	}
    
    	// Integer / Boolean vectors or arrays thereof (always flat arrays)
    
    	function setValue2iv( gl, v ) { gl.uniform2iv( this.addr, v ); }
    	function setValue3iv( gl, v ) { gl.uniform3iv( this.addr, v ); }
    	function setValue4iv( gl, v ) { gl.uniform4iv( this.addr, v ); }
    
    	// Helper to pick the right setter for the singular case
    
    	function getSingularSetter( type ) {
    
    		switch ( type ) {
    
    			case 0x1406: return setValue1f; // FLOAT
    			case 0x8b50: return setValue2fv; // _VEC2
    			case 0x8b51: return setValue3fv; // _VEC3
    			case 0x8b52: return setValue4fv; // _VEC4
    
    			case 0x8b5a: return setValue2fm; // _MAT2
    			case 0x8b5b: return setValue3fm; // _MAT3
    			case 0x8b5c: return setValue4fm; // _MAT4
    
    			case 0x8b5e: return setValueT1; // SAMPLER_2D
    			case 0x8b60: return setValueT6; // SAMPLER_CUBE
    
    			case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL
    			case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
    			case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
    			case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
    
    		}
    
    	}
    
    	// Array of scalars
    
    	function setValue1fv( gl, v ) { gl.uniform1fv( this.addr, v ); }
    	function setValue1iv( gl, v ) { gl.uniform1iv( this.addr, v ); }
    
    	// Array of vectors (flat or from THREE classes)
    
    	function setValueV2a( gl, v ) {
    
    		gl.uniform2fv( this.addr, flatten( v, this.size, 2 ) );
    
    	}
    
    	function setValueV3a( gl, v ) {
    
    		gl.uniform3fv( this.addr, flatten( v, this.size, 3 ) );
    
    	}
    
    	function setValueV4a( gl, v ) {
    
    		gl.uniform4fv( this.addr, flatten( v, this.size, 4 ) );
    
    	}
    
    	// Array of matrices (flat or from THREE clases)
    
    	function setValueM2a( gl, v ) {
    
    		gl.uniformMatrix2fv( this.addr, false, flatten( v, this.size, 4 ) );
    
    	}
    
    	function setValueM3a( gl, v ) {
    
    		gl.uniformMatrix3fv( this.addr, false, flatten( v, this.size, 9 ) );
    
    	}
    
    	function setValueM4a( gl, v ) {
    
    		gl.uniformMatrix4fv( this.addr, false, flatten( v, this.size, 16 ) );
    
    	}
    
    	// Array of textures (2D / Cube)
    
    	function setValueT1a( gl, v, renderer ) {
    
    		var n = v.length,
    			units = allocTexUnits( renderer, n );
    
    		gl.uniform1iv( this.addr, units );
    
    		for ( var i = 0; i !== n; ++ i ) {
    
    			renderer.setTexture2D( v[ i ] || emptyTexture, units[ i ] );
    
    		}
    
    	}
    
    	function setValueT6a( gl, v, renderer ) {
    
    		var n = v.length,
    			units = allocTexUnits( renderer, n );
    
    		gl.uniform1iv( this.addr, units );
    
    		for ( var i = 0; i !== n; ++ i ) {
    
    			renderer.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );
    
    		}
    
    	}
    
    	// Helper to pick the right setter for a pure (bottom-level) array
    
    	function getPureArraySetter( type ) {
    
    		switch ( type ) {
    
    			case 0x1406: return setValue1fv; // FLOAT
    			case 0x8b50: return setValueV2a; // _VEC2
    			case 0x8b51: return setValueV3a; // _VEC3
    			case 0x8b52: return setValueV4a; // _VEC4
    
    			case 0x8b5a: return setValueM2a; // _MAT2
    			case 0x8b5b: return setValueM3a; // _MAT3
    			case 0x8b5c: return setValueM4a; // _MAT4
    
    			case 0x8b5e: return setValueT1a; // SAMPLER_2D
    			case 0x8b60: return setValueT6a; // SAMPLER_CUBE
    
    			case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL
    			case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
    			case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
    			case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4
    
    		}
    
    	}
    
    	// --- Uniform Classes ---
    
    	function SingleUniform( id, activeInfo, addr ) {
    
    		this.id = id;
    		this.addr = addr;
    		this.setValue = getSingularSetter( activeInfo.type );
    
    		// this.path = activeInfo.name; // DEBUG
    
    	}
    
    	function PureArrayUniform( id, activeInfo, addr ) {
    
    		this.id = id;
    		this.addr = addr;
    		this.size = activeInfo.size;
    		this.setValue = getPureArraySetter( activeInfo.type );
    
    		// this.path = activeInfo.name; // DEBUG
    
    	}
    
    	function StructuredUniform( id ) {
    
    		this.id = id;
    
    		UniformContainer.call( this ); // mix-in
    
    	}
    
    	StructuredUniform.prototype.setValue = function ( gl, value ) {
    
    		// Note: Don't need an extra 'renderer' parameter, since samplers
    		// are not allowed in structured uniforms.
    
    		var seq = this.seq;
    
    		for ( var i = 0, n = seq.length; i !== n; ++ i ) {
    
    			var u = seq[ i ];
    			u.setValue( gl, value[ u.id ] );
    
    		}
    
    	};
    
    	// --- Top-level ---
    
    	// Parser - builds up the property tree from the path strings
    
    	var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;
    
    	// extracts
    	// 	- the identifier (member name or array index)
    	//  - followed by an optional right bracket (found when array index)
    	//  - followed by an optional left bracket or dot (type of subscript)
    	//
    	// Note: These portions can be read in a non-overlapping fashion and
    	// allow straightforward parsing of the hierarchy that WebGL encodes
    	// in the uniform names.
    
    	function addUniform( container, uniformObject ) {
    
    		container.seq.push( uniformObject );
    		container.map[ uniformObject.id ] = uniformObject;
    
    	}
    
    	function parseUniform( activeInfo, addr, container ) {
    
    		var path = activeInfo.name,
    			pathLength = path.length;
    
    		// reset RegExp object, because of the early exit of a previous run
    		RePathPart.lastIndex = 0;
    
    		for ( ; ; ) {
    
    			var match = RePathPart.exec( path ),
    				matchEnd = RePathPart.lastIndex,
    
    				id = match[ 1 ],
    				idIsIndex = match[ 2 ] === ']',
    				subscript = match[ 3 ];
    
    			if ( idIsIndex ) id = id | 0; // convert to integer
    
    			if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {
    
    				// bare name or "pure" bottom-level array "[0]" suffix
    
    				addUniform( container, subscript === undefined ?
    						new SingleUniform( id, activeInfo, addr ) :
    						new PureArrayUniform( id, activeInfo, addr ) );
    
    				break;
    
    			} else {
    
    				// step into inner node / create it in case it doesn't exist
    
    				var map = container.map, next = map[ id ];
    
    				if ( next === undefined ) {
    
    					next = new StructuredUniform( id );
    					addUniform( container, next );
    
    				}
    
    				container = next;
    
    			}
    
    		}
    
    	}
    
    	// Root Container
    
    	function WebGLUniforms( gl, program, renderer ) {
    
    		UniformContainer.call( this );
    
    		this.renderer = renderer;
    
    		var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS );
    
    		for ( var i = 0; i < n; ++ i ) {
    
    			var info = gl.getActiveUniform( program, i ),
    				path = info.name,
    				addr = gl.getUniformLocation( program, path );
    
    			parseUniform( info, addr, this );
    
    		}
    
    	}
    
    	WebGLUniforms.prototype.setValue = function ( gl, name, value ) {
    
    		var u = this.map[ name ];
    
    		if ( u !== undefined ) u.setValue( gl, value, this.renderer );
    
    	};
    
    	WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {
    
    		var v = object[ name ];
    
    		if ( v !== undefined ) this.setValue( gl, name, v );
    
    	};
    
    
    	// Static interface
    
    	WebGLUniforms.upload = function ( gl, seq, values, renderer ) {
    
    		for ( var i = 0, n = seq.length; i !== n; ++ i ) {
    
    			var u = seq[ i ],
    				v = values[ u.id ];
    
    			if ( v.needsUpdate !== false ) {
    
    				// note: always updating when .needsUpdate is undefined
    				u.setValue( gl, v.value, renderer );
    
    			}
    
    		}
    
    	};
    
    	WebGLUniforms.seqWithValue = function ( seq, values ) {
    
    		var r = [];
    
    		for ( var i = 0, n = seq.length; i !== n; ++ i ) {
    
    			var u = seq[ i ];
    			if ( u.id in values ) r.push( u );
    
    		}
    
    		return r;
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	var ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
    		'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
    		'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
    		'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
    		'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
    		'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
    		'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
    		'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
    		'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
    		'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
    		'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
    		'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
    		'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
    		'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
    		'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
    		'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
    		'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
    		'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
    		'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
    		'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
    		'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
    		'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
    		'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
    		'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };
    
    	function Color( r, g, b ) {
    
    		if ( g === undefined && b === undefined ) {
    
    			// r is THREE.Color, hex or string
    			return this.set( r );
    
    		}
    
    		return this.setRGB( r, g, b );
    
    	}
    
    	Object.assign( Color.prototype, {
    
    		isColor: true,
    
    		r: 1, g: 1, b: 1,
    
    		set: function ( value ) {
    
    			if ( value && value.isColor ) {
    
    				this.copy( value );
    
    			} else if ( typeof value === 'number' ) {
    
    				this.setHex( value );
    
    			} else if ( typeof value === 'string' ) {
    
    				this.setStyle( value );
    
    			}
    
    			return this;
    
    		},
    
    		setScalar: function ( scalar ) {
    
    			this.r = scalar;
    			this.g = scalar;
    			this.b = scalar;
    
    			return this;
    
    		},
    
    		setHex: function ( hex ) {
    
    			hex = Math.floor( hex );
    
    			this.r = ( hex >> 16 & 255 ) / 255;
    			this.g = ( hex >> 8 & 255 ) / 255;
    			this.b = ( hex & 255 ) / 255;
    
    			return this;
    
    		},
    
    		setRGB: function ( r, g, b ) {
    
    			this.r = r;
    			this.g = g;
    			this.b = b;
    
    			return this;
    
    		},
    
    		setHSL: function () {
    
    			function hue2rgb( p, q, t ) {
    
    				if ( t < 0 ) t += 1;
    				if ( t > 1 ) t -= 1;
    				if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
    				if ( t < 1 / 2 ) return q;
    				if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
    				return p;
    
    			}
    
    			return function setHSL( h, s, l ) {
    
    				// h,s,l ranges are in 0.0 - 1.0
    				h = _Math.euclideanModulo( h, 1 );
    				s = _Math.clamp( s, 0, 1 );
    				l = _Math.clamp( l, 0, 1 );
    
    				if ( s === 0 ) {
    
    					this.r = this.g = this.b = l;
    
    				} else {
    
    					var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
    					var q = ( 2 * l ) - p;
    
    					this.r = hue2rgb( q, p, h + 1 / 3 );
    					this.g = hue2rgb( q, p, h );
    					this.b = hue2rgb( q, p, h - 1 / 3 );
    
    				}
    
    				return this;
    
    			};
    
    		}(),
    
    		setStyle: function ( style ) {
    
    			function handleAlpha( string ) {
    
    				if ( string === undefined ) return;
    
    				if ( parseFloat( string ) < 1 ) {
    
    					console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );
    
    				}
    
    			}
    
    
    			var m;
    
    			if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {
    
    				// rgb / hsl
    
    				var color;
    				var name = m[ 1 ];
    				var components = m[ 2 ];
    
    				switch ( name ) {
    
    					case 'rgb':
    					case 'rgba':
    
    						if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
    
    							// rgb(255,0,0) rgba(255,0,0,0.5)
    							this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
    							this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
    							this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;
    
    							handleAlpha( color[ 5 ] );
    
    							return this;
    
    						}
    
    						if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
    
    							// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
    							this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
    							this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
    							this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;
    
    							handleAlpha( color[ 5 ] );
    
    							return this;
    
    						}
    
    						break;
    
    					case 'hsl':
    					case 'hsla':
    
    						if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {
    
    							// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
    							var h = parseFloat( color[ 1 ] ) / 360;
    							var s = parseInt( color[ 2 ], 10 ) / 100;
    							var l = parseInt( color[ 3 ], 10 ) / 100;
    
    							handleAlpha( color[ 5 ] );
    
    							return this.setHSL( h, s, l );
    
    						}
    
    						break;
    
    				}
    
    			} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {
    
    				// hex color
    
    				var hex = m[ 1 ];
    				var size = hex.length;
    
    				if ( size === 3 ) {
    
    					// #ff0
    					this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
    					this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
    					this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;
    
    					return this;
    
    				} else if ( size === 6 ) {
    
    					// #ff0000
    					this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
    					this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
    					this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;
    
    					return this;
    
    				}
    
    			}
    
    			if ( style && style.length > 0 ) {
    
    				// color keywords
    				var hex = ColorKeywords[ style ];
    
    				if ( hex !== undefined ) {
    
    					// red
    					this.setHex( hex );
    
    				} else {
    
    					// unknown color
    					console.warn( 'THREE.Color: Unknown color ' + style );
    
    				}
    
    			}
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor( this.r, this.g, this.b );
    
    		},
    
    		copy: function ( color ) {
    
    			this.r = color.r;
    			this.g = color.g;
    			this.b = color.b;
    
    			return this;
    
    		},
    
    		copyGammaToLinear: function ( color, gammaFactor ) {
    
    			if ( gammaFactor === undefined ) gammaFactor = 2.0;
    
    			this.r = Math.pow( color.r, gammaFactor );
    			this.g = Math.pow( color.g, gammaFactor );
    			this.b = Math.pow( color.b, gammaFactor );
    
    			return this;
    
    		},
    
    		copyLinearToGamma: function ( color, gammaFactor ) {
    
    			if ( gammaFactor === undefined ) gammaFactor = 2.0;
    
    			var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;
    
    			this.r = Math.pow( color.r, safeInverse );
    			this.g = Math.pow( color.g, safeInverse );
    			this.b = Math.pow( color.b, safeInverse );
    
    			return this;
    
    		},
    
    		convertGammaToLinear: function () {
    
    			var r = this.r, g = this.g, b = this.b;
    
    			this.r = r * r;
    			this.g = g * g;
    			this.b = b * b;
    
    			return this;
    
    		},
    
    		convertLinearToGamma: function () {
    
    			this.r = Math.sqrt( this.r );
    			this.g = Math.sqrt( this.g );
    			this.b = Math.sqrt( this.b );
    
    			return this;
    
    		},
    
    		getHex: function () {
    
    			return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;
    
    		},
    
    		getHexString: function () {
    
    			return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );
    
    		},
    
    		getHSL: function ( optionalTarget ) {
    
    			// h,s,l ranges are in 0.0 - 1.0
    
    			var hsl = optionalTarget || { h: 0, s: 0, l: 0 };
    
    			var r = this.r, g = this.g, b = this.b;
    
    			var max = Math.max( r, g, b );
    			var min = Math.min( r, g, b );
    
    			var hue, saturation;
    			var lightness = ( min + max ) / 2.0;
    
    			if ( min === max ) {
    
    				hue = 0;
    				saturation = 0;
    
    			} else {
    
    				var delta = max - min;
    
    				saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
    
    				switch ( max ) {
    
    					case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
    					case g: hue = ( b - r ) / delta + 2; break;
    					case b: hue = ( r - g ) / delta + 4; break;
    
    				}
    
    				hue /= 6;
    
    			}
    
    			hsl.h = hue;
    			hsl.s = saturation;
    			hsl.l = lightness;
    
    			return hsl;
    
    		},
    
    		getStyle: function () {
    
    			return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';
    
    		},
    
    		offsetHSL: function ( h, s, l ) {
    
    			var hsl = this.getHSL();
    
    			hsl.h += h; hsl.s += s; hsl.l += l;
    
    			this.setHSL( hsl.h, hsl.s, hsl.l );
    
    			return this;
    
    		},
    
    		add: function ( color ) {
    
    			this.r += color.r;
    			this.g += color.g;
    			this.b += color.b;
    
    			return this;
    
    		},
    
    		addColors: function ( color1, color2 ) {
    
    			this.r = color1.r + color2.r;
    			this.g = color1.g + color2.g;
    			this.b = color1.b + color2.b;
    
    			return this;
    
    		},
    
    		addScalar: function ( s ) {
    
    			this.r += s;
    			this.g += s;
    			this.b += s;
    
    			return this;
    
    		},
    
    		sub: function( color ) {
    
    			this.r = Math.max( 0, this.r - color.r );
    			this.g = Math.max( 0, this.g - color.g );
    			this.b = Math.max( 0, this.b - color.b );
    
    			return this;
    
    		},
    
    		multiply: function ( color ) {
    
    			this.r *= color.r;
    			this.g *= color.g;
    			this.b *= color.b;
    
    			return this;
    
    		},
    
    		multiplyScalar: function ( s ) {
    
    			this.r *= s;
    			this.g *= s;
    			this.b *= s;
    
    			return this;
    
    		},
    
    		lerp: function ( color, alpha ) {
    
    			this.r += ( color.r - this.r ) * alpha;
    			this.g += ( color.g - this.g ) * alpha;
    			this.b += ( color.b - this.b ) * alpha;
    
    			return this;
    
    		},
    
    		equals: function ( c ) {
    
    			return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
    
    		},
    
    		fromArray: function ( array, offset ) {
    
    			if ( offset === undefined ) offset = 0;
    
    			this.r = array[ offset ];
    			this.g = array[ offset + 1 ];
    			this.b = array[ offset + 2 ];
    
    			return this;
    
    		},
    
    		toArray: function ( array, offset ) {
    
    			if ( array === undefined ) array = [];
    			if ( offset === undefined ) offset = 0;
    
    			array[ offset ] = this.r;
    			array[ offset + 1 ] = this.g;
    			array[ offset + 2 ] = this.b;
    
    			return array;
    
    		},
    
    		toJSON: function () {
    
    			return this.getHex();
    
    		}
    
    	} );
    
    	/**
    	 * Uniforms library for shared webgl shaders
    	 */
    
    	var UniformsLib = {
    
    		common: {
    
    			diffuse: { value: new Color( 0xeeeeee ) },
    			opacity: { value: 1.0 },
    
    			map: { value: null },
    			offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) },
    
    			specularMap: { value: null },
    			alphaMap: { value: null },
    
    			envMap: { value: null },
    			flipEnvMap: { value: - 1 },
    			reflectivity: { value: 1.0 },
    			refractionRatio: { value: 0.98 }
    
    		},
    
    		aomap: {
    
    			aoMap: { value: null },
    			aoMapIntensity: { value: 1 }
    
    		},
    
    		lightmap: {
    
    			lightMap: { value: null },
    			lightMapIntensity: { value: 1 }
    
    		},
    
    		emissivemap: {
    
    			emissiveMap: { value: null }
    
    		},
    
    		bumpmap: {
    
    			bumpMap: { value: null },
    			bumpScale: { value: 1 }
    
    		},
    
    		normalmap: {
    
    			normalMap: { value: null },
    			normalScale: { value: new Vector2( 1, 1 ) }
    
    		},
    
    		displacementmap: {
    
    			displacementMap: { value: null },
    			displacementScale: { value: 1 },
    			displacementBias: { value: 0 }
    
    		},
    
    		roughnessmap: {
    
    			roughnessMap: { value: null }
    
    		},
    
    		metalnessmap: {
    
    			metalnessMap: { value: null }
    
    		},
    
    		gradientmap: {
    
    			gradientMap: { value: null }
    
    		},
    
    		fog: {
    
    			fogDensity: { value: 0.00025 },
    			fogNear: { value: 1 },
    			fogFar: { value: 2000 },
    			fogColor: { value: new Color( 0xffffff ) }
    
    		},
    
    		lights: {
    
    			ambientLightColor: { value: [] },
    
    			directionalLights: { value: [], properties: {
    				direction: {},
    				color: {},
    
    				shadow: {},
    				shadowBias: {},
    				shadowRadius: {},
    				shadowMapSize: {}
    			} },
    
    			directionalShadowMap: { value: [] },
    			directionalShadowMatrix: { value: [] },
    
    			spotLights: { value: [], properties: {
    				color: {},
    				position: {},
    				direction: {},
    				distance: {},
    				coneCos: {},
    				penumbraCos: {},
    				decay: {},
    
    				shadow: {},
    				shadowBias: {},
    				shadowRadius: {},
    				shadowMapSize: {}
    			} },
    
    			spotShadowMap: { value: [] },
    			spotShadowMatrix: { value: [] },
    
    			pointLights: { value: [], properties: {
    				color: {},
    				position: {},
    				decay: {},
    				distance: {},
    
    				shadow: {},
    				shadowBias: {},
    				shadowRadius: {},
    				shadowMapSize: {}
    			} },
    
    			pointShadowMap: { value: [] },
    			pointShadowMatrix: { value: [] },
    
    			hemisphereLights: { value: [], properties: {
    				direction: {},
    				skyColor: {},
    				groundColor: {}
    			} },
    
    			// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
    			rectAreaLights: { value: [], properties: {
    				color: {},
    				position: {},
    				width: {},
    				height: {}
    			} }
    
    		},
    
    		points: {
    
    			diffuse: { value: new Color( 0xeeeeee ) },
    			opacity: { value: 1.0 },
    			size: { value: 1.0 },
    			scale: { value: 1.0 },
    			map: { value: null },
    			offsetRepeat: { value: new Vector4( 0, 0, 1, 1 ) }
    
    		}
    
    	};
    
    	/**
    	 * Uniform Utilities
    	 */
    
    	var UniformsUtils = {
    
    		merge: function ( uniforms ) {
    
    			var merged = {};
    
    			for ( var u = 0; u < uniforms.length; u ++ ) {
    
    				var tmp = this.clone( uniforms[ u ] );
    
    				for ( var p in tmp ) {
    
    					merged[ p ] = tmp[ p ];
    
    				}
    
    			}
    
    			return merged;
    
    		},
    
    		clone: function ( uniforms_src ) {
    
    			var uniforms_dst = {};
    
    			for ( var u in uniforms_src ) {
    
    				uniforms_dst[ u ] = {};
    
    				for ( var p in uniforms_src[ u ] ) {
    
    					var parameter_src = uniforms_src[ u ][ p ];
    
    					if ( parameter_src && ( parameter_src.isColor ||
    						parameter_src.isMatrix3 || parameter_src.isMatrix4 ||
    						parameter_src.isVector2 || parameter_src.isVector3 || parameter_src.isVector4 ||
    						parameter_src.isTexture ) ) {
    
    						uniforms_dst[ u ][ p ] = parameter_src.clone();
    
    					} else if ( Array.isArray( parameter_src ) ) {
    
    						uniforms_dst[ u ][ p ] = parameter_src.slice();
    
    					} else {
    
    						uniforms_dst[ u ][ p ] = parameter_src;
    
    					}
    
    				}
    
    			}
    
    			return uniforms_dst;
    
    		}
    
    	};
    
    	var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif\n";
    
    	var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif\n";
    
    	var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif\n";
    
    	var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif\n";
    
    	var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
    
    	var begin_vertex = "\nvec3 transformed = vec3( position );\n";
    
    	var beginnormal_vertex = "\nvec3 objectNormal = vec3( normal );\n";
    
    	var bsdfs = "float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\tif( decayExponent > 0.0 ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tfloat maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\treturn distanceFalloff * maxDistanceCutoffFactor;\n#else\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n#endif\n\t}\n\treturn 1.0;\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE  = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS  = 0.5 / LUT_SIZE;\n\tfloat theta = acos( dot( N, V ) );\n\tvec2 uv = vec2(\n\t\tsqrt( saturate( roughness ) ),\n\t\tsaturate( theta / ( 0.5 * PI ) ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.86267 + (0.49788 + 0.01436 * y ) * y;\n\tfloat b = 3.45068 + (4.18814 + y) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = (x > 0.0) ? v : 0.5 * inversesqrt( 1.0 - x * x ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transpose( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tvec3 result = vec3( LTC_ClippedSphereFormFactor( vectorFormFactor ) );\n\treturn result;\n}\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\n\treturn specularColor * AB.x + AB.y;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n";
    
    	var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = dFdx( surf_pos );\n\t\tvec3 vSigmaY = dFdy( surf_pos );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif\n";
    
    	var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; ++ i ) {\n\t\tvec4 plane = clippingPlanes[ i ];\n\t\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t\t\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; ++ i ) {\n\t\t\tvec4 plane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\tif ( clipped ) discard;\n\t\n\t#endif\n#endif\n";
    
    	var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\t#if ! defined( PHYSICAL ) && ! defined( PHONG )\n\t\tvarying vec3 vViewPosition;\n\t#endif\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif\n";
    
    	var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n\tvarying vec3 vViewPosition;\n#endif\n";
    
    	var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n";
    
    	var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif";
    
    	var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif\n";
    
    	var color_pars_vertex = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";
    
    	var color_vertex = "#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif";
    
    	var common = "#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI_HALF 1.5707963267949\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transpose( const in mat3 v ) {\n\tmat3 tmp;\n\ttmp[0] = vec3(v[0].x, v[1].x, v[2].x);\n\ttmp[1] = vec3(v[0].y, v[1].y, v[2].y);\n\ttmp[2] = vec3(v[0].z, v[1].z, v[2].z);\n\treturn tmp;\n}\n";
    
    	var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_textureSize (1024.0)\nint getFaceFromDirection(vec3 direction) {\n\tvec3 absDirection = abs(direction);\n\tint face = -1;\n\tif( absDirection.x > absDirection.z ) {\n\t\tif(absDirection.x > absDirection.y )\n\t\t\tface = direction.x > 0.0 ? 0 : 3;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\telse {\n\t\tif(absDirection.z > absDirection.y )\n\t\t\tface = direction.z > 0.0 ? 2 : 5;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\treturn face;\n}\n#define cubeUV_maxLods1  (log2(cubeUV_textureSize*0.25) - 1.0)\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\n\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\n\tfloat dxRoughness = dFdx(roughness);\n\tfloat dyRoughness = dFdy(roughness);\n\tvec3 dx = dFdx( vec * scale * dxRoughness );\n\tvec3 dy = dFdy( vec * scale * dyRoughness );\n\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\n\td = clamp(d, 1.0, cubeUV_rangeClamp);\n\tfloat mipLevel = 0.5 * log2(d);\n\treturn vec2(floor(mipLevel), fract(mipLevel));\n}\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\n\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\n\tfloat a = 16.0 * cubeUV_rcpTextureSize;\n\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\n\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\n\tfloat powScale = exp2_packed.x * exp2_packed.y;\n\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\n\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\n\tbool bRes = mipLevel == 0.0;\n\tscale =  bRes && (scale < a) ? a : scale;\n\tvec3 r;\n\tvec2 offset;\n\tint face = getFaceFromDirection(direction);\n\tfloat rcpPowScale = 1.0 / powScale;\n\tif( face == 0) {\n\t\tr = vec3(direction.x, -direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 1) {\n\t\tr = vec3(direction.y, direction.x, direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 2) {\n\t\tr = vec3(direction.z, direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 3) {\n\t\tr = vec3(direction.x, direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse if( face == 4) {\n\t\tr = vec3(direction.y, direction.x, -direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse {\n\t\tr = vec3(direction.z, -direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\tr = normalize(r);\n\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\n\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\n\tvec2 base = offset + vec2( texelOffset );\n\treturn base + s * ( scale - 2.0 * texelOffset );\n}\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\n\tfloat roughnessVal = roughness* cubeUV_maxLods3;\n\tfloat r1 = floor(roughnessVal);\n\tfloat r2 = r1 + 1.0;\n\tfloat t = fract(roughnessVal);\n\tvec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\n\tfloat s = mipInfo.y;\n\tfloat level0 = mipInfo.x;\n\tfloat level1 = level0 + 1.0;\n\tlevel1 = level1 > 5.0 ? 5.0 : level1;\n\tlevel0 += min( floor( s + 0.5 ), 5.0 );\n\tvec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\n\tvec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\n\tvec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\n\tvec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\n\tvec4 result = mix(color10, color20, t);\n\treturn vec4(result.rgb, 1.0);\n}\n#endif\n";
    
    	var defaultnormal_vertex = "#ifdef FLIP_SIDED\n\tobjectNormal = -objectNormal;\n#endif\nvec3 transformedNormal = normalMatrix * objectNormal;\n";
    
    	var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif\n";
    
    	var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normal * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\n#endif\n";
    
    	var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif\n";
    
    	var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif\n";
    
    	var encodings_fragment = "  gl_FragColor = linearToOutputTexel( gl_FragColor );\n";
    
    	var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.xyz * value.w * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\n\tfloat M      = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM            = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\n\tfloat D      = max( maxRange / maxRGB, 1.0 );\n\tD            = min( floor( D ) / 255.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value )  {\n\tvec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\n\tXp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract(Le);\n\tvResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\n\treturn vec4( max(vRGB, 0.0), 1.0 );\n}\n";
    
    	var envmap_fragment = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\tvec2 sampleUV;\n\t\tsampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n\t\tsampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\tvec3 reflectView = flipNormal * normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\tenvColor = envMapTexelToLinear( envColor );\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif\n";
    
    	var envmap_pars_fragment = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\n\tuniform float reflectivity;\n\tuniform float envMapIntensity;\n#endif\n#ifdef USE_ENVMAP\n\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\n\t\tvarying vec3 vWorldPosition;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\tuniform float flipEnvMap;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif\n";
    
    	var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif\n";
    
    	var envmap_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif\n";
    
    	var fog_vertex = "\n#ifdef USE_FOG\nfogDepth = -mvPosition.z;\n#endif";
    
    	var fog_pars_vertex = "#ifdef USE_FOG\n  varying float fogDepth;\n#endif\n";
    
    	var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif\n";
    
    	var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif\n";
    
    	var gradientmap_pars_fragment = "#ifdef TOON\n\tuniform sampler2D gradientMap;\n\tvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\t\tfloat dotNL = dot( normal, lightDirection );\n\t\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t\t#ifdef USE_GRADIENTMAP\n\t\t\treturn texture2D( gradientMap, coord ).rgb;\n\t\t#else\n\t\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t\t#endif\n\t}\n#endif\n";
    
    	var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n#endif\n";
    
    	var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
    
    	var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\n#if NUM_POINT_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_DIR_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n#endif\n";
    
    	var lights_pars = "uniform vec3 ambientLightColor;\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight  ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltcMat;\tuniform sampler2D ltcMag;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif\n#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\tvec4 envMapColor = textureCubeUV( queryVec, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar - 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\tvec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent));\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV;\n\t\t\tsampleUV.y = saturate( reflectVec.y * 0.5 + 0.5 );\n\t\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif\n";
    
    	var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;\n";
    
    	var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_BlinnPhong( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = BlinnExponentToGGXRoughness( material.specularShininess );\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos - halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos + halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos + halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos - halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tfloat norm = texture2D( ltcMag, uv ).a;\n\t\tvec4 t = texture2D( ltcMat, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3(   1,   0, t.y ),\n\t\t\tvec3(   0, t.z,   0 ),\n\t\t\tvec3( t.w,   0, t.x )\n\t\t);\n\t\treflectedLight.directSpecular += lightColor * material.specularColor * norm * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\t#ifdef TOON\n\t\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#else\n\t\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\t\tvec3 irradiance = dotNL * directLight.color;\n\t#endif\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)\n";
    
    	var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\n#ifdef STANDARD\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.clearCoat = saturate( clearCoat );\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\n#endif\n";
    
    	var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3\tdiffuseColor;\n\tfloat\tspecularRoughness;\n\tvec3\tspecularColor;\n\t#ifndef STANDARD\n\t\tfloat clearCoat;\n\t\tfloat clearCoatRoughness;\n\t#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos - halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos + halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos + halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos - halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tfloat norm = texture2D( ltcMag, uv ).a;\n\t\tvec4 t = texture2D( ltcMat, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3(   1,   0, t.y ),\n\t\t\tvec3(   0, t.z,   0 ),\n\t\t\tvec3( t.w,   0, t.x )\n\t\t);\n\t\treflectedLight.directSpecular += lightColor * material.specularColor * norm * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifndef STANDARD\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\n\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\t#ifndef STANDARD\n\t\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t#ifndef STANDARD\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\tfloat dotNL = dotNV;\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.indirectSpecular += ( 1.0 - clearCoatDHR ) * radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\n\t#ifndef STANDARD\n\t\treflectedLight.indirectSpecular += clearCoatRadiance * material.clearCoat * BRDF_Specular_GGX_Environment( geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\n#define Material_BlinnShininessExponent( material )   GGXRoughnessToBlinnExponent( material.specularRoughness )\n#define Material_ClearCoat_BlinnShininessExponent( material )   GGXRoughnessToBlinnExponent( material.clearCoatRoughness )\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}\n";
    
    	var lights_template = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = normalize( vViewPosition );\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\t#ifdef USE_LIGHTMAP\n\t\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tirradiance += getLightProbeIndirectIrradiance( geometry, 8 );\n\t#endif\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tvec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\n\t#ifndef STANDARD\n\t\tvec3 clearCoatRadiance = getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), 8 );\n\t#else\n\t\tvec3 clearCoatRadiance = vec3( 0.0 );\n\t#endif\n\tRE_IndirectSpecular( radiance, clearCoatRadiance, geometry, material, reflectedLight );\n#endif\n";
    
    	var logdepthbuf_fragment = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\n\tgl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\n#endif";
    
    	var logdepthbuf_pars_fragment = "#ifdef USE_LOGDEPTHBUF\n\tuniform float logDepthBufFC;\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t#endif\n#endif\n";
    
    	var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t#endif\n\tuniform float logDepthBufFC;\n#endif";
    
    	var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\tgl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t#else\n\t\tgl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\n\t#endif\n#endif\n";
    
    	var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif\n";
    
    	var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n";
    
    	var map_particle_fragment = "#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n";
    
    	var map_particle_pars_fragment = "#ifdef USE_MAP\n\tuniform vec4 offsetRepeat;\n\tuniform sampler2D map;\n#endif\n";
    
    	var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif\n";
    
    	var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
    
    	var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n#endif\n";
    
    	var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\t#ifndef USE_MORPHNORMALS\n\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";
    
    	var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n\t#endif\n#endif\n";
    
    	var normal_flip = "#ifdef DOUBLE_SIDED\n\tfloat flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n#else\n\tfloat flipNormal = 1.0;\n#endif\n";
    
    	var normal_fragment = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal ) * flipNormal;\n#endif\n#ifdef USE_NORMALMAP\n\tnormal = perturbNormal2Arb( -vViewPosition, normal );\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif\n";
    
    	var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n\t\tvec3 q0 = dFdx( eye_pos.xyz );\n\t\tvec3 q1 = dFdy( eye_pos.xyz );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 S = normalize( q0 * st1.t - q1 * st0.t );\n\t\tvec3 T = normalize( -q0 * st1.s + q1 * st0.s );\n\t\tvec3 N = normalize( surf_norm );\n\t\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t\tmapN.xy = normalScale * mapN.xy;\n\t\tmat3 tsn = mat3( S, T, N );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif\n";
    
    	var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 1.0 - 2.0 * rgb.xyz;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256.,  256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}\n";
    
    	var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif\n";
    
    	var project_vertex = "#ifdef USE_SKINNING\n\tvec4 mvPosition = modelViewMatrix * skinned;\n#else\n\tvec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\n#endif\ngl_Position = projectionMatrix * mvPosition;\n";
    
    	var dithering_fragment = "#if defined( DITHERING )\n  gl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif\n";
    
    	var dithering_pars_fragment = "#if defined( DITHERING )\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif\n";
    
    	var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif\n";
    
    	var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
    
    	var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\n\t\tconst vec2 offset = vec2( 0.0, 1.0 );\n\t\tvec2 texelSize = vec2( 1.0 ) / size;\n\t\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\n\t\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\n\t\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\n\t\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\n\t\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\n\t\tvec2 f = fract( uv * size + 0.5 );\n\t\tfloat a = mix( lb, lt, f.y );\n\t\tfloat b = mix( rb, rt, f.y );\n\t\tfloat c = mix( a, b, f.x );\n\t\treturn c;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\treturn (\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn 1.0;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\tfloat dp = ( length( lightToPosition ) - shadowBias ) / 1000.0;\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif\n";
    
    	var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n#endif\n";
    
    	var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n#endif\n";
    
    	var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\tDirectionalLight directionalLight;\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\tSpotLight spotLight;\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\tPointLight pointLight;\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#endif\n\treturn shadow;\n}\n";
    
    	var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
    
    	var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif\n";
    
    	var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\tskinned  = bindMatrixInverse * skinned;\n#endif\n";
    
    	var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix  = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n#endif\n";
    
    	var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";
    
    	var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
    
    	var tonemapping_fragment = "#if defined( TONE_MAPPING )\n  gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif\n";
    
    	var tonemapping_pars_fragment = "#define saturate(a) clamp( a, 0.0, 1.0 )\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\n";
    
    	var uv_pars_fragment = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n#endif";
    
    	var uv_pars_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n\tuniform vec4 offsetRepeat;\n#endif\n";
    
    	var uv_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvUv = uv * offsetRepeat.zw + offsetRepeat.xy;\n#endif";
    
    	var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
    
    	var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n#endif";
    
    	var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = uv2;\n#endif";
    
    	var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( PHYSICAL ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\n\t#ifdef USE_SKINNING\n\t\tvec4 worldPosition = modelMatrix * skinned;\n\t#else\n\t\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\n\t#endif\n#endif\n";
    
    	var cube_frag = "uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\n\tgl_FragColor.a *= opacity;\n}\n";
    
    	var cube_vert = "varying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}\n";
    
    	var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( gl_FragCoord.z ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\n\t#endif\n}\n";
    
    	var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#include <begin_vertex>\n\t#include <displacementmap_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n}\n";
    
    	var distanceRGBA_frag = "uniform vec3 lightPos;\nvarying vec4 vWorldPosition;\n#include <common>\n#include <packing>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tgl_FragColor = packDepthToRGBA( length( vWorldPosition.xyz - lightPos.xyz ) / 1000.0 );\n}\n";
    
    	var distanceRGBA_vert = "varying vec4 vWorldPosition;\n#include <common>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <skinbase_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition;\n}\n";
    
    	var equirect_frag = "uniform sampler2D tEquirect;\nuniform float tFlip;\nvarying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldPosition );\n\tvec2 sampleUV;\n\tsampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n}\n";
    
    	var equirect_vert = "varying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}\n";
    
    	var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";
    
    	var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\tvLineDistance = scale * lineDistance;\n\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}\n";
    
    	var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\treflectedLight.indirectDiffuse += texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <normal_flip>\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";
    
    	var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_ENVMAP\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}\n";
    
    	var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <bsdfs>\n#include <lights_pars>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\treflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <normal_flip>\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}\n";
    
    	var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";
    
    	var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_flip>\n\t#include <normal_fragment>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_template>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}\n";
    
    	var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <displacementmap_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";
    
    	var meshphysical_frag = "#define PHYSICAL\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifndef STANDARD\n\tuniform float clearCoat;\n\tuniform float clearCoatRoughness;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <lights_pars>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_flip>\n\t#include <normal_fragment>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_template>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}\n";
    
    	var meshphysical_vert = "#define PHYSICAL\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <displacementmap_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";
    
    	var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\nvoid main() {\n\t#include <logdepthbuf_fragment>\n\t#include <normal_flip>\n\t#include <normal_fragment>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}\n";
    
    	var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <displacementmap_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}\n";
    
    	var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";
    
    	var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#ifdef USE_SIZEATTENUATION\n\t\tgl_PointSize = size * ( scale / - mvPosition.z );\n\t#else\n\t\tgl_PointSize = size;\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";
    
    	var shadow_frag = "uniform float opacity;\n#include <common>\n#include <packing>\n#include <bsdfs>\n#include <lights_pars>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( 0.0, 0.0, 0.0, opacity * ( 1.0 - getShadowMask() ) );\n}\n";
    
    	var shadow_vert = "#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n}\n";
    
    	var ShaderChunk = {
    		alphamap_fragment: alphamap_fragment,
    		alphamap_pars_fragment: alphamap_pars_fragment,
    		alphatest_fragment: alphatest_fragment,
    		aomap_fragment: aomap_fragment,
    		aomap_pars_fragment: aomap_pars_fragment,
    		begin_vertex: begin_vertex,
    		beginnormal_vertex: beginnormal_vertex,
    		bsdfs: bsdfs,
    		bumpmap_pars_fragment: bumpmap_pars_fragment,
    		clipping_planes_fragment: clipping_planes_fragment,
    		clipping_planes_pars_fragment: clipping_planes_pars_fragment,
    		clipping_planes_pars_vertex: clipping_planes_pars_vertex,
    		clipping_planes_vertex: clipping_planes_vertex,
    		color_fragment: color_fragment,
    		color_pars_fragment: color_pars_fragment,
    		color_pars_vertex: color_pars_vertex,
    		color_vertex: color_vertex,
    		common: common,
    		cube_uv_reflection_fragment: cube_uv_reflection_fragment,
    		defaultnormal_vertex: defaultnormal_vertex,
    		displacementmap_pars_vertex: displacementmap_pars_vertex,
    		displacementmap_vertex: displacementmap_vertex,
    		emissivemap_fragment: emissivemap_fragment,
    		emissivemap_pars_fragment: emissivemap_pars_fragment,
    		encodings_fragment: encodings_fragment,
    		encodings_pars_fragment: encodings_pars_fragment,
    		envmap_fragment: envmap_fragment,
    		envmap_pars_fragment: envmap_pars_fragment,
    		envmap_pars_vertex: envmap_pars_vertex,
    		envmap_vertex: envmap_vertex,
    		fog_vertex: fog_vertex,
    		fog_pars_vertex: fog_pars_vertex,
    		fog_fragment: fog_fragment,
    		fog_pars_fragment: fog_pars_fragment,
    		gradientmap_pars_fragment: gradientmap_pars_fragment,
    		lightmap_fragment: lightmap_fragment,
    		lightmap_pars_fragment: lightmap_pars_fragment,
    		lights_lambert_vertex: lights_lambert_vertex,
    		lights_pars: lights_pars,
    		lights_phong_fragment: lights_phong_fragment,
    		lights_phong_pars_fragment: lights_phong_pars_fragment,
    		lights_physical_fragment: lights_physical_fragment,
    		lights_physical_pars_fragment: lights_physical_pars_fragment,
    		lights_template: lights_template,
    		logdepthbuf_fragment: logdepthbuf_fragment,
    		logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
    		logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
    		logdepthbuf_vertex: logdepthbuf_vertex,
    		map_fragment: map_fragment,
    		map_pars_fragment: map_pars_fragment,
    		map_particle_fragment: map_particle_fragment,
    		map_particle_pars_fragment: map_particle_pars_fragment,
    		metalnessmap_fragment: metalnessmap_fragment,
    		metalnessmap_pars_fragment: metalnessmap_pars_fragment,
    		morphnormal_vertex: morphnormal_vertex,
    		morphtarget_pars_vertex: morphtarget_pars_vertex,
    		morphtarget_vertex: morphtarget_vertex,
    		normal_flip: normal_flip,
    		normal_fragment: normal_fragment,
    		normalmap_pars_fragment: normalmap_pars_fragment,
    		packing: packing,
    		premultiplied_alpha_fragment: premultiplied_alpha_fragment,
    		project_vertex: project_vertex,
    		dithering_fragment: dithering_fragment,
    		dithering_pars_fragment: dithering_pars_fragment,
    		roughnessmap_fragment: roughnessmap_fragment,
    		roughnessmap_pars_fragment: roughnessmap_pars_fragment,
    		shadowmap_pars_fragment: shadowmap_pars_fragment,
    		shadowmap_pars_vertex: shadowmap_pars_vertex,
    		shadowmap_vertex: shadowmap_vertex,
    		shadowmask_pars_fragment: shadowmask_pars_fragment,
    		skinbase_vertex: skinbase_vertex,
    		skinning_pars_vertex: skinning_pars_vertex,
    		skinning_vertex: skinning_vertex,
    		skinnormal_vertex: skinnormal_vertex,
    		specularmap_fragment: specularmap_fragment,
    		specularmap_pars_fragment: specularmap_pars_fragment,
    		tonemapping_fragment: tonemapping_fragment,
    		tonemapping_pars_fragment: tonemapping_pars_fragment,
    		uv_pars_fragment: uv_pars_fragment,
    		uv_pars_vertex: uv_pars_vertex,
    		uv_vertex: uv_vertex,
    		uv2_pars_fragment: uv2_pars_fragment,
    		uv2_pars_vertex: uv2_pars_vertex,
    		uv2_vertex: uv2_vertex,
    		worldpos_vertex: worldpos_vertex,
    
    		cube_frag: cube_frag,
    		cube_vert: cube_vert,
    		depth_frag: depth_frag,
    		depth_vert: depth_vert,
    		distanceRGBA_frag: distanceRGBA_frag,
    		distanceRGBA_vert: distanceRGBA_vert,
    		equirect_frag: equirect_frag,
    		equirect_vert: equirect_vert,
    		linedashed_frag: linedashed_frag,
    		linedashed_vert: linedashed_vert,
    		meshbasic_frag: meshbasic_frag,
    		meshbasic_vert: meshbasic_vert,
    		meshlambert_frag: meshlambert_frag,
    		meshlambert_vert: meshlambert_vert,
    		meshphong_frag: meshphong_frag,
    		meshphong_vert: meshphong_vert,
    		meshphysical_frag: meshphysical_frag,
    		meshphysical_vert: meshphysical_vert,
    		normal_frag: normal_frag,
    		normal_vert: normal_vert,
    		points_frag: points_frag,
    		points_vert: points_vert,
    		shadow_frag: shadow_frag,
    		shadow_vert: shadow_vert
    	};
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author mikael emtinger / http://gomo.se/
    	 */
    
    	var ShaderLib = {
    
    		basic: {
    
    			uniforms: UniformsUtils.merge( [
    				UniformsLib.common,
    				UniformsLib.aomap,
    				UniformsLib.lightmap,
    				UniformsLib.fog
    			] ),
    
    			vertexShader: ShaderChunk.meshbasic_vert,
    			fragmentShader: ShaderChunk.meshbasic_frag
    
    		},
    
    		lambert: {
    
    			uniforms: UniformsUtils.merge( [
    				UniformsLib.common,
    				UniformsLib.aomap,
    				UniformsLib.lightmap,
    				UniformsLib.emissivemap,
    				UniformsLib.fog,
    				UniformsLib.lights,
    				{
    					emissive: { value: new Color( 0x000000 ) }
    				}
    			] ),
    
    			vertexShader: ShaderChunk.meshlambert_vert,
    			fragmentShader: ShaderChunk.meshlambert_frag
    
    		},
    
    		phong: {
    
    			uniforms: UniformsUtils.merge( [
    				UniformsLib.common,
    				UniformsLib.aomap,
    				UniformsLib.lightmap,
    				UniformsLib.emissivemap,
    				UniformsLib.bumpmap,
    				UniformsLib.normalmap,
    				UniformsLib.displacementmap,
    				UniformsLib.gradientmap,
    				UniformsLib.fog,
    				UniformsLib.lights,
    				{
    					emissive: { value: new Color( 0x000000 ) },
    					specular: { value: new Color( 0x111111 ) },
    					shininess: { value: 30 }
    				}
    			] ),
    
    			vertexShader: ShaderChunk.meshphong_vert,
    			fragmentShader: ShaderChunk.meshphong_frag
    
    		},
    
    		standard: {
    
    			uniforms: UniformsUtils.merge( [
    				UniformsLib.common,
    				UniformsLib.aomap,
    				UniformsLib.lightmap,
    				UniformsLib.emissivemap,
    				UniformsLib.bumpmap,
    				UniformsLib.normalmap,
    				UniformsLib.displacementmap,
    				UniformsLib.roughnessmap,
    				UniformsLib.metalnessmap,
    				UniformsLib.fog,
    				UniformsLib.lights,
    				{
    					emissive: { value: new Color( 0x000000 ) },
    					roughness: { value: 0.5 },
    					metalness: { value: 0.5 },
    					envMapIntensity: { value: 1 } // temporary
    				}
    			] ),
    
    			vertexShader: ShaderChunk.meshphysical_vert,
    			fragmentShader: ShaderChunk.meshphysical_frag
    
    		},
    
    		points: {
    
    			uniforms: UniformsUtils.merge( [
    				UniformsLib.points,
    				UniformsLib.fog
    			] ),
    
    			vertexShader: ShaderChunk.points_vert,
    			fragmentShader: ShaderChunk.points_frag
    
    		},
    
    		dashed: {
    
    			uniforms: UniformsUtils.merge( [
    				UniformsLib.common,
    				UniformsLib.fog,
    				{
    					scale: { value: 1 },
    					dashSize: { value: 1 },
    					totalSize: { value: 2 }
    				}
    			] ),
    
    			vertexShader: ShaderChunk.linedashed_vert,
    			fragmentShader: ShaderChunk.linedashed_frag
    
    		},
    
    		depth: {
    
    			uniforms: UniformsUtils.merge( [
    				UniformsLib.common,
    				UniformsLib.displacementmap
    			] ),
    
    			vertexShader: ShaderChunk.depth_vert,
    			fragmentShader: ShaderChunk.depth_frag
    
    		},
    
    		normal: {
    
    			uniforms: UniformsUtils.merge( [
    				UniformsLib.common,
    				UniformsLib.bumpmap,
    				UniformsLib.normalmap,
    				UniformsLib.displacementmap,
    				{
    					opacity: { value: 1.0 }
    				}
    			] ),
    
    			vertexShader: ShaderChunk.normal_vert,
    			fragmentShader: ShaderChunk.normal_frag
    
    		},
    
    		/* -------------------------------------------------------------------------
    		//	Cube map shader
    		 ------------------------------------------------------------------------- */
    
    		cube: {
    
    			uniforms: {
    				tCube: { value: null },
    				tFlip: { value: - 1 },
    				opacity: { value: 1.0 }
    			},
    
    			vertexShader: ShaderChunk.cube_vert,
    			fragmentShader: ShaderChunk.cube_frag
    
    		},
    
    		/* -------------------------------------------------------------------------
    		//	Cube map shader
    		 ------------------------------------------------------------------------- */
    
    		equirect: {
    
    			uniforms: {
    				tEquirect: { value: null },
    				tFlip: { value: - 1 }
    			},
    
    			vertexShader: ShaderChunk.equirect_vert,
    			fragmentShader: ShaderChunk.equirect_frag
    
    		},
    
    		distanceRGBA: {
    
    			uniforms: {
    				lightPos: { value: new Vector3() }
    			},
    
    			vertexShader: ShaderChunk.distanceRGBA_vert,
    			fragmentShader: ShaderChunk.distanceRGBA_frag
    
    		}
    
    	};
    
    	ShaderLib.physical = {
    
    		uniforms: UniformsUtils.merge( [
    			ShaderLib.standard.uniforms,
    			{
    				clearCoat: { value: 0 },
    				clearCoatRoughness: { value: 0 }
    			}
    		] ),
    
    		vertexShader: ShaderChunk.meshphysical_vert,
    		fragmentShader: ShaderChunk.meshphysical_frag
    
    	};
    
    	/**
    	 * @author bhouston / http://clara.io
    	 */
    
    	function Box2( min, max ) {
    
    		this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity );
    		this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity );
    
    	}
    
    	Object.assign( Box2.prototype, {
    
    		set: function ( min, max ) {
    
    			this.min.copy( min );
    			this.max.copy( max );
    
    			return this;
    
    		},
    
    		setFromPoints: function ( points ) {
    
    			this.makeEmpty();
    
    			for ( var i = 0, il = points.length; i < il; i ++ ) {
    
    				this.expandByPoint( points[ i ] );
    
    			}
    
    			return this;
    
    		},
    
    		setFromCenterAndSize: function () {
    
    			var v1 = new Vector2();
    
    			return function setFromCenterAndSize( center, size ) {
    
    				var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
    				this.min.copy( center ).sub( halfSize );
    				this.max.copy( center ).add( halfSize );
    
    				return this;
    
    			};
    
    		}(),
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( box ) {
    
    			this.min.copy( box.min );
    			this.max.copy( box.max );
    
    			return this;
    
    		},
    
    		makeEmpty: function () {
    
    			this.min.x = this.min.y = + Infinity;
    			this.max.x = this.max.y = - Infinity;
    
    			return this;
    
    		},
    
    		isEmpty: function () {
    
    			// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
    
    			return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );
    
    		},
    
    		getCenter: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Vector2();
    			return this.isEmpty() ? result.set( 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
    
    		},
    
    		getSize: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Vector2();
    			return this.isEmpty() ? result.set( 0, 0 ) : result.subVectors( this.max, this.min );
    
    		},
    
    		expandByPoint: function ( point ) {
    
    			this.min.min( point );
    			this.max.max( point );
    
    			return this;
    
    		},
    
    		expandByVector: function ( vector ) {
    
    			this.min.sub( vector );
    			this.max.add( vector );
    
    			return this;
    
    		},
    
    		expandByScalar: function ( scalar ) {
    
    			this.min.addScalar( - scalar );
    			this.max.addScalar( scalar );
    
    			return this;
    
    		},
    
    		containsPoint: function ( point ) {
    
    			return point.x < this.min.x || point.x > this.max.x ||
    				point.y < this.min.y || point.y > this.max.y ? false : true;
    
    		},
    
    		containsBox: function ( box ) {
    
    			return this.min.x <= box.min.x && box.max.x <= this.max.x &&
    				this.min.y <= box.min.y && box.max.y <= this.max.y;
    
    		},
    
    		getParameter: function ( point, optionalTarget ) {
    
    			// This can potentially have a divide by zero if the box
    			// has a size dimension of 0.
    
    			var result = optionalTarget || new Vector2();
    
    			return result.set(
    				( point.x - this.min.x ) / ( this.max.x - this.min.x ),
    				( point.y - this.min.y ) / ( this.max.y - this.min.y )
    			);
    
    		},
    
    		intersectsBox: function ( box ) {
    
    			// using 4 splitting planes to rule out intersections
    
    			return box.max.x < this.min.x || box.min.x > this.max.x ||
    				box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
    
    		},
    
    		clampPoint: function ( point, optionalTarget ) {
    
    			var result = optionalTarget || new Vector2();
    			return result.copy( point ).clamp( this.min, this.max );
    
    		},
    
    		distanceToPoint: function () {
    
    			var v1 = new Vector2();
    
    			return function distanceToPoint( point ) {
    
    				var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
    				return clampedPoint.sub( point ).length();
    
    			};
    
    		}(),
    
    		intersect: function ( box ) {
    
    			this.min.max( box.min );
    			this.max.min( box.max );
    
    			return this;
    
    		},
    
    		union: function ( box ) {
    
    			this.min.min( box.min );
    			this.max.max( box.max );
    
    			return this;
    
    		},
    
    		translate: function ( offset ) {
    
    			this.min.add( offset );
    			this.max.add( offset );
    
    			return this;
    
    		},
    
    		equals: function ( box ) {
    
    			return box.min.equals( this.min ) && box.max.equals( this.max );
    
    		}
    
    	} );
    
    	/**
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function LensFlarePlugin( renderer, flares ) {
    
    		var gl = renderer.context;
    		var state = renderer.state;
    
    		var vertexBuffer, elementBuffer;
    		var shader, program, attributes, uniforms;
    
    		var tempTexture, occlusionTexture;
    
    		function init() {
    
    			var vertices = new Float32Array( [
    				- 1, - 1,  0, 0,
    				 1, - 1,  1, 0,
    				 1,  1,  1, 1,
    				- 1,  1,  0, 1
    			] );
    
    			var faces = new Uint16Array( [
    				0, 1, 2,
    				0, 2, 3
    			] );
    
    			// buffers
    
    			vertexBuffer     = gl.createBuffer();
    			elementBuffer    = gl.createBuffer();
    
    			gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
    			gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW );
    
    			gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
    			gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW );
    
    			// textures
    
    			tempTexture      = gl.createTexture();
    			occlusionTexture = gl.createTexture();
    
    			state.bindTexture( gl.TEXTURE_2D, tempTexture );
    			gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 16, 16, 0, gl.RGB, gl.UNSIGNED_BYTE, null );
    			gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE );
    			gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE );
    			gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
    			gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
    
    			state.bindTexture( gl.TEXTURE_2D, occlusionTexture );
    			gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, 16, 16, 0, gl.RGBA, gl.UNSIGNED_BYTE, null );
    			gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE );
    			gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE );
    			gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
    			gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
    
    			shader = {
    
    				vertexShader: [
    
    					"uniform lowp int renderType;",
    
    					"uniform vec3 screenPosition;",
    					"uniform vec2 scale;",
    					"uniform float rotation;",
    
    					"uniform sampler2D occlusionMap;",
    
    					"attribute vec2 position;",
    					"attribute vec2 uv;",
    
    					"varying vec2 vUV;",
    					"varying float vVisibility;",
    
    					"void main() {",
    
    						"vUV = uv;",
    
    						"vec2 pos = position;",
    
    						"if ( renderType == 2 ) {",
    
    							"vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );",
    							"visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );",
    							"visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );",
    							"visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );",
    							"visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );",
    							"visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );",
    							"visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );",
    							"visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );",
    							"visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );",
    
    							"vVisibility =        visibility.r / 9.0;",
    							"vVisibility *= 1.0 - visibility.g / 9.0;",
    							"vVisibility *=       visibility.b / 9.0;",
    							"vVisibility *= 1.0 - visibility.a / 9.0;",
    
    							"pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;",
    							"pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;",
    
    						"}",
    
    						"gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );",
    
    					"}"
    
    				].join( "\n" ),
    
    				fragmentShader: [
    
    					"uniform lowp int renderType;",
    
    					"uniform sampler2D map;",
    					"uniform float opacity;",
    					"uniform vec3 color;",
    
    					"varying vec2 vUV;",
    					"varying float vVisibility;",
    
    					"void main() {",
    
    						// pink square
    
    						"if ( renderType == 0 ) {",
    
    							"gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );",
    
    						// restore
    
    						"} else if ( renderType == 1 ) {",
    
    							"gl_FragColor = texture2D( map, vUV );",
    
    						// flare
    
    						"} else {",
    
    							"vec4 texture = texture2D( map, vUV );",
    							"texture.a *= opacity * vVisibility;",
    							"gl_FragColor = texture;",
    							"gl_FragColor.rgb *= color;",
    
    						"}",
    
    					"}"
    
    				].join( "\n" )
    
    			};
    
    			program = createProgram( shader );
    
    			attributes = {
    				vertex: gl.getAttribLocation ( program, "position" ),
    				uv:     gl.getAttribLocation ( program, "uv" )
    			};
    
    			uniforms = {
    				renderType:     gl.getUniformLocation( program, "renderType" ),
    				map:            gl.getUniformLocation( program, "map" ),
    				occlusionMap:   gl.getUniformLocation( program, "occlusionMap" ),
    				opacity:        gl.getUniformLocation( program, "opacity" ),
    				color:          gl.getUniformLocation( program, "color" ),
    				scale:          gl.getUniformLocation( program, "scale" ),
    				rotation:       gl.getUniformLocation( program, "rotation" ),
    				screenPosition: gl.getUniformLocation( program, "screenPosition" )
    			};
    
    		}
    
    		/*
    		 * Render lens flares
    		 * Method: renders 16x16 0xff00ff-colored points scattered over the light source area,
    		 *         reads these back and calculates occlusion.
    		 */
    
    		this.render = function ( scene, camera, viewport ) {
    
    			if ( flares.length === 0 ) return;
    
    			var tempPosition = new Vector3();
    
    			var invAspect = viewport.w / viewport.z,
    				halfViewportWidth = viewport.z * 0.5,
    				halfViewportHeight = viewport.w * 0.5;
    
    			var size = 16 / viewport.w,
    				scale = new Vector2( size * invAspect, size );
    
    			var screenPosition = new Vector3( 1, 1, 0 ),
    				screenPositionPixels = new Vector2( 1, 1 );
    
    			var validArea = new Box2();
    
    			validArea.min.set( viewport.x, viewport.y );
    			validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) );
    
    			if ( program === undefined ) {
    
    				init();
    
    			}
    
    			gl.useProgram( program );
    
    			state.initAttributes();
    			state.enableAttribute( attributes.vertex );
    			state.enableAttribute( attributes.uv );
    			state.disableUnusedAttributes();
    
    			// loop through all lens flares to update their occlusion and positions
    			// setup gl and common used attribs/uniforms
    
    			gl.uniform1i( uniforms.occlusionMap, 0 );
    			gl.uniform1i( uniforms.map, 1 );
    
    			gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
    			gl.vertexAttribPointer( attributes.vertex, 2, gl.FLOAT, false, 2 * 8, 0 );
    			gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 );
    
    			gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
    
    			state.disable( gl.CULL_FACE );
    			state.buffers.depth.setMask( false );
    
    			for ( var i = 0, l = flares.length; i < l; i ++ ) {
    
    				size = 16 / viewport.w;
    				scale.set( size * invAspect, size );
    
    				// calc object screen position
    
    				var flare = flares[ i ];
    
    				tempPosition.set( flare.matrixWorld.elements[ 12 ], flare.matrixWorld.elements[ 13 ], flare.matrixWorld.elements[ 14 ] );
    
    				tempPosition.applyMatrix4( camera.matrixWorldInverse );
    				tempPosition.applyMatrix4( camera.projectionMatrix );
    
    				// setup arrays for gl programs
    
    				screenPosition.copy( tempPosition );
    
    				// horizontal and vertical coordinate of the lower left corner of the pixels to copy
    
    				screenPositionPixels.x = viewport.x + ( screenPosition.x * halfViewportWidth ) + halfViewportWidth - 8;
    				screenPositionPixels.y = viewport.y + ( screenPosition.y * halfViewportHeight ) + halfViewportHeight - 8;
    
    				// screen cull
    
    				if ( validArea.containsPoint( screenPositionPixels ) === true ) {
    
    					// save current RGB to temp texture
    
    					state.activeTexture( gl.TEXTURE0 );
    					state.bindTexture( gl.TEXTURE_2D, null );
    					state.activeTexture( gl.TEXTURE1 );
    					state.bindTexture( gl.TEXTURE_2D, tempTexture );
    					gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGB, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 );
    
    
    					// render pink quad
    
    					gl.uniform1i( uniforms.renderType, 0 );
    					gl.uniform2f( uniforms.scale, scale.x, scale.y );
    					gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );
    
    					state.disable( gl.BLEND );
    					state.enable( gl.DEPTH_TEST );
    
    					gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
    
    
    					// copy result to occlusionMap
    
    					state.activeTexture( gl.TEXTURE0 );
    					state.bindTexture( gl.TEXTURE_2D, occlusionTexture );
    					gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGBA, screenPositionPixels.x, screenPositionPixels.y, 16, 16, 0 );
    
    
    					// restore graphics
    
    					gl.uniform1i( uniforms.renderType, 1 );
    					state.disable( gl.DEPTH_TEST );
    
    					state.activeTexture( gl.TEXTURE1 );
    					state.bindTexture( gl.TEXTURE_2D, tempTexture );
    					gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
    
    
    					// update object positions
    
    					flare.positionScreen.copy( screenPosition );
    
    					if ( flare.customUpdateCallback ) {
    
    						flare.customUpdateCallback( flare );
    
    					} else {
    
    						flare.updateLensFlares();
    
    					}
    
    					// render flares
    
    					gl.uniform1i( uniforms.renderType, 2 );
    					state.enable( gl.BLEND );
    
    					for ( var j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) {
    
    						var sprite = flare.lensFlares[ j ];
    
    						if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) {
    
    							screenPosition.x = sprite.x;
    							screenPosition.y = sprite.y;
    							screenPosition.z = sprite.z;
    
    							size = sprite.size * sprite.scale / viewport.w;
    
    							scale.x = size * invAspect;
    							scale.y = size;
    
    							gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z );
    							gl.uniform2f( uniforms.scale, scale.x, scale.y );
    							gl.uniform1f( uniforms.rotation, sprite.rotation );
    
    							gl.uniform1f( uniforms.opacity, sprite.opacity );
    							gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b );
    
    							state.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst );
    							renderer.setTexture2D( sprite.texture, 1 );
    
    							gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
    
    						}
    
    					}
    
    				}
    
    			}
    
    			// restore gl
    
    			state.enable( gl.CULL_FACE );
    			state.enable( gl.DEPTH_TEST );
    			state.buffers.depth.setMask( true );
    
    			renderer.resetGLState();
    
    		};
    
    		function createProgram( shader ) {
    
    			var program = gl.createProgram();
    
    			var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER );
    			var vertexShader = gl.createShader( gl.VERTEX_SHADER );
    
    			var prefix = "precision " + renderer.getPrecision() + " float;\n";
    
    			gl.shaderSource( fragmentShader, prefix + shader.fragmentShader );
    			gl.shaderSource( vertexShader, prefix + shader.vertexShader );
    
    			gl.compileShader( fragmentShader );
    			gl.compileShader( vertexShader );
    
    			gl.attachShader( program, fragmentShader );
    			gl.attachShader( program, vertexShader );
    
    			gl.linkProgram( program );
    
    			return program;
    
    		}
    
    	}
    
    	/**
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function SpritePlugin( renderer, sprites ) {
    
    		var gl = renderer.context;
    		var state = renderer.state;
    
    		var vertexBuffer, elementBuffer;
    		var program, attributes, uniforms;
    
    		var texture;
    
    		// decompose matrixWorld
    
    		var spritePosition = new Vector3();
    		var spriteRotation = new Quaternion();
    		var spriteScale = new Vector3();
    
    		function init() {
    
    			var vertices = new Float32Array( [
    				- 0.5, - 0.5,  0, 0,
    				  0.5, - 0.5,  1, 0,
    				  0.5,   0.5,  1, 1,
    				- 0.5,   0.5,  0, 1
    			] );
    
    			var faces = new Uint16Array( [
    				0, 1, 2,
    				0, 2, 3
    			] );
    
    			vertexBuffer  = gl.createBuffer();
    			elementBuffer = gl.createBuffer();
    
    			gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
    			gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW );
    
    			gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
    			gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW );
    
    			program = createProgram();
    
    			attributes = {
    				position:			gl.getAttribLocation ( program, 'position' ),
    				uv:					gl.getAttribLocation ( program, 'uv' )
    			};
    
    			uniforms = {
    				uvOffset:			gl.getUniformLocation( program, 'uvOffset' ),
    				uvScale:			gl.getUniformLocation( program, 'uvScale' ),
    
    				rotation:			gl.getUniformLocation( program, 'rotation' ),
    				scale:				gl.getUniformLocation( program, 'scale' ),
    
    				color:				gl.getUniformLocation( program, 'color' ),
    				map:				gl.getUniformLocation( program, 'map' ),
    				opacity:			gl.getUniformLocation( program, 'opacity' ),
    
    				modelViewMatrix: 	gl.getUniformLocation( program, 'modelViewMatrix' ),
    				projectionMatrix:	gl.getUniformLocation( program, 'projectionMatrix' ),
    
    				fogType:			gl.getUniformLocation( program, 'fogType' ),
    				fogDensity:			gl.getUniformLocation( program, 'fogDensity' ),
    				fogNear:			gl.getUniformLocation( program, 'fogNear' ),
    				fogFar:				gl.getUniformLocation( program, 'fogFar' ),
    				fogColor:			gl.getUniformLocation( program, 'fogColor' ),
    
    				alphaTest:			gl.getUniformLocation( program, 'alphaTest' )
    			};
    
    			var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
    			canvas.width = 8;
    			canvas.height = 8;
    
    			var context = canvas.getContext( '2d' );
    			context.fillStyle = 'white';
    			context.fillRect( 0, 0, 8, 8 );
    
    			texture = new Texture( canvas );
    			texture.needsUpdate = true;
    
    		}
    
    		this.render = function ( scene, camera ) {
    
    			if ( sprites.length === 0 ) return;
    
    			// setup gl
    
    			if ( program === undefined ) {
    
    				init();
    
    			}
    
    			gl.useProgram( program );
    
    			state.initAttributes();
    			state.enableAttribute( attributes.position );
    			state.enableAttribute( attributes.uv );
    			state.disableUnusedAttributes();
    
    			state.disable( gl.CULL_FACE );
    			state.enable( gl.BLEND );
    
    			gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
    			gl.vertexAttribPointer( attributes.position, 2, gl.FLOAT, false, 2 * 8, 0 );
    			gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 );
    
    			gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
    
    			gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements );
    
    			state.activeTexture( gl.TEXTURE0 );
    			gl.uniform1i( uniforms.map, 0 );
    
    			var oldFogType = 0;
    			var sceneFogType = 0;
    			var fog = scene.fog;
    
    			if ( fog ) {
    
    				gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b );
    
    				if ( fog.isFog ) {
    
    					gl.uniform1f( uniforms.fogNear, fog.near );
    					gl.uniform1f( uniforms.fogFar, fog.far );
    
    					gl.uniform1i( uniforms.fogType, 1 );
    					oldFogType = 1;
    					sceneFogType = 1;
    
    				} else if ( fog.isFogExp2 ) {
    
    					gl.uniform1f( uniforms.fogDensity, fog.density );
    
    					gl.uniform1i( uniforms.fogType, 2 );
    					oldFogType = 2;
    					sceneFogType = 2;
    
    				}
    
    			} else {
    
    				gl.uniform1i( uniforms.fogType, 0 );
    				oldFogType = 0;
    				sceneFogType = 0;
    
    			}
    
    
    			// update positions and sort
    
    			for ( var i = 0, l = sprites.length; i < l; i ++ ) {
    
    				var sprite = sprites[ i ];
    
    				sprite.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld );
    				sprite.z = - sprite.modelViewMatrix.elements[ 14 ];
    
    			}
    
    			sprites.sort( painterSortStable );
    
    			// render all sprites
    
    			var scale = [];
    
    			for ( var i = 0, l = sprites.length; i < l; i ++ ) {
    
    				var sprite = sprites[ i ];
    				var material = sprite.material;
    
    				if ( material.visible === false ) continue;
    
    				gl.uniform1f( uniforms.alphaTest, material.alphaTest );
    				gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements );
    
    				sprite.matrixWorld.decompose( spritePosition, spriteRotation, spriteScale );
    
    				scale[ 0 ] = spriteScale.x;
    				scale[ 1 ] = spriteScale.y;
    
    				var fogType = 0;
    
    				if ( scene.fog && material.fog ) {
    
    					fogType = sceneFogType;
    
    				}
    
    				if ( oldFogType !== fogType ) {
    
    					gl.uniform1i( uniforms.fogType, fogType );
    					oldFogType = fogType;
    
    				}
    
    				if ( material.map !== null ) {
    
    					gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y );
    					gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y );
    
    				} else {
    
    					gl.uniform2f( uniforms.uvOffset, 0, 0 );
    					gl.uniform2f( uniforms.uvScale, 1, 1 );
    
    				}
    
    				gl.uniform1f( uniforms.opacity, material.opacity );
    				gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b );
    
    				gl.uniform1f( uniforms.rotation, material.rotation );
    				gl.uniform2fv( uniforms.scale, scale );
    
    				state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst );
    				state.buffers.depth.setTest( material.depthTest );
    				state.buffers.depth.setMask( material.depthWrite );
    
    				if ( material.map ) {
    
    					renderer.setTexture2D( material.map, 0 );
    
    				} else {
    
    					renderer.setTexture2D( texture, 0 );
    
    				}
    
    				gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );
    
    			}
    
    			// restore gl
    
    			state.enable( gl.CULL_FACE );
    
    			renderer.resetGLState();
    
    		};
    
    		function createProgram() {
    
    			var program = gl.createProgram();
    
    			var vertexShader = gl.createShader( gl.VERTEX_SHADER );
    			var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER );
    
    			gl.shaderSource( vertexShader, [
    
    				'precision ' + renderer.getPrecision() + ' float;',
    
    				'uniform mat4 modelViewMatrix;',
    				'uniform mat4 projectionMatrix;',
    				'uniform float rotation;',
    				'uniform vec2 scale;',
    				'uniform vec2 uvOffset;',
    				'uniform vec2 uvScale;',
    
    				'attribute vec2 position;',
    				'attribute vec2 uv;',
    
    				'varying vec2 vUV;',
    
    				'void main() {',
    
    					'vUV = uvOffset + uv * uvScale;',
    
    					'vec2 alignedPosition = position * scale;',
    
    					'vec2 rotatedPosition;',
    					'rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;',
    					'rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;',
    
    					'vec4 finalPosition;',
    
    					'finalPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );',
    					'finalPosition.xy += rotatedPosition;',
    					'finalPosition = projectionMatrix * finalPosition;',
    
    					'gl_Position = finalPosition;',
    
    				'}'
    
    			].join( '\n' ) );
    
    			gl.shaderSource( fragmentShader, [
    
    				'precision ' + renderer.getPrecision() + ' float;',
    
    				'uniform vec3 color;',
    				'uniform sampler2D map;',
    				'uniform float opacity;',
    
    				'uniform int fogType;',
    				'uniform vec3 fogColor;',
    				'uniform float fogDensity;',
    				'uniform float fogNear;',
    				'uniform float fogFar;',
    				'uniform float alphaTest;',
    
    				'varying vec2 vUV;',
    
    				'void main() {',
    
    					'vec4 texture = texture2D( map, vUV );',
    
    					'if ( texture.a < alphaTest ) discard;',
    
    					'gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );',
    
    					'if ( fogType > 0 ) {',
    
    						'float depth = gl_FragCoord.z / gl_FragCoord.w;',
    						'float fogFactor = 0.0;',
    
    						'if ( fogType == 1 ) {',
    
    							'fogFactor = smoothstep( fogNear, fogFar, depth );',
    
    						'} else {',
    
    							'const float LOG2 = 1.442695;',
    							'fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );',
    							'fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );',
    
    						'}',
    
    						'gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );',
    
    					'}',
    
    				'}'
    
    			].join( '\n' ) );
    
    			gl.compileShader( vertexShader );
    			gl.compileShader( fragmentShader );
    
    			gl.attachShader( program, vertexShader );
    			gl.attachShader( program, fragmentShader );
    
    			gl.linkProgram( program );
    
    			return program;
    
    		}
    
    		function painterSortStable( a, b ) {
    
    			if ( a.renderOrder !== b.renderOrder ) {
    
    				return a.renderOrder - b.renderOrder;
    
    			} else if ( a.z !== b.z ) {
    
    				return b.z - a.z;
    
    			} else {
    
    				return b.id - a.id;
    
    			}
    
    		}
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	var materialId = 0;
    
    	function Material() {
    
    		Object.defineProperty( this, 'id', { value: materialId ++ } );
    
    		this.uuid = _Math.generateUUID();
    
    		this.name = '';
    		this.type = 'Material';
    
    		this.fog = true;
    		this.lights = true;
    
    		this.blending = NormalBlending;
    		this.side = FrontSide;
    		this.shading = SmoothShading; // THREE.FlatShading, THREE.SmoothShading
    		this.vertexColors = NoColors; // THREE.NoColors, THREE.VertexColors, THREE.FaceColors
    
    		this.opacity = 1;
    		this.transparent = false;
    
    		this.blendSrc = SrcAlphaFactor;
    		this.blendDst = OneMinusSrcAlphaFactor;
    		this.blendEquation = AddEquation;
    		this.blendSrcAlpha = null;
    		this.blendDstAlpha = null;
    		this.blendEquationAlpha = null;
    
    		this.depthFunc = LessEqualDepth;
    		this.depthTest = true;
    		this.depthWrite = true;
    
    		this.clippingPlanes = null;
    		this.clipIntersection = false;
    		this.clipShadows = false;
    
    		this.colorWrite = true;
    
    		this.precision = null; // override the renderer's default precision for this material
    
    		this.polygonOffset = false;
    		this.polygonOffsetFactor = 0;
    		this.polygonOffsetUnits = 0;
    
    		this.dithering = false;
    
    		this.alphaTest = 0;
    		this.premultipliedAlpha = false;
    
    		this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer
    
    		this.visible = true;
    
    		this.needsUpdate = true;
    
    	}
    
    	Object.assign( Material.prototype, EventDispatcher.prototype, {
    
    		isMaterial: true,
    
    		setValues: function ( values ) {
    
    			if ( values === undefined ) return;
    
    			for ( var key in values ) {
    
    				var newValue = values[ key ];
    
    				if ( newValue === undefined ) {
    
    					console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
    					continue;
    
    				}
    
    				var currentValue = this[ key ];
    
    				if ( currentValue === undefined ) {
    
    					console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
    					continue;
    
    				}
    
    				if ( currentValue && currentValue.isColor ) {
    
    					currentValue.set( newValue );
    
    				} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {
    
    					currentValue.copy( newValue );
    
    				} else if ( key === 'overdraw' ) {
    
    					// ensure overdraw is backwards-compatible with legacy boolean type
    					this[ key ] = Number( newValue );
    
    				} else {
    
    					this[ key ] = newValue;
    
    				}
    
    			}
    
    		},
    
    		toJSON: function ( meta ) {
    
    			var isRoot = meta === undefined;
    
    			if ( isRoot ) {
    
    				meta = {
    					textures: {},
    					images: {}
    				};
    
    			}
    
    			var data = {
    				metadata: {
    					version: 4.5,
    					type: 'Material',
    					generator: 'Material.toJSON'
    				}
    			};
    
    			// standard Material serialization
    			data.uuid = this.uuid;
    			data.type = this.type;
    
    			if ( this.name !== '' ) data.name = this.name;
    
    			if ( this.color && this.color.isColor ) data.color = this.color.getHex();
    
    			if ( this.roughness !== undefined ) data.roughness = this.roughness;
    			if ( this.metalness !== undefined ) data.metalness = this.metalness;
    
    			if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
    			if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
    			if ( this.shininess !== undefined ) data.shininess = this.shininess;
    			if ( this.clearCoat !== undefined ) data.clearCoat = this.clearCoat;
    			if ( this.clearCoatRoughness !== undefined ) data.clearCoatRoughness = this.clearCoatRoughness;
    
    			if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
    			if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
    			if ( this.lightMap && this.lightMap.isTexture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;
    			if ( this.bumpMap && this.bumpMap.isTexture ) {
    
    				data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
    				data.bumpScale = this.bumpScale;
    
    			}
    			if ( this.normalMap && this.normalMap.isTexture ) {
    
    				data.normalMap = this.normalMap.toJSON( meta ).uuid;
    				data.normalScale = this.normalScale.toArray();
    
    			}
    			if ( this.displacementMap && this.displacementMap.isTexture ) {
    
    				data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
    				data.displacementScale = this.displacementScale;
    				data.displacementBias = this.displacementBias;
    
    			}
    			if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
    			if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;
    
    			if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
    			if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;
    
    			if ( this.envMap && this.envMap.isTexture ) {
    
    				data.envMap = this.envMap.toJSON( meta ).uuid;
    				data.reflectivity = this.reflectivity; // Scale behind envMap
    
    			}
    
    			if ( this.gradientMap && this.gradientMap.isTexture ) {
    
    				data.gradientMap = this.gradientMap.toJSON( meta ).uuid;
    
    			}
    
    			if ( this.size !== undefined ) data.size = this.size;
    			if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;
    
    			if ( this.blending !== NormalBlending ) data.blending = this.blending;
    			if ( this.shading !== SmoothShading ) data.shading = this.shading;
    			if ( this.side !== FrontSide ) data.side = this.side;
    			if ( this.vertexColors !== NoColors ) data.vertexColors = this.vertexColors;
    
    			if ( this.opacity < 1 ) data.opacity = this.opacity;
    			if ( this.transparent === true ) data.transparent = this.transparent;
    
    			data.depthFunc = this.depthFunc;
    			data.depthTest = this.depthTest;
    			data.depthWrite = this.depthWrite;
    
    			if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
    			if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;
    			if ( this.wireframe === true ) data.wireframe = this.wireframe;
    			if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
    			if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap;
    			if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;
    
    			data.skinning = this.skinning;
    			data.morphTargets = this.morphTargets;
    
    			data.dithering = this.dithering;
    
    			// TODO: Copied from Object3D.toJSON
    
    			function extractFromCache( cache ) {
    
    				var values = [];
    
    				for ( var key in cache ) {
    
    					var data = cache[ key ];
    					delete data.metadata;
    					values.push( data );
    
    				}
    
    				return values;
    
    			}
    
    			if ( isRoot ) {
    
    				var textures = extractFromCache( meta.textures );
    				var images = extractFromCache( meta.images );
    
    				if ( textures.length > 0 ) data.textures = textures;
    				if ( images.length > 0 ) data.images = images;
    
    			}
    
    			return data;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( source ) {
    
    			this.name = source.name;
    
    			this.fog = source.fog;
    			this.lights = source.lights;
    
    			this.blending = source.blending;
    			this.side = source.side;
    			this.shading = source.shading;
    			this.vertexColors = source.vertexColors;
    
    			this.opacity = source.opacity;
    			this.transparent = source.transparent;
    
    			this.blendSrc = source.blendSrc;
    			this.blendDst = source.blendDst;
    			this.blendEquation = source.blendEquation;
    			this.blendSrcAlpha = source.blendSrcAlpha;
    			this.blendDstAlpha = source.blendDstAlpha;
    			this.blendEquationAlpha = source.blendEquationAlpha;
    
    			this.depthFunc = source.depthFunc;
    			this.depthTest = source.depthTest;
    			this.depthWrite = source.depthWrite;
    
    			this.colorWrite = source.colorWrite;
    
    			this.precision = source.precision;
    
    			this.polygonOffset = source.polygonOffset;
    			this.polygonOffsetFactor = source.polygonOffsetFactor;
    			this.polygonOffsetUnits = source.polygonOffsetUnits;
    
    			this.dithering = source.dithering;
    
    			this.alphaTest = source.alphaTest;
    
    			this.premultipliedAlpha = source.premultipliedAlpha;
    
    			this.overdraw = source.overdraw;
    
    			this.visible = source.visible;
    			this.clipShadows = source.clipShadows;
    			this.clipIntersection = source.clipIntersection;
    
    			var srcPlanes = source.clippingPlanes,
    				dstPlanes = null;
    
    			if ( srcPlanes !== null ) {
    
    				var n = srcPlanes.length;
    				dstPlanes = new Array( n );
    
    				for ( var i = 0; i !== n; ++ i )
    					dstPlanes[ i ] = srcPlanes[ i ].clone();
    
    			}
    
    			this.clippingPlanes = dstPlanes;
    
    			return this;
    
    		},
    
    		dispose: function () {
    
    			this.dispatchEvent( { type: 'dispose' } );
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 *
    	 * parameters = {
    	 *  defines: { "label" : "value" },
    	 *  uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
    	 *
    	 *  fragmentShader: <string>,
    	 *  vertexShader: <string>,
    	 *
    	 *  wireframe: <boolean>,
    	 *  wireframeLinewidth: <float>,
    	 *
    	 *  lights: <bool>,
    	 *
    	 *  skinning: <bool>,
    	 *  morphTargets: <bool>,
    	 *  morphNormals: <bool>
    	 * }
    	 */
    
    	function ShaderMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.type = 'ShaderMaterial';
    
    		this.defines = {};
    		this.uniforms = {};
    
    		this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}';
    		this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}';
    
    		this.linewidth = 1;
    
    		this.wireframe = false;
    		this.wireframeLinewidth = 1;
    
    		this.fog = false; // set to use scene fog
    		this.lights = false; // set to use scene lights
    		this.clipping = false; // set to use user-defined clipping planes
    
    		this.skinning = false; // set to use skinning attribute streams
    		this.morphTargets = false; // set to use morph targets
    		this.morphNormals = false; // set to use morph normals
    
    		this.extensions = {
    			derivatives: false, // set to use derivatives
    			fragDepth: false, // set to use fragment depth values
    			drawBuffers: false, // set to use draw buffers
    			shaderTextureLOD: false // set to use shader texture LOD
    		};
    
    		// When rendered geometry doesn't include these attributes but the material does,
    		// use these default values in WebGL. This avoids errors when buffer data is missing.
    		this.defaultAttributeValues = {
    			'color': [ 1, 1, 1 ],
    			'uv': [ 0, 0 ],
    			'uv2': [ 0, 0 ]
    		};
    
    		this.index0AttributeName = undefined;
    
    		if ( parameters !== undefined ) {
    
    			if ( parameters.attributes !== undefined ) {
    
    				console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );
    
    			}
    
    			this.setValues( parameters );
    
    		}
    
    	}
    
    	ShaderMaterial.prototype = Object.create( Material.prototype );
    	ShaderMaterial.prototype.constructor = ShaderMaterial;
    
    	ShaderMaterial.prototype.isShaderMaterial = true;
    
    	ShaderMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.fragmentShader = source.fragmentShader;
    		this.vertexShader = source.vertexShader;
    
    		this.uniforms = UniformsUtils.clone( source.uniforms );
    
    		this.defines = source.defines;
    
    		this.wireframe = source.wireframe;
    		this.wireframeLinewidth = source.wireframeLinewidth;
    
    		this.lights = source.lights;
    		this.clipping = source.clipping;
    
    		this.skinning = source.skinning;
    
    		this.morphTargets = source.morphTargets;
    		this.morphNormals = source.morphNormals;
    
    		this.extensions = source.extensions;
    
    		return this;
    
    	};
    
    	ShaderMaterial.prototype.toJSON = function ( meta ) {
    
    		var data = Material.prototype.toJSON.call( this, meta );
    
    		data.uniforms = this.uniforms;
    		data.vertexShader = this.vertexShader;
    		data.fragmentShader = this.fragmentShader;
    
    		return data;
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author bhouston / https://clara.io
    	 * @author WestLangley / http://github.com/WestLangley
    	 *
    	 * parameters = {
    	 *
    	 *  opacity: <float>,
    	 *
    	 *  map: new THREE.Texture( <Image> ),
    	 *
    	 *  alphaMap: new THREE.Texture( <Image> ),
    	 *
    	 *  displacementMap: new THREE.Texture( <Image> ),
    	 *  displacementScale: <float>,
    	 *  displacementBias: <float>,
    	 *
    	 *  wireframe: <boolean>,
    	 *  wireframeLinewidth: <float>
    	 * }
    	 */
    
    	function MeshDepthMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.type = 'MeshDepthMaterial';
    
    		this.depthPacking = BasicDepthPacking;
    
    		this.skinning = false;
    		this.morphTargets = false;
    
    		this.map = null;
    
    		this.alphaMap = null;
    
    		this.displacementMap = null;
    		this.displacementScale = 1;
    		this.displacementBias = 0;
    
    		this.wireframe = false;
    		this.wireframeLinewidth = 1;
    
    		this.fog = false;
    		this.lights = false;
    
    		this.setValues( parameters );
    
    	}
    
    	MeshDepthMaterial.prototype = Object.create( Material.prototype );
    	MeshDepthMaterial.prototype.constructor = MeshDepthMaterial;
    
    	MeshDepthMaterial.prototype.isMeshDepthMaterial = true;
    
    	MeshDepthMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.depthPacking = source.depthPacking;
    
    		this.skinning = source.skinning;
    		this.morphTargets = source.morphTargets;
    
    		this.map = source.map;
    
    		this.alphaMap = source.alphaMap;
    
    		this.displacementMap = source.displacementMap;
    		this.displacementScale = source.displacementScale;
    		this.displacementBias = source.displacementBias;
    
    		this.wireframe = source.wireframe;
    		this.wireframeLinewidth = source.wireframeLinewidth;
    
    		return this;
    
    	};
    
    	/**
    	 * @author bhouston / http://clara.io
    	 * @author WestLangley / http://github.com/WestLangley
    	 */
    
    	function Box3( min, max ) {
    
    		this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
    		this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );
    
    	}
    
    	Object.assign( Box3.prototype, {
    
    		isBox3: true,
    
    		set: function ( min, max ) {
    
    			this.min.copy( min );
    			this.max.copy( max );
    
    			return this;
    
    		},
    
    		setFromArray: function ( array ) {
    
    			var minX = + Infinity;
    			var minY = + Infinity;
    			var minZ = + Infinity;
    
    			var maxX = - Infinity;
    			var maxY = - Infinity;
    			var maxZ = - Infinity;
    
    			for ( var i = 0, l = array.length; i < l; i += 3 ) {
    
    				var x = array[ i ];
    				var y = array[ i + 1 ];
    				var z = array[ i + 2 ];
    
    				if ( x < minX ) minX = x;
    				if ( y < minY ) minY = y;
    				if ( z < minZ ) minZ = z;
    
    				if ( x > maxX ) maxX = x;
    				if ( y > maxY ) maxY = y;
    				if ( z > maxZ ) maxZ = z;
    
    			}
    
    			this.min.set( minX, minY, minZ );
    			this.max.set( maxX, maxY, maxZ );
    
    			return this;
    
    		},
    
    		setFromBufferAttribute: function ( attribute ) {
    
    			var minX = + Infinity;
    			var minY = + Infinity;
    			var minZ = + Infinity;
    
    			var maxX = - Infinity;
    			var maxY = - Infinity;
    			var maxZ = - Infinity;
    
    			for ( var i = 0, l = attribute.count; i < l; i ++ ) {
    
    				var x = attribute.getX( i );
    				var y = attribute.getY( i );
    				var z = attribute.getZ( i );
    
    				if ( x < minX ) minX = x;
    				if ( y < minY ) minY = y;
    				if ( z < minZ ) minZ = z;
    
    				if ( x > maxX ) maxX = x;
    				if ( y > maxY ) maxY = y;
    				if ( z > maxZ ) maxZ = z;
    
    			}
    
    			this.min.set( minX, minY, minZ );
    			this.max.set( maxX, maxY, maxZ );
    
    			return this;
    
    		},
    
    		setFromPoints: function ( points ) {
    
    			this.makeEmpty();
    
    			for ( var i = 0, il = points.length; i < il; i ++ ) {
    
    				this.expandByPoint( points[ i ] );
    
    			}
    
    			return this;
    
    		},
    
    		setFromCenterAndSize: function () {
    
    			var v1 = new Vector3();
    
    			return function setFromCenterAndSize( center, size ) {
    
    				var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
    
    				this.min.copy( center ).sub( halfSize );
    				this.max.copy( center ).add( halfSize );
    
    				return this;
    
    			};
    
    		}(),
    
    		setFromObject: function ( object ) {
    
    			this.makeEmpty();
    
    			return this.expandByObject( object );
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( box ) {
    
    			this.min.copy( box.min );
    			this.max.copy( box.max );
    
    			return this;
    
    		},
    
    		makeEmpty: function () {
    
    			this.min.x = this.min.y = this.min.z = + Infinity;
    			this.max.x = this.max.y = this.max.z = - Infinity;
    
    			return this;
    
    		},
    
    		isEmpty: function () {
    
    			// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
    
    			return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
    
    		},
    
    		getCenter: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    			return this.isEmpty() ? result.set( 0, 0, 0 ) : result.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
    
    		},
    
    		getSize: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    			return this.isEmpty() ? result.set( 0, 0, 0 ) : result.subVectors( this.max, this.min );
    
    		},
    
    		expandByPoint: function ( point ) {
    
    			this.min.min( point );
    			this.max.max( point );
    
    			return this;
    
    		},
    
    		expandByVector: function ( vector ) {
    
    			this.min.sub( vector );
    			this.max.add( vector );
    
    			return this;
    
    		},
    
    		expandByScalar: function ( scalar ) {
    
    			this.min.addScalar( - scalar );
    			this.max.addScalar( scalar );
    
    			return this;
    
    		},
    
    		expandByObject: function () {
    
    			// Computes the world-axis-aligned bounding box of an object (including its children),
    			// accounting for both the object's, and children's, world transforms
    
    			var v1 = new Vector3();
    
    			return function expandByObject( object ) {
    
    				var scope = this;
    
    				object.updateMatrixWorld( true );
    
    				object.traverse( function ( node ) {
    
    					var i, l;
    
    					var geometry = node.geometry;
    
    					if ( geometry !== undefined ) {
    
    						if ( geometry.isGeometry ) {
    
    							var vertices = geometry.vertices;
    
    							for ( i = 0, l = vertices.length; i < l; i ++ ) {
    
    								v1.copy( vertices[ i ] );
    								v1.applyMatrix4( node.matrixWorld );
    
    								scope.expandByPoint( v1 );
    
    							}
    
    						} else if ( geometry.isBufferGeometry ) {
    
    							var attribute = geometry.attributes.position;
    
    							if ( attribute !== undefined ) {
    
    								for ( i = 0, l = attribute.count; i < l; i ++ ) {
    
    									v1.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );
    
    									scope.expandByPoint( v1 );
    
    								}
    
    							}
    
    						}
    
    					}
    
    				} );
    
    				return this;
    
    			};
    
    		}(),
    
    		containsPoint: function ( point ) {
    
    			return point.x < this.min.x || point.x > this.max.x ||
    				point.y < this.min.y || point.y > this.max.y ||
    				point.z < this.min.z || point.z > this.max.z ? false : true;
    
    		},
    
    		containsBox: function ( box ) {
    
    			return this.min.x <= box.min.x && box.max.x <= this.max.x &&
    				this.min.y <= box.min.y && box.max.y <= this.max.y &&
    				this.min.z <= box.min.z && box.max.z <= this.max.z;
    
    		},
    
    		getParameter: function ( point, optionalTarget ) {
    
    			// This can potentially have a divide by zero if the box
    			// has a size dimension of 0.
    
    			var result = optionalTarget || new Vector3();
    
    			return result.set(
    				( point.x - this.min.x ) / ( this.max.x - this.min.x ),
    				( point.y - this.min.y ) / ( this.max.y - this.min.y ),
    				( point.z - this.min.z ) / ( this.max.z - this.min.z )
    			);
    
    		},
    
    		intersectsBox: function ( box ) {
    
    			// using 6 splitting planes to rule out intersections.
    			return box.max.x < this.min.x || box.min.x > this.max.x ||
    				box.max.y < this.min.y || box.min.y > this.max.y ||
    				box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
    
    		},
    
    		intersectsSphere: ( function () {
    
    			var closestPoint = new Vector3();
    
    			return function intersectsSphere( sphere ) {
    
    				// Find the point on the AABB closest to the sphere center.
    				this.clampPoint( sphere.center, closestPoint );
    
    				// If that point is inside the sphere, the AABB and sphere intersect.
    				return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
    
    			};
    
    		} )(),
    
    		intersectsPlane: function ( plane ) {
    
    			// We compute the minimum and maximum dot product values. If those values
    			// are on the same side (back or front) of the plane, then there is no intersection.
    
    			var min, max;
    
    			if ( plane.normal.x > 0 ) {
    
    				min = plane.normal.x * this.min.x;
    				max = plane.normal.x * this.max.x;
    
    			} else {
    
    				min = plane.normal.x * this.max.x;
    				max = plane.normal.x * this.min.x;
    
    			}
    
    			if ( plane.normal.y > 0 ) {
    
    				min += plane.normal.y * this.min.y;
    				max += plane.normal.y * this.max.y;
    
    			} else {
    
    				min += plane.normal.y * this.max.y;
    				max += plane.normal.y * this.min.y;
    
    			}
    
    			if ( plane.normal.z > 0 ) {
    
    				min += plane.normal.z * this.min.z;
    				max += plane.normal.z * this.max.z;
    
    			} else {
    
    				min += plane.normal.z * this.max.z;
    				max += plane.normal.z * this.min.z;
    
    			}
    
    			return ( min <= plane.constant && max >= plane.constant );
    
    		},
    
    		clampPoint: function ( point, optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    			return result.copy( point ).clamp( this.min, this.max );
    
    		},
    
    		distanceToPoint: function () {
    
    			var v1 = new Vector3();
    
    			return function distanceToPoint( point ) {
    
    				var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
    				return clampedPoint.sub( point ).length();
    
    			};
    
    		}(),
    
    		getBoundingSphere: function () {
    
    			var v1 = new Vector3();
    
    			return function getBoundingSphere( optionalTarget ) {
    
    				var result = optionalTarget || new Sphere();
    
    				this.getCenter( result.center );
    
    				result.radius = this.getSize( v1 ).length() * 0.5;
    
    				return result;
    
    			};
    
    		}(),
    
    		intersect: function ( box ) {
    
    			this.min.max( box.min );
    			this.max.min( box.max );
    
    			// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
    			if( this.isEmpty() ) this.makeEmpty();
    
    			return this;
    
    		},
    
    		union: function ( box ) {
    
    			this.min.min( box.min );
    			this.max.max( box.max );
    
    			return this;
    
    		},
    
    		applyMatrix4: function () {
    
    			var points = [
    				new Vector3(),
    				new Vector3(),
    				new Vector3(),
    				new Vector3(),
    				new Vector3(),
    				new Vector3(),
    				new Vector3(),
    				new Vector3()
    			];
    
    			return function applyMatrix4( matrix ) {
    
    				// transform of empty box is an empty box.
    				if( this.isEmpty() ) return this;
    
    				// NOTE: I am using a binary pattern to specify all 2^3 combinations below
    				points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
    				points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
    				points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
    				points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
    				points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
    				points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
    				points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
    				points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix );	// 111
    
    				this.setFromPoints( points );
    
    				return this;
    
    			};
    
    		}(),
    
    		translate: function ( offset ) {
    
    			this.min.add( offset );
    			this.max.add( offset );
    
    			return this;
    
    		},
    
    		equals: function ( box ) {
    
    			return box.min.equals( this.min ) && box.max.equals( this.max );
    
    		}
    
    	} );
    
    	/**
    	 * @author bhouston / http://clara.io
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function Sphere( center, radius ) {
    
    		this.center = ( center !== undefined ) ? center : new Vector3();
    		this.radius = ( radius !== undefined ) ? radius : 0;
    
    	}
    
    	Object.assign( Sphere.prototype, {
    
    		set: function ( center, radius ) {
    
    			this.center.copy( center );
    			this.radius = radius;
    
    			return this;
    
    		},
    
    		setFromPoints: function () {
    
    			var box = new Box3();
    
    			return function setFromPoints( points, optionalCenter ) {
    
    				var center = this.center;
    
    				if ( optionalCenter !== undefined ) {
    
    					center.copy( optionalCenter );
    
    				} else {
    
    					box.setFromPoints( points ).getCenter( center );
    
    				}
    
    				var maxRadiusSq = 0;
    
    				for ( var i = 0, il = points.length; i < il; i ++ ) {
    
    					maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
    
    				}
    
    				this.radius = Math.sqrt( maxRadiusSq );
    
    				return this;
    
    			};
    
    		}(),
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( sphere ) {
    
    			this.center.copy( sphere.center );
    			this.radius = sphere.radius;
    
    			return this;
    
    		},
    
    		empty: function () {
    
    			return ( this.radius <= 0 );
    
    		},
    
    		containsPoint: function ( point ) {
    
    			return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
    
    		},
    
    		distanceToPoint: function ( point ) {
    
    			return ( point.distanceTo( this.center ) - this.radius );
    
    		},
    
    		intersectsSphere: function ( sphere ) {
    
    			var radiusSum = this.radius + sphere.radius;
    
    			return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
    
    		},
    
    		intersectsBox: function ( box ) {
    
    			return box.intersectsSphere( this );
    
    		},
    
    		intersectsPlane: function ( plane ) {
    
    			// We use the following equation to compute the signed distance from
    			// the center of the sphere to the plane.
    			//
    			// distance = q * n - d
    			//
    			// If this distance is greater than the radius of the sphere,
    			// then there is no intersection.
    
    			return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius;
    
    		},
    
    		clampPoint: function ( point, optionalTarget ) {
    
    			var deltaLengthSq = this.center.distanceToSquared( point );
    
    			var result = optionalTarget || new Vector3();
    
    			result.copy( point );
    
    			if ( deltaLengthSq > ( this.radius * this.radius ) ) {
    
    				result.sub( this.center ).normalize();
    				result.multiplyScalar( this.radius ).add( this.center );
    
    			}
    
    			return result;
    
    		},
    
    		getBoundingBox: function ( optionalTarget ) {
    
    			var box = optionalTarget || new Box3();
    
    			box.set( this.center, this.center );
    			box.expandByScalar( this.radius );
    
    			return box;
    
    		},
    
    		applyMatrix4: function ( matrix ) {
    
    			this.center.applyMatrix4( matrix );
    			this.radius = this.radius * matrix.getMaxScaleOnAxis();
    
    			return this;
    
    		},
    
    		translate: function ( offset ) {
    
    			this.center.add( offset );
    
    			return this;
    
    		},
    
    		equals: function ( sphere ) {
    
    			return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	 * @author bhouston / http://clara.io
    	 * @author tschw
    	 */
    
    	function Matrix3() {
    
    		this.elements = [
    
    			1, 0, 0,
    			0, 1, 0,
    			0, 0, 1
    
    		];
    
    		if ( arguments.length > 0 ) {
    
    			console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );
    
    		}
    
    	}
    
    	Object.assign( Matrix3.prototype, {
    
    		isMatrix3: true,
    
    		set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
    
    			var te = this.elements;
    
    			te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
    			te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
    			te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
    
    			return this;
    
    		},
    
    		identity: function () {
    
    			this.set(
    
    				1, 0, 0,
    				0, 1, 0,
    				0, 0, 1
    
    			);
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().fromArray( this.elements );
    
    		},
    
    		copy: function ( m ) {
    
    			var te = this.elements;
    			var me = m.elements;
    
    			te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
    			te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
    			te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];
    
    			return this;
    
    		},
    
    		setFromMatrix4: function ( m ) {
    
    			var me = m.elements;
    
    			this.set(
    
    				me[ 0 ], me[ 4 ], me[  8 ],
    				me[ 1 ], me[ 5 ], me[  9 ],
    				me[ 2 ], me[ 6 ], me[ 10 ]
    
    			);
    
    			return this;
    
    		},
    
    		applyToBufferAttribute: function () {
    
    			var v1 = new Vector3();
    
    			return function applyToBufferAttribute( attribute ) {
    
    				for ( var i = 0, l = attribute.count; i < l; i ++ ) {
    
    					v1.x = attribute.getX( i );
    					v1.y = attribute.getY( i );
    					v1.z = attribute.getZ( i );
    
    					v1.applyMatrix3( this );
    
    					attribute.setXYZ( i, v1.x, v1.y, v1.z );
    
    				}
    
    				return attribute;
    
    			};
    
    		}(),
    
    		multiply: function ( m ) {
    
    			return this.multiplyMatrices( this, m );
    
    		},
    
    		premultiply: function ( m ) {
    
    			return this.multiplyMatrices( m, this );
    
    		},
    
    		multiplyMatrices: function ( a, b ) {
    
    			var ae = a.elements;
    			var be = b.elements;
    			var te = this.elements;
    
    			var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
    			var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
    			var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];
    
    			var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
    			var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
    			var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];
    
    			te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
    			te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
    			te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;
    
    			te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
    			te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
    			te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;
    
    			te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
    			te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
    			te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;
    
    			return this;
    
    		},
    
    		multiplyScalar: function ( s ) {
    
    			var te = this.elements;
    
    			te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
    			te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
    			te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
    
    			return this;
    
    		},
    
    		determinant: function () {
    
    			var te = this.elements;
    
    			var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
    				d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
    				g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
    
    			return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
    
    		},
    
    		getInverse: function ( matrix, throwOnDegenerate ) {
    
    			if ( matrix && matrix.isMatrix4 ) {
    
    				console.error( "THREE.Matrix3.getInverse no longer takes a Matrix4 argument." );
    
    			}
    
    			var me = matrix.elements,
    				te = this.elements,
    
    				n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
    				n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
    				n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],
    
    				t11 = n33 * n22 - n32 * n23,
    				t12 = n32 * n13 - n33 * n12,
    				t13 = n23 * n12 - n22 * n13,
    
    				det = n11 * t11 + n21 * t12 + n31 * t13;
    
    			if ( det === 0 ) {
    
    				var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0";
    
    				if ( throwOnDegenerate === true ) {
    
    					throw new Error( msg );
    
    				} else {
    
    					console.warn( msg );
    
    				}
    
    				return this.identity();
    
    			}
    
    			var detInv = 1 / det;
    
    			te[ 0 ] = t11 * detInv;
    			te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
    			te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;
    
    			te[ 3 ] = t12 * detInv;
    			te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
    			te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;
    
    			te[ 6 ] = t13 * detInv;
    			te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
    			te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;
    
    			return this;
    
    		},
    
    		transpose: function () {
    
    			var tmp, m = this.elements;
    
    			tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
    			tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
    			tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
    
    			return this;
    
    		},
    
    		getNormalMatrix: function ( matrix4 ) {
    
    			return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();
    
    		},
    
    		transposeIntoArray: function ( r ) {
    
    			var m = this.elements;
    
    			r[ 0 ] = m[ 0 ];
    			r[ 1 ] = m[ 3 ];
    			r[ 2 ] = m[ 6 ];
    			r[ 3 ] = m[ 1 ];
    			r[ 4 ] = m[ 4 ];
    			r[ 5 ] = m[ 7 ];
    			r[ 6 ] = m[ 2 ];
    			r[ 7 ] = m[ 5 ];
    			r[ 8 ] = m[ 8 ];
    
    			return this;
    
    		},
    
    		equals: function ( matrix ) {
    
    			var te = this.elements;
    			var me = matrix.elements;
    
    			for ( var i = 0; i < 9; i ++ ) {
    
    				if ( te[ i ] !== me[ i ] ) return false;
    
    			}
    
    			return true;
    
    		},
    
    		fromArray: function ( array, offset ) {
    
    			if ( offset === undefined ) offset = 0;
    
    			for ( var i = 0; i < 9; i ++ ) {
    
    				this.elements[ i ] = array[ i + offset ];
    
    			}
    
    			return this;
    
    		},
    
    		toArray: function ( array, offset ) {
    
    			if ( array === undefined ) array = [];
    			if ( offset === undefined ) offset = 0;
    
    			var te = this.elements;
    
    			array[ offset ] = te[ 0 ];
    			array[ offset + 1 ] = te[ 1 ];
    			array[ offset + 2 ] = te[ 2 ];
    
    			array[ offset + 3 ] = te[ 3 ];
    			array[ offset + 4 ] = te[ 4 ];
    			array[ offset + 5 ] = te[ 5 ];
    
    			array[ offset + 6 ] = te[ 6 ];
    			array[ offset + 7 ] = te[ 7 ];
    			array[ offset + 8 ] = te[ 8 ];
    
    			return array;
    
    		}
    
    	} );
    
    	/**
    	 * @author bhouston / http://clara.io
    	 */
    
    	function Plane( normal, constant ) {
    
    		this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );
    		this.constant = ( constant !== undefined ) ? constant : 0;
    
    	}
    
    	Object.assign( Plane.prototype, {
    
    		set: function ( normal, constant ) {
    
    			this.normal.copy( normal );
    			this.constant = constant;
    
    			return this;
    
    		},
    
    		setComponents: function ( x, y, z, w ) {
    
    			this.normal.set( x, y, z );
    			this.constant = w;
    
    			return this;
    
    		},
    
    		setFromNormalAndCoplanarPoint: function ( normal, point ) {
    
    			this.normal.copy( normal );
    			this.constant = - point.dot( this.normal );	// must be this.normal, not normal, as this.normal is normalized
    
    			return this;
    
    		},
    
    		setFromCoplanarPoints: function () {
    
    			var v1 = new Vector3();
    			var v2 = new Vector3();
    
    			return function setFromCoplanarPoints( a, b, c ) {
    
    				var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize();
    
    				// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
    
    				this.setFromNormalAndCoplanarPoint( normal, a );
    
    				return this;
    
    			};
    
    		}(),
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( plane ) {
    
    			this.normal.copy( plane.normal );
    			this.constant = plane.constant;
    
    			return this;
    
    		},
    
    		normalize: function () {
    
    			// Note: will lead to a divide by zero if the plane is invalid.
    
    			var inverseNormalLength = 1.0 / this.normal.length();
    			this.normal.multiplyScalar( inverseNormalLength );
    			this.constant *= inverseNormalLength;
    
    			return this;
    
    		},
    
    		negate: function () {
    
    			this.constant *= - 1;
    			this.normal.negate();
    
    			return this;
    
    		},
    
    		distanceToPoint: function ( point ) {
    
    			return this.normal.dot( point ) + this.constant;
    
    		},
    
    		distanceToSphere: function ( sphere ) {
    
    			return this.distanceToPoint( sphere.center ) - sphere.radius;
    
    		},
    
    		projectPoint: function ( point, optionalTarget ) {
    
    			return this.orthoPoint( point, optionalTarget ).sub( point ).negate();
    
    		},
    
    		orthoPoint: function ( point, optionalTarget ) {
    
    			var perpendicularMagnitude = this.distanceToPoint( point );
    
    			var result = optionalTarget || new Vector3();
    			return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude );
    
    		},
    
    		intersectLine: function () {
    
    			var v1 = new Vector3();
    
    			return function intersectLine( line, optionalTarget ) {
    
    				var result = optionalTarget || new Vector3();
    
    				var direction = line.delta( v1 );
    
    				var denominator = this.normal.dot( direction );
    
    				if ( denominator === 0 ) {
    
    					// line is coplanar, return origin
    					if ( this.distanceToPoint( line.start ) === 0 ) {
    
    						return result.copy( line.start );
    
    					}
    
    					// Unsure if this is the correct method to handle this case.
    					return undefined;
    
    				}
    
    				var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
    
    				if ( t < 0 || t > 1 ) {
    
    					return undefined;
    
    				}
    
    				return result.copy( direction ).multiplyScalar( t ).add( line.start );
    
    			};
    
    		}(),
    
    		intersectsLine: function ( line ) {
    
    			// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
    
    			var startSign = this.distanceToPoint( line.start );
    			var endSign = this.distanceToPoint( line.end );
    
    			return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
    
    		},
    
    		intersectsBox: function ( box ) {
    
    			return box.intersectsPlane( this );
    
    		},
    
    		intersectsSphere: function ( sphere ) {
    
    			return sphere.intersectsPlane( this );
    
    		},
    
    		coplanarPoint: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    			return result.copy( this.normal ).multiplyScalar( - this.constant );
    
    		},
    
    		applyMatrix4: function () {
    
    			var v1 = new Vector3();
    			var m1 = new Matrix3();
    
    			return function applyMatrix4( matrix, optionalNormalMatrix ) {
    
    				var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix );
    
    				// transform normal based on theory here:
    				// http://www.songho.ca/opengl/gl_normaltransform.html
    				var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix );
    				var normal = this.normal.applyMatrix3( normalMatrix ).normalize();
    
    				// recalculate constant (like in setFromNormalAndCoplanarPoint)
    				this.constant = - referencePoint.dot( normal );
    
    				return this;
    
    			};
    
    		}(),
    
    		translate: function ( offset ) {
    
    			this.constant = this.constant - offset.dot( this.normal );
    
    			return this;
    
    		},
    
    		equals: function ( plane ) {
    
    			return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author bhouston / http://clara.io
    	 */
    
    	function Frustum( p0, p1, p2, p3, p4, p5 ) {
    
    		this.planes = [
    
    			( p0 !== undefined ) ? p0 : new Plane(),
    			( p1 !== undefined ) ? p1 : new Plane(),
    			( p2 !== undefined ) ? p2 : new Plane(),
    			( p3 !== undefined ) ? p3 : new Plane(),
    			( p4 !== undefined ) ? p4 : new Plane(),
    			( p5 !== undefined ) ? p5 : new Plane()
    
    		];
    
    	}
    
    	Object.assign( Frustum.prototype, {
    
    		set: function ( p0, p1, p2, p3, p4, p5 ) {
    
    			var planes = this.planes;
    
    			planes[ 0 ].copy( p0 );
    			planes[ 1 ].copy( p1 );
    			planes[ 2 ].copy( p2 );
    			planes[ 3 ].copy( p3 );
    			planes[ 4 ].copy( p4 );
    			planes[ 5 ].copy( p5 );
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( frustum ) {
    
    			var planes = this.planes;
    
    			for ( var i = 0; i < 6; i ++ ) {
    
    				planes[ i ].copy( frustum.planes[ i ] );
    
    			}
    
    			return this;
    
    		},
    
    		setFromMatrix: function ( m ) {
    
    			var planes = this.planes;
    			var me = m.elements;
    			var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
    			var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
    			var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
    			var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
    
    			planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
    			planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
    			planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
    			planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
    			planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
    			planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
    
    			return this;
    
    		},
    
    		intersectsObject: function () {
    
    			var sphere = new Sphere();
    
    			return function intersectsObject( object ) {
    
    				var geometry = object.geometry;
    
    				if ( geometry.boundingSphere === null )
    					geometry.computeBoundingSphere();
    
    				sphere.copy( geometry.boundingSphere )
    					.applyMatrix4( object.matrixWorld );
    
    				return this.intersectsSphere( sphere );
    
    			};
    
    		}(),
    
    		intersectsSprite: function () {
    
    			var sphere = new Sphere();
    
    			return function intersectsSprite( sprite ) {
    
    				sphere.center.set( 0, 0, 0 );
    				sphere.radius = 0.7071067811865476;
    				sphere.applyMatrix4( sprite.matrixWorld );
    
    				return this.intersectsSphere( sphere );
    
    			};
    
    		}(),
    
    		intersectsSphere: function ( sphere ) {
    
    			var planes = this.planes;
    			var center = sphere.center;
    			var negRadius = - sphere.radius;
    
    			for ( var i = 0; i < 6; i ++ ) {
    
    				var distance = planes[ i ].distanceToPoint( center );
    
    				if ( distance < negRadius ) {
    
    					return false;
    
    				}
    
    			}
    
    			return true;
    
    		},
    
    		intersectsBox: function () {
    
    			var p1 = new Vector3(),
    				p2 = new Vector3();
    
    			return function intersectsBox( box ) {
    
    				var planes = this.planes;
    
    				for ( var i = 0; i < 6; i ++ ) {
    
    					var plane = planes[ i ];
    
    					p1.x = plane.normal.x > 0 ? box.min.x : box.max.x;
    					p2.x = plane.normal.x > 0 ? box.max.x : box.min.x;
    					p1.y = plane.normal.y > 0 ? box.min.y : box.max.y;
    					p2.y = plane.normal.y > 0 ? box.max.y : box.min.y;
    					p1.z = plane.normal.z > 0 ? box.min.z : box.max.z;
    					p2.z = plane.normal.z > 0 ? box.max.z : box.min.z;
    
    					var d1 = plane.distanceToPoint( p1 );
    					var d2 = plane.distanceToPoint( p2 );
    
    					// if both outside plane, no intersection
    
    					if ( d1 < 0 && d2 < 0 ) {
    
    						return false;
    
    					}
    
    				}
    
    				return true;
    
    			};
    
    		}(),
    
    		containsPoint: function ( point ) {
    
    			var planes = this.planes;
    
    			for ( var i = 0; i < 6; i ++ ) {
    
    				if ( planes[ i ].distanceToPoint( point ) < 0 ) {
    
    					return false;
    
    				}
    
    			}
    
    			return true;
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLShadowMap( _renderer, _lights, _objects, capabilities ) {
    
    		var _gl = _renderer.context,
    			_state = _renderer.state,
    			_frustum = new Frustum(),
    			_projScreenMatrix = new Matrix4(),
    
    			_lightShadows = _lights.shadows,
    
    			_shadowMapSize = new Vector2(),
    			_maxShadowMapSize = new Vector2( capabilities.maxTextureSize, capabilities.maxTextureSize ),
    
    			_lookTarget = new Vector3(),
    			_lightPositionWorld = new Vector3(),
    
    			_MorphingFlag = 1,
    			_SkinningFlag = 2,
    
    			_NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1,
    
    			_depthMaterials = new Array( _NumberOfMaterialVariants ),
    			_distanceMaterials = new Array( _NumberOfMaterialVariants ),
    
    			_materialCache = {};
    
    		var cubeDirections = [
    			new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ),
    			new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 )
    		];
    
    		var cubeUps = [
    			new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ),
    			new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ),	new Vector3( 0, 0, - 1 )
    		];
    
    		var cube2DViewPorts = [
    			new Vector4(), new Vector4(), new Vector4(),
    			new Vector4(), new Vector4(), new Vector4()
    		];
    
    		// init
    
    		var depthMaterialTemplate = new MeshDepthMaterial();
    		depthMaterialTemplate.depthPacking = RGBADepthPacking;
    		depthMaterialTemplate.clipping = true;
    
    		var distanceShader = ShaderLib[ "distanceRGBA" ];
    		var distanceUniforms = UniformsUtils.clone( distanceShader.uniforms );
    
    		for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) {
    
    			var useMorphing = ( i & _MorphingFlag ) !== 0;
    			var useSkinning = ( i & _SkinningFlag ) !== 0;
    
    			var depthMaterial = depthMaterialTemplate.clone();
    			depthMaterial.morphTargets = useMorphing;
    			depthMaterial.skinning = useSkinning;
    
    			_depthMaterials[ i ] = depthMaterial;
    
    			var distanceMaterial = new ShaderMaterial( {
    				defines: {
    					'USE_SHADOWMAP': ''
    				},
    				uniforms: distanceUniforms,
    				vertexShader: distanceShader.vertexShader,
    				fragmentShader: distanceShader.fragmentShader,
    				morphTargets: useMorphing,
    				skinning: useSkinning,
    				clipping: true
    			} );
    
    			_distanceMaterials[ i ] = distanceMaterial;
    
    		}
    
    		//
    
    		var scope = this;
    
    		this.enabled = false;
    
    		this.autoUpdate = true;
    		this.needsUpdate = false;
    
    		this.type = PCFShadowMap;
    
    		this.renderReverseSided = true;
    		this.renderSingleSided = true;
    
    		this.render = function ( scene, camera ) {
    
    			if ( scope.enabled === false ) return;
    			if ( scope.autoUpdate === false && scope.needsUpdate === false ) return;
    
    			if ( _lightShadows.length === 0 ) return;
    
    			// Set GL state for depth map.
    			_state.disable( _gl.BLEND );
    			_state.buffers.color.setClear( 1, 1, 1, 1 );
    			_state.buffers.depth.setTest( true );
    			_state.setScissorTest( false );
    
    			// render depth map
    
    			var faceCount, isPointLight;
    
    			for ( var i = 0, il = _lightShadows.length; i < il; i ++ ) {
    
    				var light = _lightShadows[ i ];
    				var shadow = light.shadow;
    
    				if ( shadow === undefined ) {
    
    					console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' );
    					continue;
    
    				}
    
    				var shadowCamera = shadow.camera;
    				var shadowMatrix = shadow.matrix;
    
    				_lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
    				shadowCamera.position.copy( _lightPositionWorld );
    
    				_shadowMapSize.copy( shadow.mapSize );
    				_shadowMapSize.min( _maxShadowMapSize );
    
    				if ( light && light.isPointLight ) {
    
    					faceCount = 6;
    					isPointLight = true;
    
    					var vpWidth = _shadowMapSize.x;
    					var vpHeight = _shadowMapSize.y;
    
    					// These viewports map a cube-map onto a 2D texture with the
    					// following orientation:
    					//
    					//  xzXZ
    					//   y Y
    					//
    					// X - Positive x direction
    					// x - Negative x direction
    					// Y - Positive y direction
    					// y - Negative y direction
    					// Z - Positive z direction
    					// z - Negative z direction
    
    					// positive X
    					cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight );
    					// negative X
    					cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight );
    					// positive Z
    					cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight );
    					// negative Z
    					cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight );
    					// positive Y
    					cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight );
    					// negative Y
    					cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight );
    
    					_shadowMapSize.x *= 4.0;
    					_shadowMapSize.y *= 2.0;
    
    
    					// for point lights we set the shadow matrix to be a translation-only matrix
    					// equal to inverse of the light's position
    
    					shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z );
    
    				} else {
    
    					faceCount = 1;
    					isPointLight = false;
    
    					_lookTarget.setFromMatrixPosition( light.target.matrixWorld );
    					shadowCamera.lookAt( _lookTarget );
    					shadowCamera.updateMatrixWorld();
    					shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld );
    
    					// compute shadow matrix
    
    					shadowMatrix.set(
    						0.5, 0.0, 0.0, 0.5,
    						0.0, 0.5, 0.0, 0.5,
    						0.0, 0.0, 0.5, 0.5,
    						0.0, 0.0, 0.0, 1.0
    					);
    
    					shadowMatrix.multiply( shadowCamera.projectionMatrix );
    					shadowMatrix.multiply( shadowCamera.matrixWorldInverse );
    
    				}
    
    				if ( shadow.map === null ) {
    
    					var pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat };
    
    					shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
    					shadow.map.texture.name = light.name + ".shadowMap";
    
    					shadowCamera.updateProjectionMatrix();
    
    				}
    
    				if ( shadow.isSpotLightShadow ) {
    
    					shadow.update( light );
    
    				}
    
    				var shadowMap = shadow.map;
    
    				_renderer.setRenderTarget( shadowMap );
    				_renderer.clear();
    
    				// render shadow map for each cube face (if omni-directional) or
    				// run a single pass if not
    
    				for ( var face = 0; face < faceCount; face ++ ) {
    
    					if ( isPointLight ) {
    
    						_lookTarget.copy( shadowCamera.position );
    						_lookTarget.add( cubeDirections[ face ] );
    						shadowCamera.up.copy( cubeUps[ face ] );
    						shadowCamera.lookAt( _lookTarget );
    						shadowCamera.updateMatrixWorld();
    						shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld );
    
    						var vpDimensions = cube2DViewPorts[ face ];
    						_state.viewport( vpDimensions );
    
    					}
    
    					// update camera matrices and frustum
    
    					_projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
    					_frustum.setFromMatrix( _projScreenMatrix );
    
    					// set object matrices & frustum culling
    
    					renderObject( scene, camera, shadowCamera, isPointLight );
    
    				}
    
    			}
    
    			// Restore GL state.
    			var clearColor = _renderer.getClearColor();
    			var clearAlpha = _renderer.getClearAlpha();
    			_renderer.setClearColor( clearColor, clearAlpha );
    
    			scope.needsUpdate = false;
    
    		};
    
    		function getDepthMaterial( object, material, isPointLight, lightPositionWorld ) {
    
    			var geometry = object.geometry;
    
    			var result = null;
    
    			var materialVariants = _depthMaterials;
    			var customMaterial = object.customDepthMaterial;
    
    			if ( isPointLight ) {
    
    				materialVariants = _distanceMaterials;
    				customMaterial = object.customDistanceMaterial;
    
    			}
    
    			if ( ! customMaterial ) {
    
    				var useMorphing = false;
    
    				if ( material.morphTargets ) {
    
    					if ( geometry && geometry.isBufferGeometry ) {
    
    						useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;
    
    					} else if ( geometry && geometry.isGeometry ) {
    
    						useMorphing = geometry.morphTargets && geometry.morphTargets.length > 0;
    
    					}
    
    				}
    
    				if ( object.isSkinnedMesh && material.skinning === false ) {
    
    					console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object );
    
    				}
    
    				var useSkinning = object.isSkinnedMesh && material.skinning;
    
    				var variantIndex = 0;
    
    				if ( useMorphing ) variantIndex |= _MorphingFlag;
    				if ( useSkinning ) variantIndex |= _SkinningFlag;
    
    				result = materialVariants[ variantIndex ];
    
    			} else {
    
    				result = customMaterial;
    
    			}
    
    			if ( _renderer.localClippingEnabled &&
    					material.clipShadows === true &&
    					material.clippingPlanes.length !== 0 ) {
    
    				// in this case we need a unique material instance reflecting the
    				// appropriate state
    
    				var keyA = result.uuid, keyB = material.uuid;
    
    				var materialsForVariant = _materialCache[ keyA ];
    
    				if ( materialsForVariant === undefined ) {
    
    					materialsForVariant = {};
    					_materialCache[ keyA ] = materialsForVariant;
    
    				}
    
    				var cachedMaterial = materialsForVariant[ keyB ];
    
    				if ( cachedMaterial === undefined ) {
    
    					cachedMaterial = result.clone();
    					materialsForVariant[ keyB ] = cachedMaterial;
    
    				}
    
    				result = cachedMaterial;
    
    			}
    
    			result.visible = material.visible;
    			result.wireframe = material.wireframe;
    
    			var side = material.side;
    
    			if ( scope.renderSingleSided && side == DoubleSide ) {
    
    				side = FrontSide;
    
    			}
    
    			if ( scope.renderReverseSided ) {
    
    				if ( side === FrontSide ) side = BackSide;
    				else if ( side === BackSide ) side = FrontSide;
    
    			}
    
    			result.side = side;
    
    			result.clipShadows = material.clipShadows;
    			result.clippingPlanes = material.clippingPlanes;
    
    			result.wireframeLinewidth = material.wireframeLinewidth;
    			result.linewidth = material.linewidth;
    
    			if ( isPointLight && result.uniforms.lightPos !== undefined ) {
    
    				result.uniforms.lightPos.value.copy( lightPositionWorld );
    
    			}
    
    			return result;
    
    		}
    
    		function renderObject( object, camera, shadowCamera, isPointLight ) {
    
    			if ( object.visible === false ) return;
    
    			var visible = object.layers.test( camera.layers );
    
    			if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) {
    
    				if ( object.castShadow && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) {
    
    					object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );
    
    					var geometry = _objects.update( object );
    					var material = object.material;
    
    					if ( Array.isArray( material ) ) {
    
    						var groups = geometry.groups;
    
    						for ( var k = 0, kl = groups.length; k < kl; k ++ ) {
    
    							var group = groups[ k ];
    							var groupMaterial = material[ group.materialIndex ];
    
    							if ( groupMaterial && groupMaterial.visible ) {
    
    								var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld );
    								_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );
    
    							}
    
    						}
    
    					} else if ( material.visible ) {
    
    						var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld );
    						_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );
    
    					}
    
    				}
    
    			}
    
    			var children = object.children;
    
    			for ( var i = 0, l = children.length; i < l; i ++ ) {
    
    				renderObject( children[ i ], camera, shadowCamera, isPointLight );
    
    			}
    
    		}
    
    	}
    
    	/**
    	 * @author bhouston / http://clara.io
    	 */
    
    	function Ray( origin, direction ) {
    
    		this.origin = ( origin !== undefined ) ? origin : new Vector3();
    		this.direction = ( direction !== undefined ) ? direction : new Vector3();
    
    	}
    
    	Object.assign( Ray.prototype, {
    
    		set: function ( origin, direction ) {
    
    			this.origin.copy( origin );
    			this.direction.copy( direction );
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( ray ) {
    
    			this.origin.copy( ray.origin );
    			this.direction.copy( ray.direction );
    
    			return this;
    
    		},
    
    		at: function ( t, optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    
    			return result.copy( this.direction ).multiplyScalar( t ).add( this.origin );
    
    		},
    
    		lookAt: function ( v ) {
    
    			this.direction.copy( v ).sub( this.origin ).normalize();
    
    			return this;
    
    		},
    
    		recast: function () {
    
    			var v1 = new Vector3();
    
    			return function recast( t ) {
    
    				this.origin.copy( this.at( t, v1 ) );
    
    				return this;
    
    			};
    
    		}(),
    
    		closestPointToPoint: function ( point, optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    			result.subVectors( point, this.origin );
    			var directionDistance = result.dot( this.direction );
    
    			if ( directionDistance < 0 ) {
    
    				return result.copy( this.origin );
    
    			}
    
    			return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
    
    		},
    
    		distanceToPoint: function ( point ) {
    
    			return Math.sqrt( this.distanceSqToPoint( point ) );
    
    		},
    
    		distanceSqToPoint: function () {
    
    			var v1 = new Vector3();
    
    			return function distanceSqToPoint( point ) {
    
    				var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction );
    
    				// point behind the ray
    
    				if ( directionDistance < 0 ) {
    
    					return this.origin.distanceToSquared( point );
    
    				}
    
    				v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
    
    				return v1.distanceToSquared( point );
    
    			};
    
    		}(),
    
    		distanceSqToSegment: function () {
    
    			var segCenter = new Vector3();
    			var segDir = new Vector3();
    			var diff = new Vector3();
    
    			return function distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
    
    				// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
    				// It returns the min distance between the ray and the segment
    				// defined by v0 and v1
    				// It can also set two optional targets :
    				// - The closest point on the ray
    				// - The closest point on the segment
    
    				segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
    				segDir.copy( v1 ).sub( v0 ).normalize();
    				diff.copy( this.origin ).sub( segCenter );
    
    				var segExtent = v0.distanceTo( v1 ) * 0.5;
    				var a01 = - this.direction.dot( segDir );
    				var b0 = diff.dot( this.direction );
    				var b1 = - diff.dot( segDir );
    				var c = diff.lengthSq();
    				var det = Math.abs( 1 - a01 * a01 );
    				var s0, s1, sqrDist, extDet;
    
    				if ( det > 0 ) {
    
    					// The ray and segment are not parallel.
    
    					s0 = a01 * b1 - b0;
    					s1 = a01 * b0 - b1;
    					extDet = segExtent * det;
    
    					if ( s0 >= 0 ) {
    
    						if ( s1 >= - extDet ) {
    
    							if ( s1 <= extDet ) {
    
    								// region 0
    								// Minimum at interior points of ray and segment.
    
    								var invDet = 1 / det;
    								s0 *= invDet;
    								s1 *= invDet;
    								sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
    
    							} else {
    
    								// region 1
    
    								s1 = segExtent;
    								s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
    								sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
    
    							}
    
    						} else {
    
    							// region 5
    
    							s1 = - segExtent;
    							s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
    							sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
    
    						}
    
    					} else {
    
    						if ( s1 <= - extDet ) {
    
    							// region 4
    
    							s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
    							s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
    							sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
    
    						} else if ( s1 <= extDet ) {
    
    							// region 3
    
    							s0 = 0;
    							s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
    							sqrDist = s1 * ( s1 + 2 * b1 ) + c;
    
    						} else {
    
    							// region 2
    
    							s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
    							s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
    							sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
    
    						}
    
    					}
    
    				} else {
    
    					// Ray and segment are parallel.
    
    					s1 = ( a01 > 0 ) ? - segExtent : segExtent;
    					s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
    					sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
    
    				}
    
    				if ( optionalPointOnRay ) {
    
    					optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );
    
    				}
    
    				if ( optionalPointOnSegment ) {
    
    					optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter );
    
    				}
    
    				return sqrDist;
    
    			};
    
    		}(),
    
    		intersectSphere: function () {
    
    			var v1 = new Vector3();
    
    			return function intersectSphere( sphere, optionalTarget ) {
    
    				v1.subVectors( sphere.center, this.origin );
    				var tca = v1.dot( this.direction );
    				var d2 = v1.dot( v1 ) - tca * tca;
    				var radius2 = sphere.radius * sphere.radius;
    
    				if ( d2 > radius2 ) return null;
    
    				var thc = Math.sqrt( radius2 - d2 );
    
    				// t0 = first intersect point - entrance on front of sphere
    				var t0 = tca - thc;
    
    				// t1 = second intersect point - exit point on back of sphere
    				var t1 = tca + thc;
    
    				// test to see if both t0 and t1 are behind the ray - if so, return null
    				if ( t0 < 0 && t1 < 0 ) return null;
    
    				// test to see if t0 is behind the ray:
    				// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
    				// in order to always return an intersect point that is in front of the ray.
    				if ( t0 < 0 ) return this.at( t1, optionalTarget );
    
    				// else t0 is in front of the ray, so return the first collision point scaled by t0
    				return this.at( t0, optionalTarget );
    
    			};
    
    		}(),
    
    		intersectsSphere: function ( sphere ) {
    
    			return this.distanceToPoint( sphere.center ) <= sphere.radius;
    
    		},
    
    		distanceToPlane: function ( plane ) {
    
    			var denominator = plane.normal.dot( this.direction );
    
    			if ( denominator === 0 ) {
    
    				// line is coplanar, return origin
    				if ( plane.distanceToPoint( this.origin ) === 0 ) {
    
    					return 0;
    
    				}
    
    				// Null is preferable to undefined since undefined means.... it is undefined
    
    				return null;
    
    			}
    
    			var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
    
    			// Return if the ray never intersects the plane
    
    			return t >= 0 ? t :  null;
    
    		},
    
    		intersectPlane: function ( plane, optionalTarget ) {
    
    			var t = this.distanceToPlane( plane );
    
    			if ( t === null ) {
    
    				return null;
    
    			}
    
    			return this.at( t, optionalTarget );
    
    		},
    
    		intersectsPlane: function ( plane ) {
    
    			// check if the ray lies on the plane first
    
    			var distToPoint = plane.distanceToPoint( this.origin );
    
    			if ( distToPoint === 0 ) {
    
    				return true;
    
    			}
    
    			var denominator = plane.normal.dot( this.direction );
    
    			if ( denominator * distToPoint < 0 ) {
    
    				return true;
    
    			}
    
    			// ray origin is behind the plane (and is pointing behind it)
    
    			return false;
    
    		},
    
    		intersectBox: function ( box, optionalTarget ) {
    
    			var tmin, tmax, tymin, tymax, tzmin, tzmax;
    
    			var invdirx = 1 / this.direction.x,
    				invdiry = 1 / this.direction.y,
    				invdirz = 1 / this.direction.z;
    
    			var origin = this.origin;
    
    			if ( invdirx >= 0 ) {
    
    				tmin = ( box.min.x - origin.x ) * invdirx;
    				tmax = ( box.max.x - origin.x ) * invdirx;
    
    			} else {
    
    				tmin = ( box.max.x - origin.x ) * invdirx;
    				tmax = ( box.min.x - origin.x ) * invdirx;
    
    			}
    
    			if ( invdiry >= 0 ) {
    
    				tymin = ( box.min.y - origin.y ) * invdiry;
    				tymax = ( box.max.y - origin.y ) * invdiry;
    
    			} else {
    
    				tymin = ( box.max.y - origin.y ) * invdiry;
    				tymax = ( box.min.y - origin.y ) * invdiry;
    
    			}
    
    			if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
    
    			// These lines also handle the case where tmin or tmax is NaN
    			// (result of 0 * Infinity). x !== x returns true if x is NaN
    
    			if ( tymin > tmin || tmin !== tmin ) tmin = tymin;
    
    			if ( tymax < tmax || tmax !== tmax ) tmax = tymax;
    
    			if ( invdirz >= 0 ) {
    
    				tzmin = ( box.min.z - origin.z ) * invdirz;
    				tzmax = ( box.max.z - origin.z ) * invdirz;
    
    			} else {
    
    				tzmin = ( box.max.z - origin.z ) * invdirz;
    				tzmax = ( box.min.z - origin.z ) * invdirz;
    
    			}
    
    			if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
    
    			if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
    
    			if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
    
    			//return point closest to the ray (positive side)
    
    			if ( tmax < 0 ) return null;
    
    			return this.at( tmin >= 0 ? tmin : tmax, optionalTarget );
    
    		},
    
    		intersectsBox: ( function () {
    
    			var v = new Vector3();
    
    			return function intersectsBox( box ) {
    
    				return this.intersectBox( box, v ) !== null;
    
    			};
    
    		} )(),
    
    		intersectTriangle: function () {
    
    			// Compute the offset origin, edges, and normal.
    			var diff = new Vector3();
    			var edge1 = new Vector3();
    			var edge2 = new Vector3();
    			var normal = new Vector3();
    
    			return function intersectTriangle( a, b, c, backfaceCulling, optionalTarget ) {
    
    				// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
    
    				edge1.subVectors( b, a );
    				edge2.subVectors( c, a );
    				normal.crossVectors( edge1, edge2 );
    
    				// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
    				// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
    				//   |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
    				//   |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
    				//   |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
    				var DdN = this.direction.dot( normal );
    				var sign;
    
    				if ( DdN > 0 ) {
    
    					if ( backfaceCulling ) return null;
    					sign = 1;
    
    				} else if ( DdN < 0 ) {
    
    					sign = - 1;
    					DdN = - DdN;
    
    				} else {
    
    					return null;
    
    				}
    
    				diff.subVectors( this.origin, a );
    				var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) );
    
    				// b1 < 0, no intersection
    				if ( DdQxE2 < 0 ) {
    
    					return null;
    
    				}
    
    				var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) );
    
    				// b2 < 0, no intersection
    				if ( DdE1xQ < 0 ) {
    
    					return null;
    
    				}
    
    				// b1+b2 > 1, no intersection
    				if ( DdQxE2 + DdE1xQ > DdN ) {
    
    					return null;
    
    				}
    
    				// Line intersects triangle, check if ray does.
    				var QdN = - sign * diff.dot( normal );
    
    				// t < 0, no intersection
    				if ( QdN < 0 ) {
    
    					return null;
    
    				}
    
    				// Ray intersects triangle.
    				return this.at( QdN / DdN, optionalTarget );
    
    			};
    
    		}(),
    
    		applyMatrix4: function ( matrix4 ) {
    
    			this.direction.add( this.origin ).applyMatrix4( matrix4 );
    			this.origin.applyMatrix4( matrix4 );
    			this.direction.sub( this.origin );
    			this.direction.normalize();
    
    			return this;
    
    		},
    
    		equals: function ( ray ) {
    
    			return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	 * @author bhouston / http://clara.io
    	 */
    
    	function Euler( x, y, z, order ) {
    
    		this._x = x || 0;
    		this._y = y || 0;
    		this._z = z || 0;
    		this._order = order || Euler.DefaultOrder;
    
    	}
    
    	Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];
    
    	Euler.DefaultOrder = 'XYZ';
    
    	Object.defineProperties( Euler.prototype, {
    
    		x: {
    
    			get: function () {
    
    				return this._x;
    
    			},
    
    			set: function ( value ) {
    
    				this._x = value;
    				this.onChangeCallback();
    
    			}
    
    		},
    
    		y: {
    
    			get: function () {
    
    				return this._y;
    
    			},
    
    			set: function ( value ) {
    
    				this._y = value;
    				this.onChangeCallback();
    
    			}
    
    		},
    
    		z: {
    
    			get: function () {
    
    				return this._z;
    
    			},
    
    			set: function ( value ) {
    
    				this._z = value;
    				this.onChangeCallback();
    
    			}
    
    		},
    
    		order: {
    
    			get: function () {
    
    				return this._order;
    
    			},
    
    			set: function ( value ) {
    
    				this._order = value;
    				this.onChangeCallback();
    
    			}
    
    		}
    
    	} );
    
    	Object.assign( Euler.prototype, {
    
    		isEuler: true,
    
    		set: function ( x, y, z, order ) {
    
    			this._x = x;
    			this._y = y;
    			this._z = z;
    			this._order = order || this._order;
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor( this._x, this._y, this._z, this._order );
    
    		},
    
    		copy: function ( euler ) {
    
    			this._x = euler._x;
    			this._y = euler._y;
    			this._z = euler._z;
    			this._order = euler._order;
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		setFromRotationMatrix: function ( m, order, update ) {
    
    			var clamp = _Math.clamp;
    
    			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
    
    			var te = m.elements;
    			var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
    			var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
    			var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
    
    			order = order || this._order;
    
    			if ( order === 'XYZ' ) {
    
    				this._y = Math.asin( clamp( m13, - 1, 1 ) );
    
    				if ( Math.abs( m13 ) < 0.99999 ) {
    
    					this._x = Math.atan2( - m23, m33 );
    					this._z = Math.atan2( - m12, m11 );
    
    				} else {
    
    					this._x = Math.atan2( m32, m22 );
    					this._z = 0;
    
    				}
    
    			} else if ( order === 'YXZ' ) {
    
    				this._x = Math.asin( - clamp( m23, - 1, 1 ) );
    
    				if ( Math.abs( m23 ) < 0.99999 ) {
    
    					this._y = Math.atan2( m13, m33 );
    					this._z = Math.atan2( m21, m22 );
    
    				} else {
    
    					this._y = Math.atan2( - m31, m11 );
    					this._z = 0;
    
    				}
    
    			} else if ( order === 'ZXY' ) {
    
    				this._x = Math.asin( clamp( m32, - 1, 1 ) );
    
    				if ( Math.abs( m32 ) < 0.99999 ) {
    
    					this._y = Math.atan2( - m31, m33 );
    					this._z = Math.atan2( - m12, m22 );
    
    				} else {
    
    					this._y = 0;
    					this._z = Math.atan2( m21, m11 );
    
    				}
    
    			} else if ( order === 'ZYX' ) {
    
    				this._y = Math.asin( - clamp( m31, - 1, 1 ) );
    
    				if ( Math.abs( m31 ) < 0.99999 ) {
    
    					this._x = Math.atan2( m32, m33 );
    					this._z = Math.atan2( m21, m11 );
    
    				} else {
    
    					this._x = 0;
    					this._z = Math.atan2( - m12, m22 );
    
    				}
    
    			} else if ( order === 'YZX' ) {
    
    				this._z = Math.asin( clamp( m21, - 1, 1 ) );
    
    				if ( Math.abs( m21 ) < 0.99999 ) {
    
    					this._x = Math.atan2( - m23, m22 );
    					this._y = Math.atan2( - m31, m11 );
    
    				} else {
    
    					this._x = 0;
    					this._y = Math.atan2( m13, m33 );
    
    				}
    
    			} else if ( order === 'XZY' ) {
    
    				this._z = Math.asin( - clamp( m12, - 1, 1 ) );
    
    				if ( Math.abs( m12 ) < 0.99999 ) {
    
    					this._x = Math.atan2( m32, m22 );
    					this._y = Math.atan2( m13, m11 );
    
    				} else {
    
    					this._x = Math.atan2( - m23, m33 );
    					this._y = 0;
    
    				}
    
    			} else {
    
    				console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order );
    
    			}
    
    			this._order = order;
    
    			if ( update !== false ) this.onChangeCallback();
    
    			return this;
    
    		},
    
    		setFromQuaternion: function () {
    
    			var matrix = new Matrix4();
    
    			return function setFromQuaternion( q, order, update ) {
    
    				matrix.makeRotationFromQuaternion( q );
    
    				return this.setFromRotationMatrix( matrix, order, update );
    
    			};
    
    		}(),
    
    		setFromVector3: function ( v, order ) {
    
    			return this.set( v.x, v.y, v.z, order || this._order );
    
    		},
    
    		reorder: function () {
    
    			// WARNING: this discards revolution information -bhouston
    
    			var q = new Quaternion();
    
    			return function reorder( newOrder ) {
    
    				q.setFromEuler( this );
    
    				return this.setFromQuaternion( q, newOrder );
    
    			};
    
    		}(),
    
    		equals: function ( euler ) {
    
    			return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
    
    		},
    
    		fromArray: function ( array ) {
    
    			this._x = array[ 0 ];
    			this._y = array[ 1 ];
    			this._z = array[ 2 ];
    			if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];
    
    			this.onChangeCallback();
    
    			return this;
    
    		},
    
    		toArray: function ( array, offset ) {
    
    			if ( array === undefined ) array = [];
    			if ( offset === undefined ) offset = 0;
    
    			array[ offset ] = this._x;
    			array[ offset + 1 ] = this._y;
    			array[ offset + 2 ] = this._z;
    			array[ offset + 3 ] = this._order;
    
    			return array;
    
    		},
    
    		toVector3: function ( optionalResult ) {
    
    			if ( optionalResult ) {
    
    				return optionalResult.set( this._x, this._y, this._z );
    
    			} else {
    
    				return new Vector3( this._x, this._y, this._z );
    
    			}
    
    		},
    
    		onChange: function ( callback ) {
    
    			this.onChangeCallback = callback;
    
    			return this;
    
    		},
    
    		onChangeCallback: function () {}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function Layers() {
    
    		this.mask = 1 | 0;
    
    	}
    
    	Object.assign( Layers.prototype, {
    
    		set: function ( channel ) {
    
    			this.mask = 1 << channel | 0;
    
    		},
    
    		enable: function ( channel ) {
    
    			this.mask |= 1 << channel | 0;
    
    		},
    
    		toggle: function ( channel ) {
    
    			this.mask ^= 1 << channel | 0;
    
    		},
    
    		disable: function ( channel ) {
    
    			this.mask &= ~ ( 1 << channel | 0 );
    
    		},
    
    		test: function ( layers ) {
    
    			return ( this.mask & layers.mask ) !== 0;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	 * @author elephantatwork / www.elephantatwork.ch
    	 */
    
    	var object3DId = 0;
    
    	function Object3D() {
    
    		Object.defineProperty( this, 'id', { value: object3DId ++ } );
    
    		this.uuid = _Math.generateUUID();
    
    		this.name = '';
    		this.type = 'Object3D';
    
    		this.parent = null;
    		this.children = [];
    
    		this.up = Object3D.DefaultUp.clone();
    
    		var position = new Vector3();
    		var rotation = new Euler();
    		var quaternion = new Quaternion();
    		var scale = new Vector3( 1, 1, 1 );
    
    		function onRotationChange() {
    
    			quaternion.setFromEuler( rotation, false );
    
    		}
    
    		function onQuaternionChange() {
    
    			rotation.setFromQuaternion( quaternion, undefined, false );
    
    		}
    
    		rotation.onChange( onRotationChange );
    		quaternion.onChange( onQuaternionChange );
    
    		Object.defineProperties( this, {
    			position: {
    				enumerable: true,
    				value: position
    			},
    			rotation: {
    				enumerable: true,
    				value: rotation
    			},
    			quaternion: {
    				enumerable: true,
    				value: quaternion
    			},
    			scale: {
    				enumerable: true,
    				value: scale
    			},
    			modelViewMatrix: {
    				value: new Matrix4()
    			},
    			normalMatrix: {
    				value: new Matrix3()
    			}
    		} );
    
    		this.matrix = new Matrix4();
    		this.matrixWorld = new Matrix4();
    
    		this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
    		this.matrixWorldNeedsUpdate = false;
    
    		this.layers = new Layers();
    		this.visible = true;
    
    		this.castShadow = false;
    		this.receiveShadow = false;
    
    		this.frustumCulled = true;
    		this.renderOrder = 0;
    
    		this.userData = {};
    
    		this.onBeforeRender = function () {};
    		this.onAfterRender = function () {};
    
    	}
    
    	Object3D.DefaultUp = new Vector3( 0, 1, 0 );
    	Object3D.DefaultMatrixAutoUpdate = true;
    
    	Object.assign( Object3D.prototype, EventDispatcher.prototype, {
    
    		isObject3D: true,
    
    		applyMatrix: function ( matrix ) {
    
    			this.matrix.multiplyMatrices( matrix, this.matrix );
    
    			this.matrix.decompose( this.position, this.quaternion, this.scale );
    
    		},
    
    		setRotationFromAxisAngle: function ( axis, angle ) {
    
    			// assumes axis is normalized
    
    			this.quaternion.setFromAxisAngle( axis, angle );
    
    		},
    
    		setRotationFromEuler: function ( euler ) {
    
    			this.quaternion.setFromEuler( euler, true );
    
    		},
    
    		setRotationFromMatrix: function ( m ) {
    
    			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
    
    			this.quaternion.setFromRotationMatrix( m );
    
    		},
    
    		setRotationFromQuaternion: function ( q ) {
    
    			// assumes q is normalized
    
    			this.quaternion.copy( q );
    
    		},
    
    		rotateOnAxis: function () {
    
    			// rotate object on axis in object space
    			// axis is assumed to be normalized
    
    			var q1 = new Quaternion();
    
    			return function rotateOnAxis( axis, angle ) {
    
    				q1.setFromAxisAngle( axis, angle );
    
    				this.quaternion.multiply( q1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		rotateX: function () {
    
    			var v1 = new Vector3( 1, 0, 0 );
    
    			return function rotateX( angle ) {
    
    				return this.rotateOnAxis( v1, angle );
    
    			};
    
    		}(),
    
    		rotateY: function () {
    
    			var v1 = new Vector3( 0, 1, 0 );
    
    			return function rotateY( angle ) {
    
    				return this.rotateOnAxis( v1, angle );
    
    			};
    
    		}(),
    
    		rotateZ: function () {
    
    			var v1 = new Vector3( 0, 0, 1 );
    
    			return function rotateZ( angle ) {
    
    				return this.rotateOnAxis( v1, angle );
    
    			};
    
    		}(),
    
    		translateOnAxis: function () {
    
    			// translate object by distance along axis in object space
    			// axis is assumed to be normalized
    
    			var v1 = new Vector3();
    
    			return function translateOnAxis( axis, distance ) {
    
    				v1.copy( axis ).applyQuaternion( this.quaternion );
    
    				this.position.add( v1.multiplyScalar( distance ) );
    
    				return this;
    
    			};
    
    		}(),
    
    		translateX: function () {
    
    			var v1 = new Vector3( 1, 0, 0 );
    
    			return function translateX( distance ) {
    
    				return this.translateOnAxis( v1, distance );
    
    			};
    
    		}(),
    
    		translateY: function () {
    
    			var v1 = new Vector3( 0, 1, 0 );
    
    			return function translateY( distance ) {
    
    				return this.translateOnAxis( v1, distance );
    
    			};
    
    		}(),
    
    		translateZ: function () {
    
    			var v1 = new Vector3( 0, 0, 1 );
    
    			return function translateZ( distance ) {
    
    				return this.translateOnAxis( v1, distance );
    
    			};
    
    		}(),
    
    		localToWorld: function ( vector ) {
    
    			return vector.applyMatrix4( this.matrixWorld );
    
    		},
    
    		worldToLocal: function () {
    
    			var m1 = new Matrix4();
    
    			return function worldToLocal( vector ) {
    
    				return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) );
    
    			};
    
    		}(),
    
    		lookAt: function () {
    
    			// This routine does not support objects with rotated and/or translated parent(s)
    
    			var m1 = new Matrix4();
    
    			return function lookAt( vector ) {
    
    				if ( this.isCamera ) {
    
    					m1.lookAt( this.position, vector, this.up );
    
    				} else {
    
    					m1.lookAt( vector, this.position, this.up );
    
    				}
    
    				this.quaternion.setFromRotationMatrix( m1 );
    
    			};
    
    		}(),
    
    		add: function ( object ) {
    
    			if ( arguments.length > 1 ) {
    
    				for ( var i = 0; i < arguments.length; i ++ ) {
    
    					this.add( arguments[ i ] );
    
    				}
    
    				return this;
    
    			}
    
    			if ( object === this ) {
    
    				console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
    				return this;
    
    			}
    
    			if ( ( object && object.isObject3D ) ) {
    
    				if ( object.parent !== null ) {
    
    					object.parent.remove( object );
    
    				}
    
    				object.parent = this;
    				object.dispatchEvent( { type: 'added' } );
    
    				this.children.push( object );
    
    			} else {
    
    				console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );
    
    			}
    
    			return this;
    
    		},
    
    		remove: function ( object ) {
    
    			if ( arguments.length > 1 ) {
    
    				for ( var i = 0; i < arguments.length; i ++ ) {
    
    					this.remove( arguments[ i ] );
    
    				}
    
    			}
    
    			var index = this.children.indexOf( object );
    
    			if ( index !== - 1 ) {
    
    				object.parent = null;
    
    				object.dispatchEvent( { type: 'removed' } );
    
    				this.children.splice( index, 1 );
    
    			}
    
    		},
    
    		getObjectById: function ( id ) {
    
    			return this.getObjectByProperty( 'id', id );
    
    		},
    
    		getObjectByName: function ( name ) {
    
    			return this.getObjectByProperty( 'name', name );
    
    		},
    
    		getObjectByProperty: function ( name, value ) {
    
    			if ( this[ name ] === value ) return this;
    
    			for ( var i = 0, l = this.children.length; i < l; i ++ ) {
    
    				var child = this.children[ i ];
    				var object = child.getObjectByProperty( name, value );
    
    				if ( object !== undefined ) {
    
    					return object;
    
    				}
    
    			}
    
    			return undefined;
    
    		},
    
    		getWorldPosition: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    
    			this.updateMatrixWorld( true );
    
    			return result.setFromMatrixPosition( this.matrixWorld );
    
    		},
    
    		getWorldQuaternion: function () {
    
    			var position = new Vector3();
    			var scale = new Vector3();
    
    			return function getWorldQuaternion( optionalTarget ) {
    
    				var result = optionalTarget || new Quaternion();
    
    				this.updateMatrixWorld( true );
    
    				this.matrixWorld.decompose( position, result, scale );
    
    				return result;
    
    			};
    
    		}(),
    
    		getWorldRotation: function () {
    
    			var quaternion = new Quaternion();
    
    			return function getWorldRotation( optionalTarget ) {
    
    				var result = optionalTarget || new Euler();
    
    				this.getWorldQuaternion( quaternion );
    
    				return result.setFromQuaternion( quaternion, this.rotation.order, false );
    
    			};
    
    		}(),
    
    		getWorldScale: function () {
    
    			var position = new Vector3();
    			var quaternion = new Quaternion();
    
    			return function getWorldScale( optionalTarget ) {
    
    				var result = optionalTarget || new Vector3();
    
    				this.updateMatrixWorld( true );
    
    				this.matrixWorld.decompose( position, quaternion, result );
    
    				return result;
    
    			};
    
    		}(),
    
    		getWorldDirection: function () {
    
    			var quaternion = new Quaternion();
    
    			return function getWorldDirection( optionalTarget ) {
    
    				var result = optionalTarget || new Vector3();
    
    				this.getWorldQuaternion( quaternion );
    
    				return result.set( 0, 0, 1 ).applyQuaternion( quaternion );
    
    			};
    
    		}(),
    
    		raycast: function () {},
    
    		traverse: function ( callback ) {
    
    			callback( this );
    
    			var children = this.children;
    
    			for ( var i = 0, l = children.length; i < l; i ++ ) {
    
    				children[ i ].traverse( callback );
    
    			}
    
    		},
    
    		traverseVisible: function ( callback ) {
    
    			if ( this.visible === false ) return;
    
    			callback( this );
    
    			var children = this.children;
    
    			for ( var i = 0, l = children.length; i < l; i ++ ) {
    
    				children[ i ].traverseVisible( callback );
    
    			}
    
    		},
    
    		traverseAncestors: function ( callback ) {
    
    			var parent = this.parent;
    
    			if ( parent !== null ) {
    
    				callback( parent );
    
    				parent.traverseAncestors( callback );
    
    			}
    
    		},
    
    		updateMatrix: function () {
    
    			this.matrix.compose( this.position, this.quaternion, this.scale );
    
    			this.matrixWorldNeedsUpdate = true;
    
    		},
    
    		updateMatrixWorld: function ( force ) {
    
    			if ( this.matrixAutoUpdate ) this.updateMatrix();
    
    			if ( this.matrixWorldNeedsUpdate || force ) {
    
    				if ( this.parent === null ) {
    
    					this.matrixWorld.copy( this.matrix );
    
    				} else {
    
    					this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
    
    				}
    
    				this.matrixWorldNeedsUpdate = false;
    
    				force = true;
    
    			}
    
    			// update children
    
    			var children = this.children;
    
    			for ( var i = 0, l = children.length; i < l; i ++ ) {
    
    				children[ i ].updateMatrixWorld( force );
    
    			}
    
    		},
    
    		toJSON: function ( meta ) {
    
    			// meta is '' when called from JSON.stringify
    			var isRootObject = ( meta === undefined || meta === '' );
    
    			var output = {};
    
    			// meta is a hash used to collect geometries, materials.
    			// not providing it implies that this is the root object
    			// being serialized.
    			if ( isRootObject ) {
    
    				// initialize meta obj
    				meta = {
    					geometries: {},
    					materials: {},
    					textures: {},
    					images: {}
    				};
    
    				output.metadata = {
    					version: 4.5,
    					type: 'Object',
    					generator: 'Object3D.toJSON'
    				};
    
    			}
    
    			// standard Object3D serialization
    
    			var object = {};
    
    			object.uuid = this.uuid;
    			object.type = this.type;
    
    			if ( this.name !== '' ) object.name = this.name;
    			if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;
    			if ( this.castShadow === true ) object.castShadow = true;
    			if ( this.receiveShadow === true ) object.receiveShadow = true;
    			if ( this.visible === false ) object.visible = false;
    
    			object.matrix = this.matrix.toArray();
    
    			//
    
    			function serialize( library, element ) {
    
    				if ( library[ element.uuid ] === undefined ) {
    
    					library[ element.uuid ] = element.toJSON( meta );
    
    				}
    
    				return element.uuid;
    
    			}
    
    			if ( this.geometry !== undefined ) {
    
    				object.geometry = serialize( meta.geometries, this.geometry );
    
    			}
    
    			if ( this.material !== undefined ) {
    
    				if ( Array.isArray( this.material ) ) {
    
    					var uuids = [];
    
    					for ( var i = 0, l = this.material.length; i < l; i ++ ) {
    
    						uuids.push( serialize( meta.materials, this.material[ i ] ) );
    
    					}
    
    					object.material = uuids;
    
    				} else {
    
    					object.material = serialize( meta.materials, this.material );
    
    				}
    
    			}
    
    			//
    
    			if ( this.children.length > 0 ) {
    
    				object.children = [];
    
    				for ( var i = 0; i < this.children.length; i ++ ) {
    
    					object.children.push( this.children[ i ].toJSON( meta ).object );
    
    				}
    
    			}
    
    			if ( isRootObject ) {
    
    				var geometries = extractFromCache( meta.geometries );
    				var materials = extractFromCache( meta.materials );
    				var textures = extractFromCache( meta.textures );
    				var images = extractFromCache( meta.images );
    
    				if ( geometries.length > 0 ) output.geometries = geometries;
    				if ( materials.length > 0 ) output.materials = materials;
    				if ( textures.length > 0 ) output.textures = textures;
    				if ( images.length > 0 ) output.images = images;
    
    			}
    
    			output.object = object;
    
    			return output;
    
    			// extract data from the cache hash
    			// remove metadata on each item
    			// and return as array
    			function extractFromCache( cache ) {
    
    				var values = [];
    				for ( var key in cache ) {
    
    					var data = cache[ key ];
    					delete data.metadata;
    					values.push( data );
    
    				}
    				return values;
    
    			}
    
    		},
    
    		clone: function ( recursive ) {
    
    			return new this.constructor().copy( this, recursive );
    
    		},
    
    		copy: function ( source, recursive ) {
    
    			if ( recursive === undefined ) recursive = true;
    
    			this.name = source.name;
    
    			this.up.copy( source.up );
    
    			this.position.copy( source.position );
    			this.quaternion.copy( source.quaternion );
    			this.scale.copy( source.scale );
    
    			this.matrix.copy( source.matrix );
    			this.matrixWorld.copy( source.matrixWorld );
    
    			this.matrixAutoUpdate = source.matrixAutoUpdate;
    			this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
    
    			this.layers.mask = source.layers.mask;
    			this.visible = source.visible;
    
    			this.castShadow = source.castShadow;
    			this.receiveShadow = source.receiveShadow;
    
    			this.frustumCulled = source.frustumCulled;
    			this.renderOrder = source.renderOrder;
    
    			this.userData = JSON.parse( JSON.stringify( source.userData ) );
    
    			if ( recursive === true ) {
    
    				for ( var i = 0; i < source.children.length; i ++ ) {
    
    					var child = source.children[ i ];
    					this.add( child.clone() );
    
    				}
    
    			}
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author bhouston / http://clara.io
    	 */
    
    	function Line3( start, end ) {
    
    		this.start = ( start !== undefined ) ? start : new Vector3();
    		this.end = ( end !== undefined ) ? end : new Vector3();
    
    	}
    
    	Object.assign( Line3.prototype, {
    
    		set: function ( start, end ) {
    
    			this.start.copy( start );
    			this.end.copy( end );
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( line ) {
    
    			this.start.copy( line.start );
    			this.end.copy( line.end );
    
    			return this;
    
    		},
    
    		getCenter: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    			return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 );
    
    		},
    
    		delta: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    			return result.subVectors( this.end, this.start );
    
    		},
    
    		distanceSq: function () {
    
    			return this.start.distanceToSquared( this.end );
    
    		},
    
    		distance: function () {
    
    			return this.start.distanceTo( this.end );
    
    		},
    
    		at: function ( t, optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    
    			return this.delta( result ).multiplyScalar( t ).add( this.start );
    
    		},
    
    		closestPointToPointParameter: function () {
    
    			var startP = new Vector3();
    			var startEnd = new Vector3();
    
    			return function closestPointToPointParameter( point, clampToLine ) {
    
    				startP.subVectors( point, this.start );
    				startEnd.subVectors( this.end, this.start );
    
    				var startEnd2 = startEnd.dot( startEnd );
    				var startEnd_startP = startEnd.dot( startP );
    
    				var t = startEnd_startP / startEnd2;
    
    				if ( clampToLine ) {
    
    					t = _Math.clamp( t, 0, 1 );
    
    				}
    
    				return t;
    
    			};
    
    		}(),
    
    		closestPointToPoint: function ( point, clampToLine, optionalTarget ) {
    
    			var t = this.closestPointToPointParameter( point, clampToLine );
    
    			var result = optionalTarget || new Vector3();
    
    			return this.delta( result ).multiplyScalar( t ).add( this.start );
    
    		},
    
    		applyMatrix4: function ( matrix ) {
    
    			this.start.applyMatrix4( matrix );
    			this.end.applyMatrix4( matrix );
    
    			return this;
    
    		},
    
    		equals: function ( line ) {
    
    			return line.start.equals( this.start ) && line.end.equals( this.end );
    
    		}
    
    	} );
    
    	/**
    	 * @author bhouston / http://clara.io
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function Triangle( a, b, c ) {
    
    		this.a = ( a !== undefined ) ? a : new Vector3();
    		this.b = ( b !== undefined ) ? b : new Vector3();
    		this.c = ( c !== undefined ) ? c : new Vector3();
    
    	}
    
    	Object.assign( Triangle, {
    
    		normal: function () {
    
    			var v0 = new Vector3();
    
    			return function normal( a, b, c, optionalTarget ) {
    
    				var result = optionalTarget || new Vector3();
    
    				result.subVectors( c, b );
    				v0.subVectors( a, b );
    				result.cross( v0 );
    
    				var resultLengthSq = result.lengthSq();
    				if ( resultLengthSq > 0 ) {
    
    					return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) );
    
    				}
    
    				return result.set( 0, 0, 0 );
    
    			};
    
    		}(),
    
    		// static/instance method to calculate barycentric coordinates
    		// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
    		barycoordFromPoint: function () {
    
    			var v0 = new Vector3();
    			var v1 = new Vector3();
    			var v2 = new Vector3();
    
    			return function barycoordFromPoint( point, a, b, c, optionalTarget ) {
    
    				v0.subVectors( c, a );
    				v1.subVectors( b, a );
    				v2.subVectors( point, a );
    
    				var dot00 = v0.dot( v0 );
    				var dot01 = v0.dot( v1 );
    				var dot02 = v0.dot( v2 );
    				var dot11 = v1.dot( v1 );
    				var dot12 = v1.dot( v2 );
    
    				var denom = ( dot00 * dot11 - dot01 * dot01 );
    
    				var result = optionalTarget || new Vector3();
    
    				// collinear or singular triangle
    				if ( denom === 0 ) {
    
    					// arbitrary location outside of triangle?
    					// not sure if this is the best idea, maybe should be returning undefined
    					return result.set( - 2, - 1, - 1 );
    
    				}
    
    				var invDenom = 1 / denom;
    				var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
    				var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
    
    				// barycentric coordinates must always sum to 1
    				return result.set( 1 - u - v, v, u );
    
    			};
    
    		}(),
    
    		containsPoint: function () {
    
    			var v1 = new Vector3();
    
    			return function containsPoint( point, a, b, c ) {
    
    				var result = Triangle.barycoordFromPoint( point, a, b, c, v1 );
    
    				return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 );
    
    			};
    
    		}()
    
    	} );
    
    	Object.assign( Triangle.prototype, {
    
    		set: function ( a, b, c ) {
    
    			this.a.copy( a );
    			this.b.copy( b );
    			this.c.copy( c );
    
    			return this;
    
    		},
    
    		setFromPointsAndIndices: function ( points, i0, i1, i2 ) {
    
    			this.a.copy( points[ i0 ] );
    			this.b.copy( points[ i1 ] );
    			this.c.copy( points[ i2 ] );
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( triangle ) {
    
    			this.a.copy( triangle.a );
    			this.b.copy( triangle.b );
    			this.c.copy( triangle.c );
    
    			return this;
    
    		},
    
    		area: function () {
    
    			var v0 = new Vector3();
    			var v1 = new Vector3();
    
    			return function area() {
    
    				v0.subVectors( this.c, this.b );
    				v1.subVectors( this.a, this.b );
    
    				return v0.cross( v1 ).length() * 0.5;
    
    			};
    
    		}(),
    
    		midpoint: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Vector3();
    			return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
    
    		},
    
    		normal: function ( optionalTarget ) {
    
    			return Triangle.normal( this.a, this.b, this.c, optionalTarget );
    
    		},
    
    		plane: function ( optionalTarget ) {
    
    			var result = optionalTarget || new Plane();
    
    			return result.setFromCoplanarPoints( this.a, this.b, this.c );
    
    		},
    
    		barycoordFromPoint: function ( point, optionalTarget ) {
    
    			return Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget );
    
    		},
    
    		containsPoint: function ( point ) {
    
    			return Triangle.containsPoint( point, this.a, this.b, this.c );
    
    		},
    
    		closestPointToPoint: function () {
    
    			var plane = new Plane();
    			var edgeList = [ new Line3(), new Line3(), new Line3() ];
    			var projectedPoint = new Vector3();
    			var closestPoint = new Vector3();
    
    			return function closestPointToPoint( point, optionalTarget ) {
    
    				var result = optionalTarget || new Vector3();
    				var minDistance = Infinity;
    
    				// project the point onto the plane of the triangle
    
    				plane.setFromCoplanarPoints( this.a, this.b, this.c );
    				plane.projectPoint( point, projectedPoint );
    
    				// check if the projection lies within the triangle
    
    				if( this.containsPoint( projectedPoint ) === true ) {
    
    					// if so, this is the closest point
    
    					result.copy( projectedPoint );
    
    				} else {
    
    					// if not, the point falls outside the triangle. the result is the closest point to the triangle's edges or vertices
    
    					edgeList[ 0 ].set( this.a, this.b );
    					edgeList[ 1 ].set( this.b, this.c );
    					edgeList[ 2 ].set( this.c, this.a );
    
    					for( var i = 0; i < edgeList.length; i ++ ) {
    
    						edgeList[ i ].closestPointToPoint( projectedPoint, true, closestPoint );
    
    						var distance = projectedPoint.distanceToSquared( closestPoint );
    
    						if( distance < minDistance ) {
    
    							minDistance = distance;
    
    							result.copy( closestPoint );
    
    						}
    
    					}
    
    				}
    
    				return result;
    
    			};
    
    		}(),
    
    		equals: function ( triangle ) {
    
    			return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function Face3( a, b, c, normal, color, materialIndex ) {
    
    		this.a = a;
    		this.b = b;
    		this.c = c;
    
    		this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3();
    		this.vertexNormals = Array.isArray( normal ) ? normal : [];
    
    		this.color = ( color && color.isColor ) ? color : new Color();
    		this.vertexColors = Array.isArray( color ) ? color : [];
    
    		this.materialIndex = materialIndex !== undefined ? materialIndex : 0;
    
    	}
    
    	Object.assign( Face3.prototype, {
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( source ) {
    
    			this.a = source.a;
    			this.b = source.b;
    			this.c = source.c;
    
    			this.normal.copy( source.normal );
    			this.color.copy( source.color );
    
    			this.materialIndex = source.materialIndex;
    
    			for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {
    
    				this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();
    
    			}
    
    			for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {
    
    				this.vertexColors[ i ] = source.vertexColors[ i ].clone();
    
    			}
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 *
    	 * parameters = {
    	 *  color: <hex>,
    	 *  opacity: <float>,
    	 *  map: new THREE.Texture( <Image> ),
    	 *
    	 *  lightMap: new THREE.Texture( <Image> ),
    	 *  lightMapIntensity: <float>
    	 *
    	 *  aoMap: new THREE.Texture( <Image> ),
    	 *  aoMapIntensity: <float>
    	 *
    	 *  specularMap: new THREE.Texture( <Image> ),
    	 *
    	 *  alphaMap: new THREE.Texture( <Image> ),
    	 *
    	 *  envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
    	 *  combine: THREE.Multiply,
    	 *  reflectivity: <float>,
    	 *  refractionRatio: <float>,
    	 *
    	 *  shading: THREE.SmoothShading,
    	 *  depthTest: <bool>,
    	 *  depthWrite: <bool>,
    	 *
    	 *  wireframe: <boolean>,
    	 *  wireframeLinewidth: <float>,
    	 *
    	 *  skinning: <bool>,
    	 *  morphTargets: <bool>
    	 * }
    	 */
    
    	function MeshBasicMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.type = 'MeshBasicMaterial';
    
    		this.color = new Color( 0xffffff ); // emissive
    
    		this.map = null;
    
    		this.lightMap = null;
    		this.lightMapIntensity = 1.0;
    
    		this.aoMap = null;
    		this.aoMapIntensity = 1.0;
    
    		this.specularMap = null;
    
    		this.alphaMap = null;
    
    		this.envMap = null;
    		this.combine = MultiplyOperation;
    		this.reflectivity = 1;
    		this.refractionRatio = 0.98;
    
    		this.wireframe = false;
    		this.wireframeLinewidth = 1;
    		this.wireframeLinecap = 'round';
    		this.wireframeLinejoin = 'round';
    
    		this.skinning = false;
    		this.morphTargets = false;
    
    		this.lights = false;
    
    		this.setValues( parameters );
    
    	}
    
    	MeshBasicMaterial.prototype = Object.create( Material.prototype );
    	MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;
    
    	MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
    
    	MeshBasicMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.color.copy( source.color );
    
    		this.map = source.map;
    
    		this.lightMap = source.lightMap;
    		this.lightMapIntensity = source.lightMapIntensity;
    
    		this.aoMap = source.aoMap;
    		this.aoMapIntensity = source.aoMapIntensity;
    
    		this.specularMap = source.specularMap;
    
    		this.alphaMap = source.alphaMap;
    
    		this.envMap = source.envMap;
    		this.combine = source.combine;
    		this.reflectivity = source.reflectivity;
    		this.refractionRatio = source.refractionRatio;
    
    		this.wireframe = source.wireframe;
    		this.wireframeLinewidth = source.wireframeLinewidth;
    		this.wireframeLinecap = source.wireframeLinecap;
    		this.wireframeLinejoin = source.wireframeLinejoin;
    
    		this.skinning = source.skinning;
    		this.morphTargets = source.morphTargets;
    
    		return this;
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function BufferAttribute( array, itemSize, normalized ) {
    
    		if ( Array.isArray( array ) ) {
    
    			throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
    
    		}
    
    		this.uuid = _Math.generateUUID();
    
    		this.array = array;
    		this.itemSize = itemSize;
    		this.count = array !== undefined ? array.length / itemSize : 0;
    		this.normalized = normalized === true;
    
    		this.dynamic = false;
    		this.updateRange = { offset: 0, count: - 1 };
    
    		this.onUploadCallback = function () {};
    
    		this.version = 0;
    
    	}
    
    	Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {
    
    		set: function ( value ) {
    
    			if ( value === true ) this.version ++;
    
    		}
    
    	} );
    
    	Object.assign( BufferAttribute.prototype, {
    
    		isBufferAttribute: true,
    
    		setArray: function ( array ) {
    
    			if ( Array.isArray( array ) ) {
    
    				throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
    
    			}
    
    			this.count = array !== undefined ? array.length / this.itemSize : 0;
    			this.array = array;
    
    		},
    
    		setDynamic: function ( value ) {
    
    			this.dynamic = value;
    
    			return this;
    
    		},
    
    		copy: function ( source ) {
    
    			this.array = new source.array.constructor( source.array );
    			this.itemSize = source.itemSize;
    			this.count = source.count;
    			this.normalized = source.normalized;
    
    			this.dynamic = source.dynamic;
    
    			return this;
    
    		},
    
    		copyAt: function ( index1, attribute, index2 ) {
    
    			index1 *= this.itemSize;
    			index2 *= attribute.itemSize;
    
    			for ( var i = 0, l = this.itemSize; i < l; i ++ ) {
    
    				this.array[ index1 + i ] = attribute.array[ index2 + i ];
    
    			}
    
    			return this;
    
    		},
    
    		copyArray: function ( array ) {
    
    			this.array.set( array );
    
    			return this;
    
    		},
    
    		copyColorsArray: function ( colors ) {
    
    			var array = this.array, offset = 0;
    
    			for ( var i = 0, l = colors.length; i < l; i ++ ) {
    
    				var color = colors[ i ];
    
    				if ( color === undefined ) {
    
    					console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
    					color = new Color();
    
    				}
    
    				array[ offset ++ ] = color.r;
    				array[ offset ++ ] = color.g;
    				array[ offset ++ ] = color.b;
    
    			}
    
    			return this;
    
    		},
    
    		copyIndicesArray: function ( indices ) {
    
    			var array = this.array, offset = 0;
    
    			for ( var i = 0, l = indices.length; i < l; i ++ ) {
    
    				var index = indices[ i ];
    
    				array[ offset ++ ] = index.a;
    				array[ offset ++ ] = index.b;
    				array[ offset ++ ] = index.c;
    
    			}
    
    			return this;
    
    		},
    
    		copyVector2sArray: function ( vectors ) {
    
    			var array = this.array, offset = 0;
    
    			for ( var i = 0, l = vectors.length; i < l; i ++ ) {
    
    				var vector = vectors[ i ];
    
    				if ( vector === undefined ) {
    
    					console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
    					vector = new Vector2();
    
    				}
    
    				array[ offset ++ ] = vector.x;
    				array[ offset ++ ] = vector.y;
    
    			}
    
    			return this;
    
    		},
    
    		copyVector3sArray: function ( vectors ) {
    
    			var array = this.array, offset = 0;
    
    			for ( var i = 0, l = vectors.length; i < l; i ++ ) {
    
    				var vector = vectors[ i ];
    
    				if ( vector === undefined ) {
    
    					console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
    					vector = new Vector3();
    
    				}
    
    				array[ offset ++ ] = vector.x;
    				array[ offset ++ ] = vector.y;
    				array[ offset ++ ] = vector.z;
    
    			}
    
    			return this;
    
    		},
    
    		copyVector4sArray: function ( vectors ) {
    
    			var array = this.array, offset = 0;
    
    			for ( var i = 0, l = vectors.length; i < l; i ++ ) {
    
    				var vector = vectors[ i ];
    
    				if ( vector === undefined ) {
    
    					console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
    					vector = new Vector4();
    
    				}
    
    				array[ offset ++ ] = vector.x;
    				array[ offset ++ ] = vector.y;
    				array[ offset ++ ] = vector.z;
    				array[ offset ++ ] = vector.w;
    
    			}
    
    			return this;
    
    		},
    
    		set: function ( value, offset ) {
    
    			if ( offset === undefined ) offset = 0;
    
    			this.array.set( value, offset );
    
    			return this;
    
    		},
    
    		getX: function ( index ) {
    
    			return this.array[ index * this.itemSize ];
    
    		},
    
    		setX: function ( index, x ) {
    
    			this.array[ index * this.itemSize ] = x;
    
    			return this;
    
    		},
    
    		getY: function ( index ) {
    
    			return this.array[ index * this.itemSize + 1 ];
    
    		},
    
    		setY: function ( index, y ) {
    
    			this.array[ index * this.itemSize + 1 ] = y;
    
    			return this;
    
    		},
    
    		getZ: function ( index ) {
    
    			return this.array[ index * this.itemSize + 2 ];
    
    		},
    
    		setZ: function ( index, z ) {
    
    			this.array[ index * this.itemSize + 2 ] = z;
    
    			return this;
    
    		},
    
    		getW: function ( index ) {
    
    			return this.array[ index * this.itemSize + 3 ];
    
    		},
    
    		setW: function ( index, w ) {
    
    			this.array[ index * this.itemSize + 3 ] = w;
    
    			return this;
    
    		},
    
    		setXY: function ( index, x, y ) {
    
    			index *= this.itemSize;
    
    			this.array[ index + 0 ] = x;
    			this.array[ index + 1 ] = y;
    
    			return this;
    
    		},
    
    		setXYZ: function ( index, x, y, z ) {
    
    			index *= this.itemSize;
    
    			this.array[ index + 0 ] = x;
    			this.array[ index + 1 ] = y;
    			this.array[ index + 2 ] = z;
    
    			return this;
    
    		},
    
    		setXYZW: function ( index, x, y, z, w ) {
    
    			index *= this.itemSize;
    
    			this.array[ index + 0 ] = x;
    			this.array[ index + 1 ] = y;
    			this.array[ index + 2 ] = z;
    			this.array[ index + 3 ] = w;
    
    			return this;
    
    		},
    
    		onUpload: function ( callback ) {
    
    			this.onUploadCallback = callback;
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor( this.array, this.itemSize ).copy( this );
    
    		}
    
    	} );
    
    	//
    
    	function Int8BufferAttribute( array, itemSize ) {
    
    		BufferAttribute.call( this, new Int8Array( array ), itemSize );
    
    	}
    
    	Int8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    	Int8BufferAttribute.prototype.constructor = Int8BufferAttribute;
    
    
    	function Uint8BufferAttribute( array, itemSize ) {
    
    		BufferAttribute.call( this, new Uint8Array( array ), itemSize );
    
    	}
    
    	Uint8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    	Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute;
    
    
    	function Uint8ClampedBufferAttribute( array, itemSize ) {
    
    		BufferAttribute.call( this, new Uint8ClampedArray( array ), itemSize );
    
    	}
    
    	Uint8ClampedBufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    	Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute;
    
    
    	function Int16BufferAttribute( array, itemSize ) {
    
    		BufferAttribute.call( this, new Int16Array( array ), itemSize );
    
    	}
    
    	Int16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    	Int16BufferAttribute.prototype.constructor = Int16BufferAttribute;
    
    
    	function Uint16BufferAttribute( array, itemSize ) {
    
    		BufferAttribute.call( this, new Uint16Array( array ), itemSize );
    
    	}
    
    	Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    	Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;
    
    
    	function Int32BufferAttribute( array, itemSize ) {
    
    		BufferAttribute.call( this, new Int32Array( array ), itemSize );
    
    	}
    
    	Int32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    	Int32BufferAttribute.prototype.constructor = Int32BufferAttribute;
    
    
    	function Uint32BufferAttribute( array, itemSize ) {
    
    		BufferAttribute.call( this, new Uint32Array( array ), itemSize );
    
    	}
    
    	Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    	Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;
    
    
    	function Float32BufferAttribute( array, itemSize ) {
    
    		BufferAttribute.call( this, new Float32Array( array ), itemSize );
    
    	}
    
    	Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    	Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;
    
    
    	function Float64BufferAttribute( array, itemSize ) {
    
    		BufferAttribute.call( this, new Float64Array( array ), itemSize );
    
    	}
    
    	Float64BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
    	Float64BufferAttribute.prototype.constructor = Float64BufferAttribute;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function DirectGeometry() {
    
    		this.indices = [];
    		this.vertices = [];
    		this.normals = [];
    		this.colors = [];
    		this.uvs = [];
    		this.uvs2 = [];
    
    		this.groups = [];
    
    		this.morphTargets = {};
    
    		this.skinWeights = [];
    		this.skinIndices = [];
    
    		// this.lineDistances = [];
    
    		this.boundingBox = null;
    		this.boundingSphere = null;
    
    		// update flags
    
    		this.verticesNeedUpdate = false;
    		this.normalsNeedUpdate = false;
    		this.colorsNeedUpdate = false;
    		this.uvsNeedUpdate = false;
    		this.groupsNeedUpdate = false;
    
    	}
    
    	Object.assign( DirectGeometry.prototype, {
    
    		computeGroups: function ( geometry ) {
    
    			var group;
    			var groups = [];
    			var materialIndex = undefined;
    
    			var faces = geometry.faces;
    
    			for ( var i = 0; i < faces.length; i ++ ) {
    
    				var face = faces[ i ];
    
    				// materials
    
    				if ( face.materialIndex !== materialIndex ) {
    
    					materialIndex = face.materialIndex;
    
    					if ( group !== undefined ) {
    
    						group.count = ( i * 3 ) - group.start;
    						groups.push( group );
    
    					}
    
    					group = {
    						start: i * 3,
    						materialIndex: materialIndex
    					};
    
    				}
    
    			}
    
    			if ( group !== undefined ) {
    
    				group.count = ( i * 3 ) - group.start;
    				groups.push( group );
    
    			}
    
    			this.groups = groups;
    
    		},
    
    		fromGeometry: function ( geometry ) {
    
    			var faces = geometry.faces;
    			var vertices = geometry.vertices;
    			var faceVertexUvs = geometry.faceVertexUvs;
    
    			var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
    			var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;
    
    			// morphs
    
    			var morphTargets = geometry.morphTargets;
    			var morphTargetsLength = morphTargets.length;
    
    			var morphTargetsPosition;
    
    			if ( morphTargetsLength > 0 ) {
    
    				morphTargetsPosition = [];
    
    				for ( var i = 0; i < morphTargetsLength; i ++ ) {
    
    					morphTargetsPosition[ i ] = [];
    
    				}
    
    				this.morphTargets.position = morphTargetsPosition;
    
    			}
    
    			var morphNormals = geometry.morphNormals;
    			var morphNormalsLength = morphNormals.length;
    
    			var morphTargetsNormal;
    
    			if ( morphNormalsLength > 0 ) {
    
    				morphTargetsNormal = [];
    
    				for ( var i = 0; i < morphNormalsLength; i ++ ) {
    
    					morphTargetsNormal[ i ] = [];
    
    				}
    
    				this.morphTargets.normal = morphTargetsNormal;
    
    			}
    
    			// skins
    
    			var skinIndices = geometry.skinIndices;
    			var skinWeights = geometry.skinWeights;
    
    			var hasSkinIndices = skinIndices.length === vertices.length;
    			var hasSkinWeights = skinWeights.length === vertices.length;
    
    			//
    
    			for ( var i = 0; i < faces.length; i ++ ) {
    
    				var face = faces[ i ];
    
    				this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );
    
    				var vertexNormals = face.vertexNormals;
    
    				if ( vertexNormals.length === 3 ) {
    
    					this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );
    
    				} else {
    
    					var normal = face.normal;
    
    					this.normals.push( normal, normal, normal );
    
    				}
    
    				var vertexColors = face.vertexColors;
    
    				if ( vertexColors.length === 3 ) {
    
    					this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );
    
    				} else {
    
    					var color = face.color;
    
    					this.colors.push( color, color, color );
    
    				}
    
    				if ( hasFaceVertexUv === true ) {
    
    					var vertexUvs = faceVertexUvs[ 0 ][ i ];
    
    					if ( vertexUvs !== undefined ) {
    
    						this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
    
    					} else {
    
    						console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );
    
    						this.uvs.push( new Vector2(), new Vector2(), new Vector2() );
    
    					}
    
    				}
    
    				if ( hasFaceVertexUv2 === true ) {
    
    					var vertexUvs = faceVertexUvs[ 1 ][ i ];
    
    					if ( vertexUvs !== undefined ) {
    
    						this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
    
    					} else {
    
    						console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );
    
    						this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );
    
    					}
    
    				}
    
    				// morphs
    
    				for ( var j = 0; j < morphTargetsLength; j ++ ) {
    
    					var morphTarget = morphTargets[ j ].vertices;
    
    					morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );
    
    				}
    
    				for ( var j = 0; j < morphNormalsLength; j ++ ) {
    
    					var morphNormal = morphNormals[ j ].vertexNormals[ i ];
    
    					morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c );
    
    				}
    
    				// skins
    
    				if ( hasSkinIndices ) {
    
    					this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );
    
    				}
    
    				if ( hasSkinWeights ) {
    
    					this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );
    
    				}
    
    			}
    
    			this.computeGroups( geometry );
    
    			this.verticesNeedUpdate = geometry.verticesNeedUpdate;
    			this.normalsNeedUpdate = geometry.normalsNeedUpdate;
    			this.colorsNeedUpdate = geometry.colorsNeedUpdate;
    			this.uvsNeedUpdate = geometry.uvsNeedUpdate;
    			this.groupsNeedUpdate = geometry.groupsNeedUpdate;
    
    			return this;
    
    		}
    
    	} );
    
    	function arrayMax( array ) {
    
    		if ( array.length === 0 ) return - Infinity;
    
    		var max = array[ 0 ];
    
    		for ( var i = 1, l = array.length; i < l; ++ i ) {
    
    			if ( array[ i ] > max ) max = array[ i ];
    
    		}
    
    		return max;
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author kile / http://kile.stravaganza.org/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 * @author bhouston / http://clara.io
    	 */
    
    	var count = 0;
    	function GeometryIdCount() { return count++; }
    
    	function Geometry() {
    
    		Object.defineProperty( this, 'id', { value: GeometryIdCount() } );
    
    		this.uuid = _Math.generateUUID();
    
    		this.name = '';
    		this.type = 'Geometry';
    
    		this.vertices = [];
    		this.colors = [];
    		this.faces = [];
    		this.faceVertexUvs = [[]];
    
    		this.morphTargets = [];
    		this.morphNormals = [];
    
    		this.skinWeights = [];
    		this.skinIndices = [];
    
    		this.lineDistances = [];
    
    		this.boundingBox = null;
    		this.boundingSphere = null;
    
    		// update flags
    
    		this.elementsNeedUpdate = false;
    		this.verticesNeedUpdate = false;
    		this.uvsNeedUpdate = false;
    		this.normalsNeedUpdate = false;
    		this.colorsNeedUpdate = false;
    		this.lineDistancesNeedUpdate = false;
    		this.groupsNeedUpdate = false;
    
    	}
    
    	Object.assign( Geometry.prototype, EventDispatcher.prototype, {
    
    		isGeometry: true,
    
    		applyMatrix: function ( matrix ) {
    
    			var normalMatrix = new Matrix3().getNormalMatrix( matrix );
    
    			for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {
    
    				var vertex = this.vertices[ i ];
    				vertex.applyMatrix4( matrix );
    
    			}
    
    			for ( var i = 0, il = this.faces.length; i < il; i ++ ) {
    
    				var face = this.faces[ i ];
    				face.normal.applyMatrix3( normalMatrix ).normalize();
    
    				for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
    
    					face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();
    
    				}
    
    			}
    
    			if ( this.boundingBox !== null ) {
    
    				this.computeBoundingBox();
    
    			}
    
    			if ( this.boundingSphere !== null ) {
    
    				this.computeBoundingSphere();
    
    			}
    
    			this.verticesNeedUpdate = true;
    			this.normalsNeedUpdate = true;
    
    			return this;
    
    		},
    
    		rotateX: function () {
    
    			// rotate geometry around world x-axis
    
    			var m1 = new Matrix4();
    
    			return function rotateX( angle ) {
    
    				m1.makeRotationX( angle );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		rotateY: function () {
    
    			// rotate geometry around world y-axis
    
    			var m1 = new Matrix4();
    
    			return function rotateY( angle ) {
    
    				m1.makeRotationY( angle );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		rotateZ: function () {
    
    			// rotate geometry around world z-axis
    
    			var m1 = new Matrix4();
    
    			return function rotateZ( angle ) {
    
    				m1.makeRotationZ( angle );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		translate: function () {
    
    			// translate geometry
    
    			var m1 = new Matrix4();
    
    			return function translate( x, y, z ) {
    
    				m1.makeTranslation( x, y, z );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		scale: function () {
    
    			// scale geometry
    
    			var m1 = new Matrix4();
    
    			return function scale( x, y, z ) {
    
    				m1.makeScale( x, y, z );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		lookAt: function () {
    
    			var obj = new Object3D();
    
    			return function lookAt( vector ) {
    
    				obj.lookAt( vector );
    
    				obj.updateMatrix();
    
    				this.applyMatrix( obj.matrix );
    
    			};
    
    		}(),
    
    		fromBufferGeometry: function ( geometry ) {
    
    			var scope = this;
    
    			var indices = geometry.index !== null ? geometry.index.array : undefined;
    			var attributes = geometry.attributes;
    
    			var positions = attributes.position.array;
    			var normals = attributes.normal !== undefined ? attributes.normal.array : undefined;
    			var colors = attributes.color !== undefined ? attributes.color.array : undefined;
    			var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined;
    			var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;
    
    			if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = [];
    
    			var tempNormals = [];
    			var tempUVs = [];
    			var tempUVs2 = [];
    
    			for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) {
    
    				scope.vertices.push( new Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) );
    
    				if ( normals !== undefined ) {
    
    					tempNormals.push( new Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) );
    
    				}
    
    				if ( colors !== undefined ) {
    
    					scope.colors.push( new Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) );
    
    				}
    
    				if ( uvs !== undefined ) {
    
    					tempUVs.push( new Vector2( uvs[ j ], uvs[ j + 1 ] ) );
    
    				}
    
    				if ( uvs2 !== undefined ) {
    
    					tempUVs2.push( new Vector2( uvs2[ j ], uvs2[ j + 1 ] ) );
    
    				}
    
    			}
    
    			function addFace( a, b, c, materialIndex ) {
    
    				var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : [];
    				var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : [];
    
    				var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );
    
    				scope.faces.push( face );
    
    				if ( uvs !== undefined ) {
    
    					scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] );
    
    				}
    
    				if ( uvs2 !== undefined ) {
    
    					scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] );
    
    				}
    
    			}
    
    			var groups = geometry.groups;
    
    			if ( groups.length > 0 ) {
    
    				for ( var i = 0; i < groups.length; i ++ ) {
    
    					var group = groups[ i ];
    
    					var start = group.start;
    					var count = group.count;
    
    					for ( var j = start, jl = start + count; j < jl; j += 3 ) {
    
    						if ( indices !== undefined ) {
    
    							addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );
    
    						} else {
    
    							addFace( j, j + 1, j + 2, group.materialIndex );
    
    						}
    
    					}
    
    				}
    
    			} else {
    
    				if ( indices !== undefined ) {
    
    					for ( var i = 0; i < indices.length; i += 3 ) {
    
    						addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );
    
    					}
    
    				} else {
    
    					for ( var i = 0; i < positions.length / 3; i += 3 ) {
    
    						addFace( i, i + 1, i + 2 );
    
    					}
    
    				}
    
    			}
    
    			this.computeFaceNormals();
    
    			if ( geometry.boundingBox !== null ) {
    
    				this.boundingBox = geometry.boundingBox.clone();
    
    			}
    
    			if ( geometry.boundingSphere !== null ) {
    
    				this.boundingSphere = geometry.boundingSphere.clone();
    
    			}
    
    			return this;
    
    		},
    
    		center: function () {
    
    			this.computeBoundingBox();
    
    			var offset = this.boundingBox.getCenter().negate();
    
    			this.translate( offset.x, offset.y, offset.z );
    
    			return offset;
    
    		},
    
    		normalize: function () {
    
    			this.computeBoundingSphere();
    
    			var center = this.boundingSphere.center;
    			var radius = this.boundingSphere.radius;
    
    			var s = radius === 0 ? 1 : 1.0 / radius;
    
    			var matrix = new Matrix4();
    			matrix.set(
    				s, 0, 0, - s * center.x,
    				0, s, 0, - s * center.y,
    				0, 0, s, - s * center.z,
    				0, 0, 0, 1
    			);
    
    			this.applyMatrix( matrix );
    
    			return this;
    
    		},
    
    		computeFaceNormals: function () {
    
    			var cb = new Vector3(), ab = new Vector3();
    
    			for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {
    
    				var face = this.faces[ f ];
    
    				var vA = this.vertices[ face.a ];
    				var vB = this.vertices[ face.b ];
    				var vC = this.vertices[ face.c ];
    
    				cb.subVectors( vC, vB );
    				ab.subVectors( vA, vB );
    				cb.cross( ab );
    
    				cb.normalize();
    
    				face.normal.copy( cb );
    
    			}
    
    		},
    
    		computeVertexNormals: function ( areaWeighted ) {
    
    			if ( areaWeighted === undefined ) areaWeighted = true;
    
    			var v, vl, f, fl, face, vertices;
    
    			vertices = new Array( this.vertices.length );
    
    			for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
    
    				vertices[ v ] = new Vector3();
    
    			}
    
    			if ( areaWeighted ) {
    
    				// vertex normals weighted by triangle areas
    				// http://www.iquilezles.org/www/articles/normals/normals.htm
    
    				var vA, vB, vC;
    				var cb = new Vector3(), ab = new Vector3();
    
    				for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
    
    					face = this.faces[ f ];
    
    					vA = this.vertices[ face.a ];
    					vB = this.vertices[ face.b ];
    					vC = this.vertices[ face.c ];
    
    					cb.subVectors( vC, vB );
    					ab.subVectors( vA, vB );
    					cb.cross( ab );
    
    					vertices[ face.a ].add( cb );
    					vertices[ face.b ].add( cb );
    					vertices[ face.c ].add( cb );
    
    				}
    
    			} else {
    
    				this.computeFaceNormals();
    
    				for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
    
    					face = this.faces[ f ];
    
    					vertices[ face.a ].add( face.normal );
    					vertices[ face.b ].add( face.normal );
    					vertices[ face.c ].add( face.normal );
    
    				}
    
    			}
    
    			for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {
    
    				vertices[ v ].normalize();
    
    			}
    
    			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
    
    				face = this.faces[ f ];
    
    				var vertexNormals = face.vertexNormals;
    
    				if ( vertexNormals.length === 3 ) {
    
    					vertexNormals[ 0 ].copy( vertices[ face.a ] );
    					vertexNormals[ 1 ].copy( vertices[ face.b ] );
    					vertexNormals[ 2 ].copy( vertices[ face.c ] );
    
    				} else {
    
    					vertexNormals[ 0 ] = vertices[ face.a ].clone();
    					vertexNormals[ 1 ] = vertices[ face.b ].clone();
    					vertexNormals[ 2 ] = vertices[ face.c ].clone();
    
    				}
    
    			}
    
    			if ( this.faces.length > 0 ) {
    
    				this.normalsNeedUpdate = true;
    
    			}
    
    		},
    
    		computeFlatVertexNormals: function () {
    
    			var f, fl, face;
    
    			this.computeFaceNormals();
    
    			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
    
    				face = this.faces[ f ];
    
    				var vertexNormals = face.vertexNormals;
    
    				if ( vertexNormals.length === 3 ) {
    
    					vertexNormals[ 0 ].copy( face.normal );
    					vertexNormals[ 1 ].copy( face.normal );
    					vertexNormals[ 2 ].copy( face.normal );
    
    				} else {
    
    					vertexNormals[ 0 ] = face.normal.clone();
    					vertexNormals[ 1 ] = face.normal.clone();
    					vertexNormals[ 2 ] = face.normal.clone();
    
    				}
    
    			}
    
    			if ( this.faces.length > 0 ) {
    
    				this.normalsNeedUpdate = true;
    
    			}
    
    		},
    
    		computeMorphNormals: function () {
    
    			var i, il, f, fl, face;
    
    			// save original normals
    			// - create temp variables on first access
    			//   otherwise just copy (for faster repeated calls)
    
    			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
    
    				face = this.faces[ f ];
    
    				if ( ! face.__originalFaceNormal ) {
    
    					face.__originalFaceNormal = face.normal.clone();
    
    				} else {
    
    					face.__originalFaceNormal.copy( face.normal );
    
    				}
    
    				if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];
    
    				for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {
    
    					if ( ! face.__originalVertexNormals[ i ] ) {
    
    						face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();
    
    					} else {
    
    						face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );
    
    					}
    
    				}
    
    			}
    
    			// use temp geometry to compute face and vertex normals for each morph
    
    			var tmpGeo = new Geometry();
    			tmpGeo.faces = this.faces;
    
    			for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {
    
    				// create on first access
    
    				if ( ! this.morphNormals[ i ] ) {
    
    					this.morphNormals[ i ] = {};
    					this.morphNormals[ i ].faceNormals = [];
    					this.morphNormals[ i ].vertexNormals = [];
    
    					var dstNormalsFace = this.morphNormals[ i ].faceNormals;
    					var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;
    
    					var faceNormal, vertexNormals;
    
    					for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
    
    						faceNormal = new Vector3();
    						vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };
    
    						dstNormalsFace.push( faceNormal );
    						dstNormalsVertex.push( vertexNormals );
    
    					}
    
    				}
    
    				var morphNormals = this.morphNormals[ i ];
    
    				// set vertices to morph target
    
    				tmpGeo.vertices = this.morphTargets[ i ].vertices;
    
    				// compute morph normals
    
    				tmpGeo.computeFaceNormals();
    				tmpGeo.computeVertexNormals();
    
    				// store morph normals
    
    				var faceNormal, vertexNormals;
    
    				for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
    
    					face = this.faces[ f ];
    
    					faceNormal = morphNormals.faceNormals[ f ];
    					vertexNormals = morphNormals.vertexNormals[ f ];
    
    					faceNormal.copy( face.normal );
    
    					vertexNormals.a.copy( face.vertexNormals[ 0 ] );
    					vertexNormals.b.copy( face.vertexNormals[ 1 ] );
    					vertexNormals.c.copy( face.vertexNormals[ 2 ] );
    
    				}
    
    			}
    
    			// restore original normals
    
    			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {
    
    				face = this.faces[ f ];
    
    				face.normal = face.__originalFaceNormal;
    				face.vertexNormals = face.__originalVertexNormals;
    
    			}
    
    		},
    
    		computeLineDistances: function () {
    
    			var d = 0;
    			var vertices = this.vertices;
    
    			for ( var i = 0, il = vertices.length; i < il; i ++ ) {
    
    				if ( i > 0 ) {
    
    					d += vertices[ i ].distanceTo( vertices[ i - 1 ] );
    
    				}
    
    				this.lineDistances[ i ] = d;
    
    			}
    
    		},
    
    		computeBoundingBox: function () {
    
    			if ( this.boundingBox === null ) {
    
    				this.boundingBox = new Box3();
    
    			}
    
    			this.boundingBox.setFromPoints( this.vertices );
    
    		},
    
    		computeBoundingSphere: function () {
    
    			if ( this.boundingSphere === null ) {
    
    				this.boundingSphere = new Sphere();
    
    			}
    
    			this.boundingSphere.setFromPoints( this.vertices );
    
    		},
    
    		merge: function ( geometry, matrix, materialIndexOffset ) {
    
    			if ( ( geometry && geometry.isGeometry ) === false ) {
    
    				console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
    				return;
    
    			}
    
    			var normalMatrix,
    				vertexOffset = this.vertices.length,
    				vertices1 = this.vertices,
    				vertices2 = geometry.vertices,
    				faces1 = this.faces,
    				faces2 = geometry.faces,
    				uvs1 = this.faceVertexUvs[ 0 ],
    				uvs2 = geometry.faceVertexUvs[ 0 ],
    				colors1 = this.colors,
    				colors2 = geometry.colors;
    
    			if ( materialIndexOffset === undefined ) materialIndexOffset = 0;
    
    			if ( matrix !== undefined ) {
    
    				normalMatrix = new Matrix3().getNormalMatrix( matrix );
    
    			}
    
    			// vertices
    
    			for ( var i = 0, il = vertices2.length; i < il; i ++ ) {
    
    				var vertex = vertices2[ i ];
    
    				var vertexCopy = vertex.clone();
    
    				if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );
    
    				vertices1.push( vertexCopy );
    
    			}
    
    			// colors
    
    			for ( var i = 0, il = colors2.length; i < il; i ++ ) {
    
    				colors1.push( colors2[ i ].clone() );
    
    			}
    
    			// faces
    
    			for ( i = 0, il = faces2.length; i < il; i ++ ) {
    
    				var face = faces2[ i ], faceCopy, normal, color,
    					faceVertexNormals = face.vertexNormals,
    					faceVertexColors = face.vertexColors;
    
    				faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
    				faceCopy.normal.copy( face.normal );
    
    				if ( normalMatrix !== undefined ) {
    
    					faceCopy.normal.applyMatrix3( normalMatrix ).normalize();
    
    				}
    
    				for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {
    
    					normal = faceVertexNormals[ j ].clone();
    
    					if ( normalMatrix !== undefined ) {
    
    						normal.applyMatrix3( normalMatrix ).normalize();
    
    					}
    
    					faceCopy.vertexNormals.push( normal );
    
    				}
    
    				faceCopy.color.copy( face.color );
    
    				for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {
    
    					color = faceVertexColors[ j ];
    					faceCopy.vertexColors.push( color.clone() );
    
    				}
    
    				faceCopy.materialIndex = face.materialIndex + materialIndexOffset;
    
    				faces1.push( faceCopy );
    
    			}
    
    			// uvs
    
    			for ( i = 0, il = uvs2.length; i < il; i ++ ) {
    
    				var uv = uvs2[ i ], uvCopy = [];
    
    				if ( uv === undefined ) {
    
    					continue;
    
    				}
    
    				for ( var j = 0, jl = uv.length; j < jl; j ++ ) {
    
    					uvCopy.push( uv[ j ].clone() );
    
    				}
    
    				uvs1.push( uvCopy );
    
    			}
    
    		},
    
    		mergeMesh: function ( mesh ) {
    
    			if ( ( mesh && mesh.isMesh ) === false ) {
    
    				console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
    				return;
    
    			}
    
    			mesh.matrixAutoUpdate && mesh.updateMatrix();
    
    			this.merge( mesh.geometry, mesh.matrix );
    
    		},
    
    		/*
    		 * Checks for duplicate vertices with hashmap.
    		 * Duplicated vertices are removed
    		 * and faces' vertices are updated.
    		 */
    
    		mergeVertices: function () {
    
    			var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
    			var unique = [], changes = [];
    
    			var v, key;
    			var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
    			var precision = Math.pow( 10, precisionPoints );
    			var i, il, face;
    			var indices, j, jl;
    
    			for ( i = 0, il = this.vertices.length; i < il; i ++ ) {
    
    				v = this.vertices[ i ];
    				key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );
    
    				if ( verticesMap[ key ] === undefined ) {
    
    					verticesMap[ key ] = i;
    					unique.push( this.vertices[ i ] );
    					changes[ i ] = unique.length - 1;
    
    				} else {
    
    					//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
    					changes[ i ] = changes[ verticesMap[ key ] ];
    
    				}
    
    			}
    
    
    			// if faces are completely degenerate after merging vertices, we
    			// have to remove them from the geometry.
    			var faceIndicesToRemove = [];
    
    			for ( i = 0, il = this.faces.length; i < il; i ++ ) {
    
    				face = this.faces[ i ];
    
    				face.a = changes[ face.a ];
    				face.b = changes[ face.b ];
    				face.c = changes[ face.c ];
    
    				indices = [ face.a, face.b, face.c ];
    
    				// if any duplicate vertices are found in a Face3
    				// we have to remove the face as nothing can be saved
    				for ( var n = 0; n < 3; n ++ ) {
    
    					if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {
    
    						faceIndicesToRemove.push( i );
    						break;
    
    					}
    
    				}
    
    			}
    
    			for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {
    
    				var idx = faceIndicesToRemove[ i ];
    
    				this.faces.splice( idx, 1 );
    
    				for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {
    
    					this.faceVertexUvs[ j ].splice( idx, 1 );
    
    				}
    
    			}
    
    			// Use unique set of vertices
    
    			var diff = this.vertices.length - unique.length;
    			this.vertices = unique;
    			return diff;
    
    		},
    
    		sortFacesByMaterialIndex: function () {
    
    			var faces = this.faces;
    			var length = faces.length;
    
    			// tag faces
    
    			for ( var i = 0; i < length; i ++ ) {
    
    				faces[ i ]._id = i;
    
    			}
    
    			// sort faces
    
    			function materialIndexSort( a, b ) {
    
    				return a.materialIndex - b.materialIndex;
    
    			}
    
    			faces.sort( materialIndexSort );
    
    			// sort uvs
    
    			var uvs1 = this.faceVertexUvs[ 0 ];
    			var uvs2 = this.faceVertexUvs[ 1 ];
    
    			var newUvs1, newUvs2;
    
    			if ( uvs1 && uvs1.length === length ) newUvs1 = [];
    			if ( uvs2 && uvs2.length === length ) newUvs2 = [];
    
    			for ( var i = 0; i < length; i ++ ) {
    
    				var id = faces[ i ]._id;
    
    				if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
    				if ( newUvs2 ) newUvs2.push( uvs2[ id ] );
    
    			}
    
    			if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
    			if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;
    
    		},
    
    		toJSON: function () {
    
    			var data = {
    				metadata: {
    					version: 4.5,
    					type: 'Geometry',
    					generator: 'Geometry.toJSON'
    				}
    			};
    
    			// standard Geometry serialization
    
    			data.uuid = this.uuid;
    			data.type = this.type;
    			if ( this.name !== '' ) data.name = this.name;
    
    			if ( this.parameters !== undefined ) {
    
    				var parameters = this.parameters;
    
    				for ( var key in parameters ) {
    
    					if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
    
    				}
    
    				return data;
    
    			}
    
    			var vertices = [];
    
    			for ( var i = 0; i < this.vertices.length; i ++ ) {
    
    				var vertex = this.vertices[ i ];
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    			}
    
    			var faces = [];
    			var normals = [];
    			var normalsHash = {};
    			var colors = [];
    			var colorsHash = {};
    			var uvs = [];
    			var uvsHash = {};
    
    			for ( var i = 0; i < this.faces.length; i ++ ) {
    
    				var face = this.faces[ i ];
    
    				var hasMaterial = true;
    				var hasFaceUv = false; // deprecated
    				var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
    				var hasFaceNormal = face.normal.length() > 0;
    				var hasFaceVertexNormal = face.vertexNormals.length > 0;
    				var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
    				var hasFaceVertexColor = face.vertexColors.length > 0;
    
    				var faceType = 0;
    
    				faceType = setBit( faceType, 0, 0 ); // isQuad
    				faceType = setBit( faceType, 1, hasMaterial );
    				faceType = setBit( faceType, 2, hasFaceUv );
    				faceType = setBit( faceType, 3, hasFaceVertexUv );
    				faceType = setBit( faceType, 4, hasFaceNormal );
    				faceType = setBit( faceType, 5, hasFaceVertexNormal );
    				faceType = setBit( faceType, 6, hasFaceColor );
    				faceType = setBit( faceType, 7, hasFaceVertexColor );
    
    				faces.push( faceType );
    				faces.push( face.a, face.b, face.c );
    				faces.push( face.materialIndex );
    
    				if ( hasFaceVertexUv ) {
    
    					var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];
    
    					faces.push(
    						getUvIndex( faceVertexUvs[ 0 ] ),
    						getUvIndex( faceVertexUvs[ 1 ] ),
    						getUvIndex( faceVertexUvs[ 2 ] )
    					);
    
    				}
    
    				if ( hasFaceNormal ) {
    
    					faces.push( getNormalIndex( face.normal ) );
    
    				}
    
    				if ( hasFaceVertexNormal ) {
    
    					var vertexNormals = face.vertexNormals;
    
    					faces.push(
    						getNormalIndex( vertexNormals[ 0 ] ),
    						getNormalIndex( vertexNormals[ 1 ] ),
    						getNormalIndex( vertexNormals[ 2 ] )
    					);
    
    				}
    
    				if ( hasFaceColor ) {
    
    					faces.push( getColorIndex( face.color ) );
    
    				}
    
    				if ( hasFaceVertexColor ) {
    
    					var vertexColors = face.vertexColors;
    
    					faces.push(
    						getColorIndex( vertexColors[ 0 ] ),
    						getColorIndex( vertexColors[ 1 ] ),
    						getColorIndex( vertexColors[ 2 ] )
    					);
    
    				}
    
    			}
    
    			function setBit( value, position, enabled ) {
    
    				return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );
    
    			}
    
    			function getNormalIndex( normal ) {
    
    				var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();
    
    				if ( normalsHash[ hash ] !== undefined ) {
    
    					return normalsHash[ hash ];
    
    				}
    
    				normalsHash[ hash ] = normals.length / 3;
    				normals.push( normal.x, normal.y, normal.z );
    
    				return normalsHash[ hash ];
    
    			}
    
    			function getColorIndex( color ) {
    
    				var hash = color.r.toString() + color.g.toString() + color.b.toString();
    
    				if ( colorsHash[ hash ] !== undefined ) {
    
    					return colorsHash[ hash ];
    
    				}
    
    				colorsHash[ hash ] = colors.length;
    				colors.push( color.getHex() );
    
    				return colorsHash[ hash ];
    
    			}
    
    			function getUvIndex( uv ) {
    
    				var hash = uv.x.toString() + uv.y.toString();
    
    				if ( uvsHash[ hash ] !== undefined ) {
    
    					return uvsHash[ hash ];
    
    				}
    
    				uvsHash[ hash ] = uvs.length / 2;
    				uvs.push( uv.x, uv.y );
    
    				return uvsHash[ hash ];
    
    			}
    
    			data.data = {};
    
    			data.data.vertices = vertices;
    			data.data.normals = normals;
    			if ( colors.length > 0 ) data.data.colors = colors;
    			if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
    			data.data.faces = faces;
    
    			return data;
    
    		},
    
    		clone: function () {
    
    			/*
    			 // Handle primitives
    
    			 var parameters = this.parameters;
    
    			 if ( parameters !== undefined ) {
    
    			 var values = [];
    
    			 for ( var key in parameters ) {
    
    			 values.push( parameters[ key ] );
    
    			 }
    
    			 var geometry = Object.create( this.constructor.prototype );
    			 this.constructor.apply( geometry, values );
    			 return geometry;
    
    			 }
    
    			 return new this.constructor().copy( this );
    			 */
    
    			return new Geometry().copy( this );
    
    		},
    
    		copy: function ( source ) {
    
    			var i, il, j, jl, k, kl;
    
    			// reset
    
    			this.vertices = [];
    			this.colors = [];
    			this.faces = [];
    			this.faceVertexUvs = [[]];
    			this.morphTargets = [];
    			this.morphNormals = [];
    			this.skinWeights = [];
    			this.skinIndices = [];
    			this.lineDistances = [];
    			this.boundingBox = null;
    			this.boundingSphere = null;
    
    			// name
    
    			this.name = source.name;
    
    			// vertices
    
    			var vertices = source.vertices;
    
    			for ( i = 0, il = vertices.length; i < il; i ++ ) {
    
    				this.vertices.push( vertices[ i ].clone() );
    
    			}
    
    			// colors
    
    			var colors = source.colors;
    
    			for ( i = 0, il = colors.length; i < il; i ++ ) {
    
    				this.colors.push( colors[ i ].clone() );
    
    			}
    
    			// faces
    
    			var faces = source.faces;
    
    			for ( i = 0, il = faces.length; i < il; i ++ ) {
    
    				this.faces.push( faces[ i ].clone() );
    
    			}
    
    			// face vertex uvs
    
    			for ( i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {
    
    				var faceVertexUvs = source.faceVertexUvs[ i ];
    
    				if ( this.faceVertexUvs[ i ] === undefined ) {
    
    					this.faceVertexUvs[ i ] = [];
    
    				}
    
    				for ( j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {
    
    					var uvs = faceVertexUvs[ j ], uvsCopy = [];
    
    					for ( k = 0, kl = uvs.length; k < kl; k ++ ) {
    
    						var uv = uvs[ k ];
    
    						uvsCopy.push( uv.clone() );
    
    					}
    
    					this.faceVertexUvs[ i ].push( uvsCopy );
    
    				}
    
    			}
    
    			// morph targets
    
    			var morphTargets = source.morphTargets;
    
    			for ( i = 0, il = morphTargets.length; i < il; i ++ ) {
    
    				var morphTarget = {};
    				morphTarget.name = morphTargets[ i ].name;
    
    				// vertices
    
    				if ( morphTargets[ i ].vertices !== undefined ) {
    
    					morphTarget.vertices = [];
    
    					for ( j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {
    
    						morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );
    
    					}
    
    				}
    
    				// normals
    
    				if ( morphTargets[ i ].normals !== undefined ) {
    
    					morphTarget.normals = [];
    
    					for ( j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {
    
    						morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );
    
    					}
    
    				}
    
    				this.morphTargets.push( morphTarget );
    
    			}
    
    			// morph normals
    
    			var morphNormals = source.morphNormals;
    
    			for ( i = 0, il = morphNormals.length; i < il; i ++ ) {
    
    				var morphNormal = {};
    
    				// vertex normals
    
    				if ( morphNormals[ i ].vertexNormals !== undefined ) {
    
    					morphNormal.vertexNormals = [];
    
    					for ( j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {
    
    						var srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
    						var destVertexNormal = {};
    
    						destVertexNormal.a = srcVertexNormal.a.clone();
    						destVertexNormal.b = srcVertexNormal.b.clone();
    						destVertexNormal.c = srcVertexNormal.c.clone();
    
    						morphNormal.vertexNormals.push( destVertexNormal );
    
    					}
    
    				}
    
    				// face normals
    
    				if ( morphNormals[ i ].faceNormals !== undefined ) {
    
    					morphNormal.faceNormals = [];
    
    					for ( j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {
    
    						morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );
    
    					}
    
    				}
    
    				this.morphNormals.push( morphNormal );
    
    			}
    
    			// skin weights
    
    			var skinWeights = source.skinWeights;
    
    			for ( i = 0, il = skinWeights.length; i < il; i ++ ) {
    
    				this.skinWeights.push( skinWeights[ i ].clone() );
    
    			}
    
    			// skin indices
    
    			var skinIndices = source.skinIndices;
    
    			for ( i = 0, il = skinIndices.length; i < il; i ++ ) {
    
    				this.skinIndices.push( skinIndices[ i ].clone() );
    
    			}
    
    			// line distances
    
    			var lineDistances = source.lineDistances;
    
    			for ( i = 0, il = lineDistances.length; i < il; i ++ ) {
    
    				this.lineDistances.push( lineDistances[ i ] );
    
    			}
    
    			// bounding box
    
    			var boundingBox = source.boundingBox;
    
    			if ( boundingBox !== null ) {
    
    				this.boundingBox = boundingBox.clone();
    
    			}
    
    			// bounding sphere
    
    			var boundingSphere = source.boundingSphere;
    
    			if ( boundingSphere !== null ) {
    
    				this.boundingSphere = boundingSphere.clone();
    
    			}
    
    			// update flags
    
    			this.elementsNeedUpdate = source.elementsNeedUpdate;
    			this.verticesNeedUpdate = source.verticesNeedUpdate;
    			this.uvsNeedUpdate = source.uvsNeedUpdate;
    			this.normalsNeedUpdate = source.normalsNeedUpdate;
    			this.colorsNeedUpdate = source.colorsNeedUpdate;
    			this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
    			this.groupsNeedUpdate = source.groupsNeedUpdate;
    
    			return this;
    
    		},
    
    		dispose: function () {
    
    			this.dispatchEvent( { type: 'dispose' } );
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function BufferGeometry() {
    
    		Object.defineProperty( this, 'id', { value: GeometryIdCount() } );
    
    		this.uuid = _Math.generateUUID();
    
    		this.name = '';
    		this.type = 'BufferGeometry';
    
    		this.index = null;
    		this.attributes = {};
    
    		this.morphAttributes = {};
    
    		this.groups = [];
    
    		this.boundingBox = null;
    		this.boundingSphere = null;
    
    		this.drawRange = { start: 0, count: Infinity };
    
    	}
    
    	BufferGeometry.MaxIndex = 65535;
    
    	Object.assign( BufferGeometry.prototype, EventDispatcher.prototype, {
    
    		isBufferGeometry: true,
    
    		getIndex: function () {
    
    			return this.index;
    
    		},
    
    		setIndex: function ( index ) {
    
    			if ( Array.isArray( index ) ) {
    
    				this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );
    
    			} else {
    
    				this.index = index;
    
    			}
    
    		},
    
    		addAttribute: function ( name, attribute ) {
    
    			if ( ( attribute && attribute.isBufferAttribute ) === false && ( attribute && attribute.isInterleavedBufferAttribute ) === false ) {
    
    				console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );
    
    				this.addAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );
    
    				return;
    
    			}
    
    			if ( name === 'index' ) {
    
    				console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
    				this.setIndex( attribute );
    
    				return;
    
    			}
    
    			this.attributes[ name ] = attribute;
    
    			return this;
    
    		},
    
    		getAttribute: function ( name ) {
    
    			return this.attributes[ name ];
    
    		},
    
    		removeAttribute: function ( name ) {
    
    			delete this.attributes[ name ];
    
    			return this;
    
    		},
    
    		addGroup: function ( start, count, materialIndex ) {
    
    			this.groups.push( {
    
    				start: start,
    				count: count,
    				materialIndex: materialIndex !== undefined ? materialIndex : 0
    
    			} );
    
    		},
    
    		clearGroups: function () {
    
    			this.groups = [];
    
    		},
    
    		setDrawRange: function ( start, count ) {
    
    			this.drawRange.start = start;
    			this.drawRange.count = count;
    
    		},
    
    		applyMatrix: function ( matrix ) {
    
    			var position = this.attributes.position;
    
    			if ( position !== undefined ) {
    
    				matrix.applyToBufferAttribute( position );
    				position.needsUpdate = true;
    
    			}
    
    			var normal = this.attributes.normal;
    
    			if ( normal !== undefined ) {
    
    				var normalMatrix = new Matrix3().getNormalMatrix( matrix );
    
    				normalMatrix.applyToBufferAttribute( normal );
    				normal.needsUpdate = true;
    
    			}
    
    			if ( this.boundingBox !== null ) {
    
    				this.computeBoundingBox();
    
    			}
    
    			if ( this.boundingSphere !== null ) {
    
    				this.computeBoundingSphere();
    
    			}
    
    			return this;
    
    		},
    
    		rotateX: function () {
    
    			// rotate geometry around world x-axis
    
    			var m1 = new Matrix4();
    
    			return function rotateX( angle ) {
    
    				m1.makeRotationX( angle );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		rotateY: function () {
    
    			// rotate geometry around world y-axis
    
    			var m1 = new Matrix4();
    
    			return function rotateY( angle ) {
    
    				m1.makeRotationY( angle );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		rotateZ: function () {
    
    			// rotate geometry around world z-axis
    
    			var m1 = new Matrix4();
    
    			return function rotateZ( angle ) {
    
    				m1.makeRotationZ( angle );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		translate: function () {
    
    			// translate geometry
    
    			var m1 = new Matrix4();
    
    			return function translate( x, y, z ) {
    
    				m1.makeTranslation( x, y, z );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		scale: function () {
    
    			// scale geometry
    
    			var m1 = new Matrix4();
    
    			return function scale( x, y, z ) {
    
    				m1.makeScale( x, y, z );
    
    				this.applyMatrix( m1 );
    
    				return this;
    
    			};
    
    		}(),
    
    		lookAt: function () {
    
    			var obj = new Object3D();
    
    			return function lookAt( vector ) {
    
    				obj.lookAt( vector );
    
    				obj.updateMatrix();
    
    				this.applyMatrix( obj.matrix );
    
    			};
    
    		}(),
    
    		center: function () {
    
    			this.computeBoundingBox();
    
    			var offset = this.boundingBox.getCenter().negate();
    
    			this.translate( offset.x, offset.y, offset.z );
    
    			return offset;
    
    		},
    
    		setFromObject: function ( object ) {
    
    			// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );
    
    			var geometry = object.geometry;
    
    			if ( object.isPoints || object.isLine ) {
    
    				var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 );
    				var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );
    
    				this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
    				this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) );
    
    				if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {
    
    					var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );
    
    					this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );
    
    				}
    
    				if ( geometry.boundingSphere !== null ) {
    
    					this.boundingSphere = geometry.boundingSphere.clone();
    
    				}
    
    				if ( geometry.boundingBox !== null ) {
    
    					this.boundingBox = geometry.boundingBox.clone();
    
    				}
    
    			} else if ( object.isMesh ) {
    
    				if ( geometry && geometry.isGeometry ) {
    
    					this.fromGeometry( geometry );
    
    				}
    
    			}
    
    			return this;
    
    		},
    
    		updateFromObject: function ( object ) {
    
    			var geometry = object.geometry;
    
    			if ( object.isMesh ) {
    
    				var direct = geometry.__directGeometry;
    
    				if ( geometry.elementsNeedUpdate === true ) {
    
    					direct = undefined;
    					geometry.elementsNeedUpdate = false;
    
    				}
    
    				if ( direct === undefined ) {
    
    					return this.fromGeometry( geometry );
    
    				}
    
    				direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
    				direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
    				direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
    				direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
    				direct.groupsNeedUpdate = geometry.groupsNeedUpdate;
    
    				geometry.verticesNeedUpdate = false;
    				geometry.normalsNeedUpdate = false;
    				geometry.colorsNeedUpdate = false;
    				geometry.uvsNeedUpdate = false;
    				geometry.groupsNeedUpdate = false;
    
    				geometry = direct;
    
    			}
    
    			var attribute;
    
    			if ( geometry.verticesNeedUpdate === true ) {
    
    				attribute = this.attributes.position;
    
    				if ( attribute !== undefined ) {
    
    					attribute.copyVector3sArray( geometry.vertices );
    					attribute.needsUpdate = true;
    
    				}
    
    				geometry.verticesNeedUpdate = false;
    
    			}
    
    			if ( geometry.normalsNeedUpdate === true ) {
    
    				attribute = this.attributes.normal;
    
    				if ( attribute !== undefined ) {
    
    					attribute.copyVector3sArray( geometry.normals );
    					attribute.needsUpdate = true;
    
    				}
    
    				geometry.normalsNeedUpdate = false;
    
    			}
    
    			if ( geometry.colorsNeedUpdate === true ) {
    
    				attribute = this.attributes.color;
    
    				if ( attribute !== undefined ) {
    
    					attribute.copyColorsArray( geometry.colors );
    					attribute.needsUpdate = true;
    
    				}
    
    				geometry.colorsNeedUpdate = false;
    
    			}
    
    			if ( geometry.uvsNeedUpdate ) {
    
    				attribute = this.attributes.uv;
    
    				if ( attribute !== undefined ) {
    
    					attribute.copyVector2sArray( geometry.uvs );
    					attribute.needsUpdate = true;
    
    				}
    
    				geometry.uvsNeedUpdate = false;
    
    			}
    
    			if ( geometry.lineDistancesNeedUpdate ) {
    
    				attribute = this.attributes.lineDistance;
    
    				if ( attribute !== undefined ) {
    
    					attribute.copyArray( geometry.lineDistances );
    					attribute.needsUpdate = true;
    
    				}
    
    				geometry.lineDistancesNeedUpdate = false;
    
    			}
    
    			if ( geometry.groupsNeedUpdate ) {
    
    				geometry.computeGroups( object.geometry );
    				this.groups = geometry.groups;
    
    				geometry.groupsNeedUpdate = false;
    
    			}
    
    			return this;
    
    		},
    
    		fromGeometry: function ( geometry ) {
    
    			geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );
    
    			return this.fromDirectGeometry( geometry.__directGeometry );
    
    		},
    
    		fromDirectGeometry: function ( geometry ) {
    
    			var positions = new Float32Array( geometry.vertices.length * 3 );
    			this.addAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );
    
    			if ( geometry.normals.length > 0 ) {
    
    				var normals = new Float32Array( geometry.normals.length * 3 );
    				this.addAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );
    
    			}
    
    			if ( geometry.colors.length > 0 ) {
    
    				var colors = new Float32Array( geometry.colors.length * 3 );
    				this.addAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );
    
    			}
    
    			if ( geometry.uvs.length > 0 ) {
    
    				var uvs = new Float32Array( geometry.uvs.length * 2 );
    				this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );
    
    			}
    
    			if ( geometry.uvs2.length > 0 ) {
    
    				var uvs2 = new Float32Array( geometry.uvs2.length * 2 );
    				this.addAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );
    
    			}
    
    			if ( geometry.indices.length > 0 ) {
    
    				var TypeArray = arrayMax( geometry.indices ) > 65535 ? Uint32Array : Uint16Array;
    				var indices = new TypeArray( geometry.indices.length * 3 );
    				this.setIndex( new BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) );
    
    			}
    
    			// groups
    
    			this.groups = geometry.groups;
    
    			// morphs
    
    			for ( var name in geometry.morphTargets ) {
    
    				var array = [];
    				var morphTargets = geometry.morphTargets[ name ];
    
    				for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {
    
    					var morphTarget = morphTargets[ i ];
    
    					var attribute = new Float32BufferAttribute( morphTarget.length * 3, 3 );
    
    					array.push( attribute.copyVector3sArray( morphTarget ) );
    
    				}
    
    				this.morphAttributes[ name ] = array;
    
    			}
    
    			// skinning
    
    			if ( geometry.skinIndices.length > 0 ) {
    
    				var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
    				this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );
    
    			}
    
    			if ( geometry.skinWeights.length > 0 ) {
    
    				var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
    				this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );
    
    			}
    
    			//
    
    			if ( geometry.boundingSphere !== null ) {
    
    				this.boundingSphere = geometry.boundingSphere.clone();
    
    			}
    
    			if ( geometry.boundingBox !== null ) {
    
    				this.boundingBox = geometry.boundingBox.clone();
    
    			}
    
    			return this;
    
    		},
    
    		computeBoundingBox: function () {
    
    			if ( this.boundingBox === null ) {
    
    				this.boundingBox = new Box3();
    
    			}
    
    			var position = this.attributes.position;
    
    			if ( position !== undefined ) {
    
    				this.boundingBox.setFromBufferAttribute( position );
    
    			} else {
    
    				this.boundingBox.makeEmpty();
    
    			}
    
    			if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
    
    				console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
    
    			}
    
    		},
    
    		computeBoundingSphere: function () {
    
    			var box = new Box3();
    			var vector = new Vector3();
    
    			return function computeBoundingSphere() {
    
    				if ( this.boundingSphere === null ) {
    
    					this.boundingSphere = new Sphere();
    
    				}
    
    				var position = this.attributes.position;
    
    				if ( position ) {
    
    					var center = this.boundingSphere.center;
    
    					box.setFromBufferAttribute( position );
    					box.getCenter( center );
    
    					// hoping to find a boundingSphere with a radius smaller than the
    					// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
    
    					var maxRadiusSq = 0;
    
    					for ( var i = 0, il = position.count; i < il; i ++ ) {
    
    						vector.x = position.getX( i );
    						vector.y = position.getY( i );
    						vector.z = position.getZ( i );
    						maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) );
    
    					}
    
    					this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
    
    					if ( isNaN( this.boundingSphere.radius ) ) {
    
    						console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
    
    					}
    
    				}
    
    			};
    
    		}(),
    
    		computeFaceNormals: function () {
    
    			// backwards compatibility
    
    		},
    
    		computeVertexNormals: function () {
    
    			var index = this.index;
    			var attributes = this.attributes;
    			var groups = this.groups;
    
    			if ( attributes.position ) {
    
    				var positions = attributes.position.array;
    
    				if ( attributes.normal === undefined ) {
    
    					this.addAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) );
    
    				} else {
    
    					// reset existing normals to zero
    
    					var array = attributes.normal.array;
    
    					for ( var i = 0, il = array.length; i < il; i ++ ) {
    
    						array[ i ] = 0;
    
    					}
    
    				}
    
    				var normals = attributes.normal.array;
    
    				var vA, vB, vC;
    				var pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
    				var cb = new Vector3(), ab = new Vector3();
    
    				// indexed elements
    
    				if ( index ) {
    
    					var indices = index.array;
    
    					if ( groups.length === 0 ) {
    
    						this.addGroup( 0, indices.length );
    
    					}
    
    					for ( var j = 0, jl = groups.length; j < jl; ++ j ) {
    
    						var group = groups[ j ];
    
    						var start = group.start;
    						var count = group.count;
    
    						for ( var i = start, il = start + count; i < il; i += 3 ) {
    
    							vA = indices[ i + 0 ] * 3;
    							vB = indices[ i + 1 ] * 3;
    							vC = indices[ i + 2 ] * 3;
    
    							pA.fromArray( positions, vA );
    							pB.fromArray( positions, vB );
    							pC.fromArray( positions, vC );
    
    							cb.subVectors( pC, pB );
    							ab.subVectors( pA, pB );
    							cb.cross( ab );
    
    							normals[ vA ] += cb.x;
    							normals[ vA + 1 ] += cb.y;
    							normals[ vA + 2 ] += cb.z;
    
    							normals[ vB ] += cb.x;
    							normals[ vB + 1 ] += cb.y;
    							normals[ vB + 2 ] += cb.z;
    
    							normals[ vC ] += cb.x;
    							normals[ vC + 1 ] += cb.y;
    							normals[ vC + 2 ] += cb.z;
    
    						}
    
    					}
    
    				} else {
    
    					// non-indexed elements (unconnected triangle soup)
    
    					for ( var i = 0, il = positions.length; i < il; i += 9 ) {
    
    						pA.fromArray( positions, i );
    						pB.fromArray( positions, i + 3 );
    						pC.fromArray( positions, i + 6 );
    
    						cb.subVectors( pC, pB );
    						ab.subVectors( pA, pB );
    						cb.cross( ab );
    
    						normals[ i ] = cb.x;
    						normals[ i + 1 ] = cb.y;
    						normals[ i + 2 ] = cb.z;
    
    						normals[ i + 3 ] = cb.x;
    						normals[ i + 4 ] = cb.y;
    						normals[ i + 5 ] = cb.z;
    
    						normals[ i + 6 ] = cb.x;
    						normals[ i + 7 ] = cb.y;
    						normals[ i + 8 ] = cb.z;
    
    					}
    
    				}
    
    				this.normalizeNormals();
    
    				attributes.normal.needsUpdate = true;
    
    			}
    
    		},
    
    		merge: function ( geometry, offset ) {
    
    			if ( ( geometry && geometry.isBufferGeometry ) === false ) {
    
    				console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
    				return;
    
    			}
    
    			if ( offset === undefined ) offset = 0;
    
    			var attributes = this.attributes;
    
    			for ( var key in attributes ) {
    
    				if ( geometry.attributes[ key ] === undefined ) continue;
    
    				var attribute1 = attributes[ key ];
    				var attributeArray1 = attribute1.array;
    
    				var attribute2 = geometry.attributes[ key ];
    				var attributeArray2 = attribute2.array;
    
    				var attributeSize = attribute2.itemSize;
    
    				for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) {
    
    					attributeArray1[ j ] = attributeArray2[ i ];
    
    				}
    
    			}
    
    			return this;
    
    		},
    
    		normalizeNormals: function () {
    
    			var normals = this.attributes.normal;
    
    			var x, y, z, n;
    
    			for ( var i = 0, il = normals.count; i < il; i ++ ) {
    
    				x = normals.getX( i );
    				y = normals.getY( i );
    				z = normals.getZ( i );
    
    				n = 1.0 / Math.sqrt( x * x + y * y + z * z );
    
    				normals.setXYZ( i, x * n, y * n, z * n );
    
    			}
    
    		},
    
    		toNonIndexed: function () {
    
    			if ( this.index === null ) {
    
    				console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
    				return this;
    
    			}
    
    			var geometry2 = new BufferGeometry();
    
    			var indices = this.index.array;
    			var attributes = this.attributes;
    
    			for ( var name in attributes ) {
    
    				var attribute = attributes[ name ];
    
    				var array = attribute.array;
    				var itemSize = attribute.itemSize;
    
    				var array2 = new array.constructor( indices.length * itemSize );
    
    				var index = 0, index2 = 0;
    
    				for ( var i = 0, l = indices.length; i < l; i ++ ) {
    
    					index = indices[ i ] * itemSize;
    
    					for ( var j = 0; j < itemSize; j ++ ) {
    
    						array2[ index2 ++ ] = array[ index ++ ];
    
    					}
    
    				}
    
    				geometry2.addAttribute( name, new BufferAttribute( array2, itemSize ) );
    
    			}
    
    			return geometry2;
    
    		},
    
    		toJSON: function () {
    
    			var data = {
    				metadata: {
    					version: 4.5,
    					type: 'BufferGeometry',
    					generator: 'BufferGeometry.toJSON'
    				}
    			};
    
    			// standard BufferGeometry serialization
    
    			data.uuid = this.uuid;
    			data.type = this.type;
    			if ( this.name !== '' ) data.name = this.name;
    
    			if ( this.parameters !== undefined ) {
    
    				var parameters = this.parameters;
    
    				for ( var key in parameters ) {
    
    					if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
    
    				}
    
    				return data;
    
    			}
    
    			data.data = { attributes: {} };
    
    			var index = this.index;
    
    			if ( index !== null ) {
    
    				var array = Array.prototype.slice.call( index.array );
    
    				data.data.index = {
    					type: index.array.constructor.name,
    					array: array
    				};
    
    			}
    
    			var attributes = this.attributes;
    
    			for ( var key in attributes ) {
    
    				var attribute = attributes[ key ];
    
    				var array = Array.prototype.slice.call( attribute.array );
    
    				data.data.attributes[ key ] = {
    					itemSize: attribute.itemSize,
    					type: attribute.array.constructor.name,
    					array: array,
    					normalized: attribute.normalized
    				};
    
    			}
    
    			var groups = this.groups;
    
    			if ( groups.length > 0 ) {
    
    				data.data.groups = JSON.parse( JSON.stringify( groups ) );
    
    			}
    
    			var boundingSphere = this.boundingSphere;
    
    			if ( boundingSphere !== null ) {
    
    				data.data.boundingSphere = {
    					center: boundingSphere.center.toArray(),
    					radius: boundingSphere.radius
    				};
    
    			}
    
    			return data;
    
    		},
    
    		clone: function () {
    
    			/*
    			 // Handle primitives
    
    			 var parameters = this.parameters;
    
    			 if ( parameters !== undefined ) {
    
    			 var values = [];
    
    			 for ( var key in parameters ) {
    
    			 values.push( parameters[ key ] );
    
    			 }
    
    			 var geometry = Object.create( this.constructor.prototype );
    			 this.constructor.apply( geometry, values );
    			 return geometry;
    
    			 }
    
    			 return new this.constructor().copy( this );
    			 */
    
    			return new BufferGeometry().copy( this );
    
    		},
    
    		copy: function ( source ) {
    
    			var name, i, l;
    
    			// reset
    
    			this.index = null;
    			this.attributes = {};
    			this.morphAttributes = {};
    			this.groups = [];
    			this.boundingBox = null;
    			this.boundingSphere = null;
    
    			// name
    
    			this.name = source.name;
    
    			// index
    
    			var index = source.index;
    
    			if ( index !== null ) {
    
    				this.setIndex( index.clone() );
    
    			}
    
    			// attributes
    
    			var attributes = source.attributes;
    
    			for ( name in attributes ) {
    
    				var attribute = attributes[ name ];
    				this.addAttribute( name, attribute.clone() );
    
    			}
    
    			// morph attributes
    
    			var morphAttributes = source.morphAttributes;
    
    			for ( name in morphAttributes ) {
    
    				var array = [];
    				var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
    
    				for ( i = 0, l = morphAttribute.length; i < l; i ++ ) {
    
    					array.push( morphAttribute[ i ].clone() );
    
    				}
    
    				this.morphAttributes[ name ] = array;
    
    			}
    
    			// groups
    
    			var groups = source.groups;
    
    			for ( i = 0, l = groups.length; i < l; i ++ ) {
    
    				var group = groups[ i ];
    				this.addGroup( group.start, group.count, group.materialIndex );
    
    			}
    
    			// bounding box
    
    			var boundingBox = source.boundingBox;
    
    			if ( boundingBox !== null ) {
    
    				this.boundingBox = boundingBox.clone();
    
    			}
    
    			// bounding sphere
    
    			var boundingSphere = source.boundingSphere;
    
    			if ( boundingSphere !== null ) {
    
    				this.boundingSphere = boundingSphere.clone();
    
    			}
    
    			// draw range
    
    			this.drawRange.start = source.drawRange.start;
    			this.drawRange.count = source.drawRange.count;
    
    			return this;
    
    		},
    
    		dispose: function () {
    
    			this.dispatchEvent( { type: 'dispose' } );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author jonobr1 / http://jonobr1.com/
    	 */
    
    	function Mesh( geometry, material ) {
    
    		Object3D.call( this );
    
    		this.type = 'Mesh';
    
    		this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
    		this.material = material !== undefined ? material : new MeshBasicMaterial( { color: Math.random() * 0xffffff } );
    
    		this.drawMode = TrianglesDrawMode;
    
    		this.updateMorphTargets();
    
    	}
    
    	Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Mesh,
    
    		isMesh: true,
    
    		setDrawMode: function ( value ) {
    
    			this.drawMode = value;
    
    		},
    
    		copy: function ( source ) {
    
    			Object3D.prototype.copy.call( this, source );
    
    			this.drawMode = source.drawMode;
    
    			return this;
    
    		},
    
    		updateMorphTargets: function () {
    
    			var morphTargets = this.geometry.morphTargets;
    
    			if ( morphTargets !== undefined && morphTargets.length > 0 ) {
    
    				this.morphTargetInfluences = [];
    				this.morphTargetDictionary = {};
    
    				for ( var m = 0, ml = morphTargets.length; m < ml; m ++ ) {
    
    					this.morphTargetInfluences.push( 0 );
    					this.morphTargetDictionary[ morphTargets[ m ].name ] = m;
    
    				}
    
    			}
    
    		},
    
    		raycast: ( function () {
    
    			var inverseMatrix = new Matrix4();
    			var ray = new Ray();
    			var sphere = new Sphere();
    
    			var vA = new Vector3();
    			var vB = new Vector3();
    			var vC = new Vector3();
    
    			var tempA = new Vector3();
    			var tempB = new Vector3();
    			var tempC = new Vector3();
    
    			var uvA = new Vector2();
    			var uvB = new Vector2();
    			var uvC = new Vector2();
    
    			var barycoord = new Vector3();
    
    			var intersectionPoint = new Vector3();
    			var intersectionPointWorld = new Vector3();
    
    			function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) {
    
    				Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord );
    
    				uv1.multiplyScalar( barycoord.x );
    				uv2.multiplyScalar( barycoord.y );
    				uv3.multiplyScalar( barycoord.z );
    
    				uv1.add( uv2 ).add( uv3 );
    
    				return uv1.clone();
    
    			}
    
    			function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) {
    
    				var intersect;
    				var material = object.material;
    
    				if ( material.side === BackSide ) {
    
    					intersect = ray.intersectTriangle( pC, pB, pA, true, point );
    
    				} else {
    
    					intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );
    
    				}
    
    				if ( intersect === null ) return null;
    
    				intersectionPointWorld.copy( point );
    				intersectionPointWorld.applyMatrix4( object.matrixWorld );
    
    				var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld );
    
    				if ( distance < raycaster.near || distance > raycaster.far ) return null;
    
    				return {
    					distance: distance,
    					point: intersectionPointWorld.clone(),
    					object: object
    				};
    
    			}
    
    			function checkBufferGeometryIntersection( object, raycaster, ray, position, uv, a, b, c ) {
    
    				vA.fromBufferAttribute( position, a );
    				vB.fromBufferAttribute( position, b );
    				vC.fromBufferAttribute( position, c );
    
    				var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint );
    
    				if ( intersection ) {
    
    					if ( uv ) {
    
    						uvA.fromBufferAttribute( uv, a );
    						uvB.fromBufferAttribute( uv, b );
    						uvC.fromBufferAttribute( uv, c );
    
    						intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC );
    
    					}
    
    					intersection.face = new Face3( a, b, c, Triangle.normal( vA, vB, vC ) );
    					intersection.faceIndex = a;
    
    				}
    
    				return intersection;
    
    			}
    
    			return function raycast( raycaster, intersects ) {
    
    				var geometry = this.geometry;
    				var material = this.material;
    				var matrixWorld = this.matrixWorld;
    
    				if ( material === undefined ) return;
    
    				// Checking boundingSphere distance to ray
    
    				if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
    
    				sphere.copy( geometry.boundingSphere );
    				sphere.applyMatrix4( matrixWorld );
    
    				if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
    
    				//
    
    				inverseMatrix.getInverse( matrixWorld );
    				ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
    
    				// Check boundingBox before continuing
    
    				if ( geometry.boundingBox !== null ) {
    
    					if ( ray.intersectsBox( geometry.boundingBox ) === false ) return;
    
    				}
    
    				var intersection;
    
    				if ( geometry.isBufferGeometry ) {
    
    					var a, b, c;
    					var index = geometry.index;
    					var position = geometry.attributes.position;
    					var uv = geometry.attributes.uv;
    					var i, l;
    
    					if ( index !== null ) {
    
    						// indexed buffer geometry
    
    						for ( i = 0, l = index.count; i < l; i += 3 ) {
    
    							a = index.getX( i );
    							b = index.getX( i + 1 );
    							c = index.getX( i + 2 );
    
    							intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );
    
    							if ( intersection ) {
    
    								intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics
    								intersects.push( intersection );
    
    							}
    
    						}
    
    					} else {
    
    						// non-indexed buffer geometry
    
    						for ( i = 0, l = position.count; i < l; i += 3 ) {
    
    							a = i;
    							b = i + 1;
    							c = i + 2;
    
    							intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );
    
    							if ( intersection ) {
    
    								intersection.index = a; // triangle number in positions buffer semantics
    								intersects.push( intersection );
    
    							}
    
    						}
    
    					}
    
    				} else if ( geometry.isGeometry ) {
    
    					var fvA, fvB, fvC;
    					var isMultiMaterial = Array.isArray( material );
    
    					var vertices = geometry.vertices;
    					var faces = geometry.faces;
    					var uvs;
    
    					var faceVertexUvs = geometry.faceVertexUvs[ 0 ];
    					if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;
    
    					for ( var f = 0, fl = faces.length; f < fl; f ++ ) {
    
    						var face = faces[ f ];
    						var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;
    
    						if ( faceMaterial === undefined ) continue;
    
    						fvA = vertices[ face.a ];
    						fvB = vertices[ face.b ];
    						fvC = vertices[ face.c ];
    
    						if ( faceMaterial.morphTargets === true ) {
    
    							var morphTargets = geometry.morphTargets;
    							var morphInfluences = this.morphTargetInfluences;
    
    							vA.set( 0, 0, 0 );
    							vB.set( 0, 0, 0 );
    							vC.set( 0, 0, 0 );
    
    							for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) {
    
    								var influence = morphInfluences[ t ];
    
    								if ( influence === 0 ) continue;
    
    								var targets = morphTargets[ t ].vertices;
    
    								vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence );
    								vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence );
    								vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence );
    
    							}
    
    							vA.add( fvA );
    							vB.add( fvB );
    							vC.add( fvC );
    
    							fvA = vA;
    							fvB = vB;
    							fvC = vC;
    
    						}
    
    						intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint );
    
    						if ( intersection ) {
    
    							if ( uvs && uvs[ f ] ) {
    
    								var uvs_f = uvs[ f ];
    								uvA.copy( uvs_f[ 0 ] );
    								uvB.copy( uvs_f[ 1 ] );
    								uvC.copy( uvs_f[ 2 ] );
    
    								intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC );
    
    							}
    
    							intersection.face = face;
    							intersection.faceIndex = f;
    							intersects.push( intersection );
    
    						}
    
    					}
    
    				}
    
    			};
    
    		}() ),
    
    		clone: function () {
    
    			return new this.constructor( this.geometry, this.material ).copy( this );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// BoxGeometry
    
    	function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {
    
    		Geometry.call( this );
    
    		this.type = 'BoxGeometry';
    
    		this.parameters = {
    			width: width,
    			height: height,
    			depth: depth,
    			widthSegments: widthSegments,
    			heightSegments: heightSegments,
    			depthSegments: depthSegments
    		};
    
    		this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) );
    		this.mergeVertices();
    
    	}
    
    	BoxGeometry.prototype = Object.create( Geometry.prototype );
    	BoxGeometry.prototype.constructor = BoxGeometry;
    
    	// BoxBufferGeometry
    
    	function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'BoxBufferGeometry';
    
    		this.parameters = {
    			width: width,
    			height: height,
    			depth: depth,
    			widthSegments: widthSegments,
    			heightSegments: heightSegments,
    			depthSegments: depthSegments
    		};
    
    		var scope = this;
    
    		// segments
    
    		widthSegments = Math.floor( widthSegments ) || 1;
    		heightSegments = Math.floor( heightSegments ) || 1;
    		depthSegments = Math.floor( depthSegments ) || 1;
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		// helper variables
    
    		var numberOfVertices = 0;
    		var groupStart = 0;
    
    		// build each side of the box geometry
    
    		buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height,   width,  depthSegments, heightSegments, 0 ); // px
    		buildPlane( 'z', 'y', 'x',   1, - 1, depth, height, - width,  depthSegments, heightSegments, 1 ); // nx
    		buildPlane( 'x', 'z', 'y',   1,   1, width, depth,    height, widthSegments, depthSegments,  2 ); // py
    		buildPlane( 'x', 'z', 'y',   1, - 1, width, depth,  - height, widthSegments, depthSegments,  3 ); // ny
    		buildPlane( 'x', 'y', 'z',   1, - 1, width, height,   depth,  widthSegments, heightSegments, 4 ); // pz
    		buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth,  widthSegments, heightSegments, 5 ); // nz
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    		function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {
    
    			var segmentWidth = width / gridX;
    			var segmentHeight = height / gridY;
    
    			var widthHalf = width / 2;
    			var heightHalf = height / 2;
    			var depthHalf = depth / 2;
    
    			var gridX1 = gridX + 1;
    			var gridY1 = gridY + 1;
    
    			var vertexCounter = 0;
    			var groupCount = 0;
    
    			var ix, iy;
    
    			var vector = new Vector3();
    
    			// generate vertices, normals and uvs
    
    			for ( iy = 0; iy < gridY1; iy ++ ) {
    
    				var y = iy * segmentHeight - heightHalf;
    
    				for ( ix = 0; ix < gridX1; ix ++ ) {
    
    					var x = ix * segmentWidth - widthHalf;
    
    					// set values to correct vector component
    
    					vector[ u ] = x * udir;
    					vector[ v ] = y * vdir;
    					vector[ w ] = depthHalf;
    
    					// now apply vector to vertex buffer
    
    					vertices.push( vector.x, vector.y, vector.z );
    
    					// set values to correct vector component
    
    					vector[ u ] = 0;
    					vector[ v ] = 0;
    					vector[ w ] = depth > 0 ? 1 : - 1;
    
    					// now apply vector to normal buffer
    
    					normals.push( vector.x, vector.y, vector.z );
    
    					// uvs
    
    					uvs.push( ix / gridX );
    					uvs.push( 1 - ( iy / gridY ) );
    
    					// counters
    
    					vertexCounter += 1;
    
    				}
    
    			}
    
    			// indices
    
    			// 1. you need three indices to draw a single face
    			// 2. a single segment consists of two faces
    			// 3. so we need to generate six (2*3) indices per segment
    
    			for ( iy = 0; iy < gridY; iy ++ ) {
    
    				for ( ix = 0; ix < gridX; ix ++ ) {
    
    					var a = numberOfVertices + ix + gridX1 * iy;
    					var b = numberOfVertices + ix + gridX1 * ( iy + 1 );
    					var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
    					var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;
    
    					// faces
    
    					indices.push( a, b, d );
    					indices.push( b, c, d );
    
    					// increase counter
    
    					groupCount += 6;
    
    				}
    
    			}
    
    			// add a group to the geometry. this will ensure multi material support
    
    			scope.addGroup( groupStart, groupCount, materialIndex );
    
    			// calculate new start value for groups
    
    			groupStart += groupCount;
    
    			// update total number of vertices
    
    			numberOfVertices += vertexCounter;
    
    		}
    
    	}
    
    	BoxBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	BoxBufferGeometry.prototype.constructor = BoxBufferGeometry;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// PlaneGeometry
    
    	function PlaneGeometry( width, height, widthSegments, heightSegments ) {
    
    		Geometry.call( this );
    
    		this.type = 'PlaneGeometry';
    
    		this.parameters = {
    			width: width,
    			height: height,
    			widthSegments: widthSegments,
    			heightSegments: heightSegments
    		};
    
    		this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) );
    		this.mergeVertices();
    
    	}
    
    	PlaneGeometry.prototype = Object.create( Geometry.prototype );
    	PlaneGeometry.prototype.constructor = PlaneGeometry;
    
    	// PlaneBufferGeometry
    
    	function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'PlaneBufferGeometry';
    
    		this.parameters = {
    			width: width,
    			height: height,
    			widthSegments: widthSegments,
    			heightSegments: heightSegments
    		};
    
    		var width_half = width / 2;
    		var height_half = height / 2;
    
    		var gridX = Math.floor( widthSegments ) || 1;
    		var gridY = Math.floor( heightSegments ) || 1;
    
    		var gridX1 = gridX + 1;
    		var gridY1 = gridY + 1;
    
    		var segment_width = width / gridX;
    		var segment_height = height / gridY;
    
    		var ix, iy;
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		// generate vertices, normals and uvs
    
    		for ( iy = 0; iy < gridY1; iy ++ ) {
    
    			var y = iy * segment_height - height_half;
    
    			for ( ix = 0; ix < gridX1; ix ++ ) {
    
    				var x = ix * segment_width - width_half;
    
    				vertices.push( x, - y, 0 );
    
    				normals.push( 0, 0, 1 );
    
    				uvs.push( ix / gridX );
    				uvs.push( 1 - ( iy / gridY ) );
    
    			}
    
    		}
    
    		// indices
    
    		for ( iy = 0; iy < gridY; iy ++ ) {
    
    			for ( ix = 0; ix < gridX; ix ++ ) {
    
    				var a = ix + gridX1 * iy;
    				var b = ix + gridX1 * ( iy + 1 );
    				var c = ( ix + 1 ) + gridX1 * ( iy + 1 );
    				var d = ( ix + 1 ) + gridX1 * iy;
    
    				// faces
    
    				indices.push( a, b, d );
    				indices.push( b, c, d );
    
    			}
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    	}
    
    	PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author WestLangley / http://github.com/WestLangley
    	*/
    
    	function Camera() {
    
    		Object3D.call( this );
    
    		this.type = 'Camera';
    
    		this.matrixWorldInverse = new Matrix4();
    		this.projectionMatrix = new Matrix4();
    
    	}
    
    	Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Camera,
    
    		isCamera: true,
    
    		copy: function ( source ) {
    
    			Object3D.prototype.copy.call( this, source );
    
    			this.matrixWorldInverse.copy( source.matrixWorldInverse );
    			this.projectionMatrix.copy( source.projectionMatrix );
    
    			return this;
    
    		},
    
    		getWorldDirection: function () {
    
    			var quaternion = new Quaternion();
    
    			return function getWorldDirection( optionalTarget ) {
    
    				var result = optionalTarget || new Vector3();
    
    				this.getWorldQuaternion( quaternion );
    
    				return result.set( 0, 0, - 1 ).applyQuaternion( quaternion );
    
    			};
    
    		}(),
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author greggman / http://games.greggman.com/
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 * @author tschw
    	 */
    
    	function PerspectiveCamera( fov, aspect, near, far ) {
    
    		Camera.call( this );
    
    		this.type = 'PerspectiveCamera';
    
    		this.fov = fov !== undefined ? fov : 50;
    		this.zoom = 1;
    
    		this.near = near !== undefined ? near : 0.1;
    		this.far = far !== undefined ? far : 2000;
    		this.focus = 10;
    
    		this.aspect = aspect !== undefined ? aspect : 1;
    		this.view = null;
    
    		this.filmGauge = 35;	// width of the film (default in millimeters)
    		this.filmOffset = 0;	// horizontal film offset (same unit as gauge)
    
    		this.updateProjectionMatrix();
    
    	}
    
    	PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {
    
    		constructor: PerspectiveCamera,
    
    		isPerspectiveCamera: true,
    
    		copy: function ( source ) {
    
    			Camera.prototype.copy.call( this, source );
    
    			this.fov = source.fov;
    			this.zoom = source.zoom;
    
    			this.near = source.near;
    			this.far = source.far;
    			this.focus = source.focus;
    
    			this.aspect = source.aspect;
    			this.view = source.view === null ? null : Object.assign( {}, source.view );
    
    			this.filmGauge = source.filmGauge;
    			this.filmOffset = source.filmOffset;
    
    			return this;
    
    		},
    
    		/**
    		 * Sets the FOV by focal length in respect to the current .filmGauge.
    		 *
    		 * The default film gauge is 35, so that the focal length can be specified for
    		 * a 35mm (full frame) camera.
    		 *
    		 * Values for focal length and film gauge must have the same unit.
    		 */
    		setFocalLength: function ( focalLength ) {
    
    			// see http://www.bobatkins.com/photography/technical/field_of_view.html
    			var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
    
    			this.fov = _Math.RAD2DEG * 2 * Math.atan( vExtentSlope );
    			this.updateProjectionMatrix();
    
    		},
    
    		/**
    		 * Calculates the focal length from the current .fov and .filmGauge.
    		 */
    		getFocalLength: function () {
    
    			var vExtentSlope = Math.tan( _Math.DEG2RAD * 0.5 * this.fov );
    
    			return 0.5 * this.getFilmHeight() / vExtentSlope;
    
    		},
    
    		getEffectiveFOV: function () {
    
    			return _Math.RAD2DEG * 2 * Math.atan(
    					Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom );
    
    		},
    
    		getFilmWidth: function () {
    
    			// film not completely covered in portrait format (aspect < 1)
    			return this.filmGauge * Math.min( this.aspect, 1 );
    
    		},
    
    		getFilmHeight: function () {
    
    			// film not completely covered in landscape format (aspect > 1)
    			return this.filmGauge / Math.max( this.aspect, 1 );
    
    		},
    
    		/**
    		 * Sets an offset in a larger frustum. This is useful for multi-window or
    		 * multi-monitor/multi-machine setups.
    		 *
    		 * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
    		 * the monitors are in grid like this
    		 *
    		 *   +---+---+---+
    		 *   | A | B | C |
    		 *   +---+---+---+
    		 *   | D | E | F |
    		 *   +---+---+---+
    		 *
    		 * then for each monitor you would call it like this
    		 *
    		 *   var w = 1920;
    		 *   var h = 1080;
    		 *   var fullWidth = w * 3;
    		 *   var fullHeight = h * 2;
    		 *
    		 *   --A--
    		 *   camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
    		 *   --B--
    		 *   camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
    		 *   --C--
    		 *   camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
    		 *   --D--
    		 *   camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
    		 *   --E--
    		 *   camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
    		 *   --F--
    		 *   camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
    		 *
    		 *   Note there is no reason monitors have to be the same size or in a grid.
    		 */
    		setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {
    
    			this.aspect = fullWidth / fullHeight;
    
    			this.view = {
    				fullWidth: fullWidth,
    				fullHeight: fullHeight,
    				offsetX: x,
    				offsetY: y,
    				width: width,
    				height: height
    			};
    
    			this.updateProjectionMatrix();
    
    		},
    
    		clearViewOffset: function () {
    
    			this.view = null;
    			this.updateProjectionMatrix();
    
    		},
    
    		updateProjectionMatrix: function () {
    
    			var near = this.near,
    				top = near * Math.tan(
    						_Math.DEG2RAD * 0.5 * this.fov ) / this.zoom,
    				height = 2 * top,
    				width = this.aspect * height,
    				left = - 0.5 * width,
    				view = this.view;
    
    			if ( view !== null ) {
    
    				var fullWidth = view.fullWidth,
    					fullHeight = view.fullHeight;
    
    				left += view.offsetX * width / fullWidth;
    				top -= view.offsetY * height / fullHeight;
    				width *= view.width / fullWidth;
    				height *= view.height / fullHeight;
    
    			}
    
    			var skew = this.filmOffset;
    			if ( skew !== 0 ) left += near * skew / this.getFilmWidth();
    
    			this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );
    
    		},
    
    		toJSON: function ( meta ) {
    
    			var data = Object3D.prototype.toJSON.call( this, meta );
    
    			data.object.fov = this.fov;
    			data.object.zoom = this.zoom;
    
    			data.object.near = this.near;
    			data.object.far = this.far;
    			data.object.focus = this.focus;
    
    			data.object.aspect = this.aspect;
    
    			if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
    
    			data.object.filmGauge = this.filmGauge;
    			data.object.filmOffset = this.filmOffset;
    
    			return data;
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author arose / http://github.com/arose
    	 */
    
    	function OrthographicCamera( left, right, top, bottom, near, far ) {
    
    		Camera.call( this );
    
    		this.type = 'OrthographicCamera';
    
    		this.zoom = 1;
    		this.view = null;
    
    		this.left = left;
    		this.right = right;
    		this.top = top;
    		this.bottom = bottom;
    
    		this.near = ( near !== undefined ) ? near : 0.1;
    		this.far = ( far !== undefined ) ? far : 2000;
    
    		this.updateProjectionMatrix();
    
    	}
    
    	OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), {
    
    		constructor: OrthographicCamera,
    
    		isOrthographicCamera: true,
    
    		copy: function ( source ) {
    
    			Camera.prototype.copy.call( this, source );
    
    			this.left = source.left;
    			this.right = source.right;
    			this.top = source.top;
    			this.bottom = source.bottom;
    			this.near = source.near;
    			this.far = source.far;
    
    			this.zoom = source.zoom;
    			this.view = source.view === null ? null : Object.assign( {}, source.view );
    
    			return this;
    
    		},
    
    		setViewOffset: function( fullWidth, fullHeight, x, y, width, height ) {
    
    			this.view = {
    				fullWidth: fullWidth,
    				fullHeight: fullHeight,
    				offsetX: x,
    				offsetY: y,
    				width: width,
    				height: height
    			};
    
    			this.updateProjectionMatrix();
    
    		},
    
    		clearViewOffset: function() {
    
    			this.view = null;
    			this.updateProjectionMatrix();
    
    		},
    
    		updateProjectionMatrix: function () {
    
    			var dx = ( this.right - this.left ) / ( 2 * this.zoom );
    			var dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
    			var cx = ( this.right + this.left ) / 2;
    			var cy = ( this.top + this.bottom ) / 2;
    
    			var left = cx - dx;
    			var right = cx + dx;
    			var top = cy + dy;
    			var bottom = cy - dy;
    
    			if ( this.view !== null ) {
    
    				var zoomW = this.zoom / ( this.view.width / this.view.fullWidth );
    				var zoomH = this.zoom / ( this.view.height / this.view.fullHeight );
    				var scaleW = ( this.right - this.left ) / this.view.width;
    				var scaleH = ( this.top - this.bottom ) / this.view.height;
    
    				left += scaleW * ( this.view.offsetX / zoomW );
    				right = left + scaleW * ( this.view.width / zoomW );
    				top -= scaleH * ( this.view.offsetY / zoomH );
    				bottom = top - scaleH * ( this.view.height / zoomH );
    
    			}
    
    			this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far );
    
    		},
    
    		toJSON: function ( meta ) {
    
    			var data = Object3D.prototype.toJSON.call( this, meta );
    
    			data.object.zoom = this.zoom;
    			data.object.left = this.left;
    			data.object.right = this.right;
    			data.object.top = this.top;
    			data.object.bottom = this.bottom;
    			data.object.near = this.near;
    			data.object.far = this.far;
    
    			if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
    
    			return data;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLAttributes( gl ) {
    
    		var buffers = {};
    
    		function createBuffer( attribute, bufferType ) {
    
    			var array = attribute.array;
    			var usage = attribute.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW;
    
    			var buffer = gl.createBuffer();
    
    			gl.bindBuffer( bufferType, buffer );
    			gl.bufferData( bufferType, array, usage );
    
    			attribute.onUploadCallback();
    
    			var type = gl.FLOAT;
    
    			if ( array instanceof Float32Array ) {
    
    				type = gl.FLOAT;
    
    			} else if ( array instanceof Float64Array ) {
    
    				console.warn( "Unsupported data buffer format: Float64Array" );
    
    			} else if ( array instanceof Uint16Array ) {
    
    				type = gl.UNSIGNED_SHORT;
    
    			} else if ( array instanceof Int16Array ) {
    
    				type = gl.SHORT;
    
    			} else if ( array instanceof Uint32Array ) {
    
    				type = gl.UNSIGNED_INT;
    
    			} else if ( array instanceof Int32Array ) {
    
    				type = gl.INT;
    
    			} else if ( array instanceof Int8Array ) {
    
    				type = gl.BYTE;
    
    			} else if ( array instanceof Uint8Array ) {
    
    				type = gl.UNSIGNED_BYTE;
    
    			}
    
    			return {
    				buffer: buffer,
    				type: type,
    				bytesPerElement: array.BYTES_PER_ELEMENT,
    				version: attribute.version
    			};
    
    		}
    
    		function updateBuffer( buffer, attribute, bufferType ) {
    
    			var array = attribute.array;
    			var updateRange = attribute.updateRange;
    
    			gl.bindBuffer( bufferType, buffer );
    
    			if ( attribute.dynamic === false ) {
    
    				gl.bufferData( bufferType, array, gl.STATIC_DRAW );
    
    			} else if ( updateRange.count === - 1 ) {
    
    				// Not using update ranges
    
    				gl.bufferSubData( bufferType, 0, array );
    
    			} else if ( updateRange.count === 0 ) {
    
    				console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' );
    
    			} else {
    
    				gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
    					array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );
    
    				updateRange.count = 0; // reset range
    
    			}
    
    		}
    
    		//
    
    		function get( attribute ) {
    
    			if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
    
    			return buffers[ attribute.uuid ];
    
    		}
    
    		function remove( attribute ) {
    
    			var data = buffers[ attribute.uuid ];
    
    			if ( data ) {
    
    				gl.deleteBuffer( data.buffer );
    
    				delete buffers[ attribute.uuid ];
    
    			}
    
    		}
    
    		function update( attribute, bufferType ) {
    
    			if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
    
    			var data = buffers[ attribute.uuid ];
    
    			if ( data === undefined ) {
    
    				buffers[ attribute.uuid ] = createBuffer( attribute, bufferType );
    
    			} else if ( data.version < attribute.version ) {
    
    				updateBuffer( data.buffer, attribute, bufferType );
    
    				data.version = attribute.version;
    
    			}
    
    		}
    
    		return {
    
    			get: get,
    			remove: remove,
    			update: update
    
    		};
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function painterSortStable( a, b ) {
    
    		if ( a.renderOrder !== b.renderOrder ) {
    
    			return a.renderOrder - b.renderOrder;
    
    		} else if ( a.program && b.program && a.program !== b.program ) {
    
    			return a.program.id - b.program.id;
    
    		} else if ( a.material.id !== b.material.id ) {
    
    			return a.material.id - b.material.id;
    
    		} else if ( a.z !== b.z ) {
    
    			return a.z - b.z;
    
    		} else {
    
    			return a.id - b.id;
    
    		}
    
    	}
    
    	function reversePainterSortStable( a, b ) {
    
    		if ( a.renderOrder !== b.renderOrder ) {
    
    			return a.renderOrder - b.renderOrder;
    
    		} if ( a.z !== b.z ) {
    
    			return b.z - a.z;
    
    		} else {
    
    			return a.id - b.id;
    
    		}
    
    	}
    
    	function WebGLRenderList() {
    
    		var opaque = [];
    		var opaqueLastIndex = - 1;
    
    		var transparent = [];
    		var transparentLastIndex = - 1;
    
    		function init() {
    
    			opaqueLastIndex = - 1;
    			transparentLastIndex = - 1;
    
    		}
    
    		function push( object, geometry, material, z, group ) {
    
    			var array, index;
    
    			// allocate the next position in the appropriate array
    
    			if ( material.transparent ) {
    
    				array = transparent;
    				index = ++ transparentLastIndex;
    
    			} else {
    
    				array = opaque;
    				index = ++ opaqueLastIndex;
    
    			}
    
    			// recycle existing render item or grow the array
    
    			var renderItem = array[ index ];
    
    			if ( renderItem ) {
    
    				renderItem.id = object.id;
    				renderItem.object = object;
    				renderItem.geometry = geometry;
    				renderItem.material = material;
    				renderItem.program = material.program;
    				renderItem.renderOrder = object.renderOrder;
    				renderItem.z = z;
    				renderItem.group = group;
    
    			} else {
    
    				renderItem = {
    					id: object.id,
    					object: object,
    					geometry: geometry,
    					material: material,
    					program: material.program,
    					renderOrder: object.renderOrder,
    					z: z,
    					group: group
    				};
    
    				// assert( index === array.length );
    				array.push( renderItem );
    
    			}
    
    		}
    
    		function finish() {
    
    			opaque.length = opaqueLastIndex + 1;
    			transparent.length = transparentLastIndex + 1;
    
    		}
    
    		function sort() {
    
    			opaque.sort( painterSortStable );
    			transparent.sort( reversePainterSortStable );
    
    		}
    
    		return {
    			opaque: opaque,
    			transparent: transparent,
    
    			init: init,
    			push: push,
    			finish: finish,
    
    			sort: sort
    		};
    
    	}
    
    	function WebGLRenderLists() {
    
    		var lists = {};
    
    		function get( scene, camera ) {
    
    			var hash = scene.id + ',' + camera.id;
    			var list = lists[ hash ];
    
    			if ( list === undefined ) {
    
    				// console.log( 'THREE.WebGLRenderLists:', hash );
    
    				list = new WebGLRenderList();
    				lists[ hash ] = list;
    
    			}
    
    			return list;
    
    		}
    
    		function dispose() {
    
    			lists = {};
    
    		}
    
    		return {
    			get: get,
    			dispose: dispose
    		};
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLIndexedBufferRenderer( gl, extensions, infoRender ) {
    
    		var mode;
    
    		function setMode( value ) {
    
    			mode = value;
    
    		}
    
    		var type, size;
    
    		function setIndex( index ) {
    
    			if ( index.array instanceof Uint32Array && extensions.get( 'OES_element_index_uint' ) ) {
    
    				type = gl.UNSIGNED_INT;
    				size = 4;
    
    			} else if ( index.array instanceof Uint16Array ) {
    
    				type = gl.UNSIGNED_SHORT;
    				size = 2;
    
    			} else {
    
    				type = gl.UNSIGNED_BYTE;
    				size = 1;
    
    			}
    
    		}
    
    		function render( start, count ) {
    
    			gl.drawElements( mode, count, type, start * size );
    
    			infoRender.calls ++;
    			infoRender.vertices += count;
    
    			if ( mode === gl.TRIANGLES ) infoRender.faces += count / 3;
    
    		}
    
    		function renderInstances( geometry, start, count ) {
    
    			var extension = extensions.get( 'ANGLE_instanced_arrays' );
    
    			if ( extension === null ) {
    
    				console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
    				return;
    
    			}
    
    			extension.drawElementsInstancedANGLE( mode, count, type, start * size, geometry.maxInstancedCount );
    
    			infoRender.calls ++;
    			infoRender.vertices += count * geometry.maxInstancedCount;
    
    			if ( mode === gl.TRIANGLES ) infoRender.faces += geometry.maxInstancedCount * count / 3;
    
    		}
    
    		//
    
    		this.setMode = setMode;
    		this.setIndex = setIndex;
    		this.render = render;
    		this.renderInstances = renderInstances;
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLBufferRenderer( gl, extensions, infoRender ) {
    
    		var mode;
    
    		function setMode( value ) {
    
    			mode = value;
    
    		}
    
    		function render( start, count ) {
    
    			gl.drawArrays( mode, start, count );
    
    			infoRender.calls ++;
    			infoRender.vertices += count;
    
    			if ( mode === gl.TRIANGLES ) infoRender.faces += count / 3;
    
    		}
    
    		function renderInstances( geometry, start, count ) {
    
    			var extension = extensions.get( 'ANGLE_instanced_arrays' );
    
    			if ( extension === null ) {
    
    				console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
    				return;
    
    			}
    
    			var position = geometry.attributes.position;
    
    			if ( position.isInterleavedBufferAttribute ) {
    
    				count = position.data.count;
    
    				extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount );
    
    			} else {
    
    				extension.drawArraysInstancedANGLE( mode, start, count, geometry.maxInstancedCount );
    
    			}
    
    			infoRender.calls ++;
    			infoRender.vertices += count * geometry.maxInstancedCount;
    
    			if ( mode === gl.TRIANGLES ) infoRender.faces += geometry.maxInstancedCount * count / 3;
    
    		}
    
    		//
    
    		this.setMode = setMode;
    		this.render = render;
    		this.renderInstances = renderInstances;
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLGeometries( gl, attributes, infoMemory ) {
    
    		var geometries = {};
    		var wireframeAttributes = {};
    
    		function onGeometryDispose( event ) {
    
    			var geometry = event.target;
    			var buffergeometry = geometries[ geometry.id ];
    
    			if ( buffergeometry.index !== null ) {
    
    				attributes.remove( buffergeometry.index );
    
    			}
    
    			for ( var name in buffergeometry.attributes ) {
    
    				attributes.remove( buffergeometry.attributes[ name ] );
    
    			}
    
    			geometry.removeEventListener( 'dispose', onGeometryDispose );
    
    			delete geometries[ geometry.id ];
    
    			// TODO Remove duplicate code
    
    			var attribute = wireframeAttributes[ geometry.id ];
    
    			if ( attribute ) {
    
    				attributes.remove( attribute );
    				delete wireframeAttributes[ geometry.id ];
    
    			}
    
    			attribute = wireframeAttributes[ buffergeometry.id ];
    
    			if ( attribute ) {
    
    				attributes.remove( attribute );
    				delete wireframeAttributes[ buffergeometry.id ];
    
    			}
    
    			//
    
    			infoMemory.geometries --;
    
    		}
    
    		function get( object, geometry ) {
    
    			var buffergeometry = geometries[ geometry.id ];
    
    			if ( buffergeometry ) return buffergeometry;
    
    			geometry.addEventListener( 'dispose', onGeometryDispose );
    
    			if ( geometry.isBufferGeometry ) {
    
    				buffergeometry = geometry;
    
    			} else if ( geometry.isGeometry ) {
    
    				if ( geometry._bufferGeometry === undefined ) {
    
    					geometry._bufferGeometry = new BufferGeometry().setFromObject( object );
    
    				}
    
    				buffergeometry = geometry._bufferGeometry;
    
    			}
    
    			geometries[ geometry.id ] = buffergeometry;
    
    			infoMemory.geometries ++;
    
    			return buffergeometry;
    
    		}
    
    		function update( geometry ) {
    
    			var index = geometry.index;
    			var geometryAttributes = geometry.attributes;
    
    			if ( index !== null ) {
    
    				attributes.update( index, gl.ELEMENT_ARRAY_BUFFER );
    
    			}
    
    			for ( var name in geometryAttributes ) {
    
    				attributes.update( geometryAttributes[ name ], gl.ARRAY_BUFFER );
    
    			}
    
    			// morph targets
    
    			var morphAttributes = geometry.morphAttributes;
    
    			for ( var name in morphAttributes ) {
    
    				var array = morphAttributes[ name ];
    
    				for ( var i = 0, l = array.length; i < l; i ++ ) {
    
    					attributes.update( array[ i ], gl.ARRAY_BUFFER );
    
    				}
    
    			}
    
    		}
    
    		function getWireframeAttribute( geometry ) {
    
    			var attribute = wireframeAttributes[ geometry.id ];
    
    			if ( attribute ) return attribute;
    
    			var indices = [];
    
    			var geometryIndex = geometry.index;
    			var geometryAttributes = geometry.attributes;
    
    			// console.time( 'wireframe' );
    
    			if ( geometryIndex !== null ) {
    
    				var array = geometryIndex.array;
    
    				for ( var i = 0, l = array.length; i < l; i += 3 ) {
    
    					var a = array[ i + 0 ];
    					var b = array[ i + 1 ];
    					var c = array[ i + 2 ];
    
    					indices.push( a, b, b, c, c, a );
    
    				}
    
    			} else {
    
    				var array = geometryAttributes.position.array;
    
    				for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {
    
    					var a = i + 0;
    					var b = i + 1;
    					var c = i + 2;
    
    					indices.push( a, b, b, c, c, a );
    
    				}
    
    			}
    
    			// console.timeEnd( 'wireframe' );
    
    			attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 );
    
    			attributes.update( attribute, gl.ELEMENT_ARRAY_BUFFER );
    
    			wireframeAttributes[ geometry.id ] = attribute;
    
    			return attribute;
    
    		}
    
    		return {
    
    			get: get,
    			update: update,
    
    			getWireframeAttribute: getWireframeAttribute
    
    		};
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLLights() {
    
    		var lights = {};
    
    		return {
    
    			get: function ( light ) {
    
    				if ( lights[ light.id ] !== undefined ) {
    
    					return lights[ light.id ];
    
    				}
    
    				var uniforms;
    
    				switch ( light.type ) {
    
    					case 'DirectionalLight':
    						uniforms = {
    							direction: new Vector3(),
    							color: new Color(),
    
    							shadow: false,
    							shadowBias: 0,
    							shadowRadius: 1,
    							shadowMapSize: new Vector2()
    						};
    						break;
    
    					case 'SpotLight':
    						uniforms = {
    							position: new Vector3(),
    							direction: new Vector3(),
    							color: new Color(),
    							distance: 0,
    							coneCos: 0,
    							penumbraCos: 0,
    							decay: 0,
    
    							shadow: false,
    							shadowBias: 0,
    							shadowRadius: 1,
    							shadowMapSize: new Vector2()
    						};
    						break;
    
    					case 'PointLight':
    						uniforms = {
    							position: new Vector3(),
    							color: new Color(),
    							distance: 0,
    							decay: 0,
    
    							shadow: false,
    							shadowBias: 0,
    							shadowRadius: 1,
    							shadowMapSize: new Vector2()
    						};
    						break;
    
    					case 'HemisphereLight':
    						uniforms = {
    							direction: new Vector3(),
    							skyColor: new Color(),
    							groundColor: new Color()
    						};
    						break;
    
    					case 'RectAreaLight':
    						uniforms = {
    							color: new Color(),
    							position: new Vector3(),
    							halfWidth: new Vector3(),
    							halfHeight: new Vector3()
    							// TODO (abelnation): set RectAreaLight shadow uniforms
    						};
    						break;
    
    				}
    
    				lights[ light.id ] = uniforms;
    
    				return uniforms;
    
    			}
    
    		};
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLObjects( gl, geometries, infoRender ) {
    
    		var updateList = {};
    
    		function update( object ) {
    
    			var frame = infoRender.frame;
    
    			var geometry = object.geometry;
    			var buffergeometry = geometries.get( object, geometry );
    
    			// Update once per frame
    
    			if ( updateList[ buffergeometry.id ] !== frame ) {
    
    				if ( geometry.isGeometry ) {
    
    					buffergeometry.updateFromObject( object );
    
    				}
    
    				geometries.update( buffergeometry );
    
    				updateList[ buffergeometry.id ] = frame;
    
    			}
    
    			return buffergeometry;
    
    		}
    
    		function clear() {
    
    			updateList = {};
    
    		}
    
    		return {
    
    			update: update,
    			clear: clear
    
    		};
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function addLineNumbers( string ) {
    
    		var lines = string.split( '\n' );
    
    		for ( var i = 0; i < lines.length; i ++ ) {
    
    			lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];
    
    		}
    
    		return lines.join( '\n' );
    
    	}
    
    	function WebGLShader( gl, type, string ) {
    
    		var shader = gl.createShader( type );
    
    		gl.shaderSource( shader, string );
    		gl.compileShader( shader );
    
    		if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) {
    
    			console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' );
    
    		}
    
    		if ( gl.getShaderInfoLog( shader ) !== '' ) {
    
    			console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) );
    
    		}
    
    		// --enable-privileged-webgl-extension
    		// console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
    
    		return shader;
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	var programIdCount = 0;
    
    	function getEncodingComponents( encoding ) {
    
    		switch ( encoding ) {
    
    			case LinearEncoding:
    				return [ 'Linear','( value )' ];
    			case sRGBEncoding:
    				return [ 'sRGB','( value )' ];
    			case RGBEEncoding:
    				return [ 'RGBE','( value )' ];
    			case RGBM7Encoding:
    				return [ 'RGBM','( value, 7.0 )' ];
    			case RGBM16Encoding:
    				return [ 'RGBM','( value, 16.0 )' ];
    			case RGBDEncoding:
    				return [ 'RGBD','( value, 256.0 )' ];
    			case GammaEncoding:
    				return [ 'Gamma','( value, float( GAMMA_FACTOR ) )' ];
    			default:
    				throw new Error( 'unsupported encoding: ' + encoding );
    
    		}
    
    	}
    
    	function getTexelDecodingFunction( functionName, encoding ) {
    
    		var components = getEncodingComponents( encoding );
    		return "vec4 " + functionName + "( vec4 value ) { return " + components[ 0 ] + "ToLinear" + components[ 1 ] + "; }";
    
    	}
    
    	function getTexelEncodingFunction( functionName, encoding ) {
    
    		var components = getEncodingComponents( encoding );
    		return "vec4 " + functionName + "( vec4 value ) { return LinearTo" + components[ 0 ] + components[ 1 ] + "; }";
    
    	}
    
    	function getToneMappingFunction( functionName, toneMapping ) {
    
    		var toneMappingName;
    
    		switch ( toneMapping ) {
    
    			case LinearToneMapping:
    				toneMappingName = "Linear";
    				break;
    
    			case ReinhardToneMapping:
    				toneMappingName = "Reinhard";
    				break;
    
    			case Uncharted2ToneMapping:
    				toneMappingName = "Uncharted2";
    				break;
    
    			case CineonToneMapping:
    				toneMappingName = "OptimizedCineon";
    				break;
    
    			default:
    				throw new Error( 'unsupported toneMapping: ' + toneMapping );
    
    		}
    
    		return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }";
    
    	}
    
    	function generateExtensions( extensions, parameters, rendererExtensions ) {
    
    		extensions = extensions || {};
    
    		var chunks = [
    			( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '',
    			( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '',
    			( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '',
    			( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : ''
    		];
    
    		return chunks.filter( filterEmptyLine ).join( '\n' );
    
    	}
    
    	function generateDefines( defines ) {
    
    		var chunks = [];
    
    		for ( var name in defines ) {
    
    			var value = defines[ name ];
    
    			if ( value === false ) continue;
    
    			chunks.push( '#define ' + name + ' ' + value );
    
    		}
    
    		return chunks.join( '\n' );
    
    	}
    
    	function fetchAttributeLocations( gl, program, identifiers ) {
    
    		var attributes = {};
    
    		var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES );
    
    		for ( var i = 0; i < n; i ++ ) {
    
    			var info = gl.getActiveAttrib( program, i );
    			var name = info.name;
    
    			// console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i );
    
    			attributes[ name ] = gl.getAttribLocation( program, name );
    
    		}
    
    		return attributes;
    
    	}
    
    	function filterEmptyLine( string ) {
    
    		return string !== '';
    
    	}
    
    	function replaceLightNums( string, parameters ) {
    
    		return string
    			.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
    			.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
    			.replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights )
    			.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
    			.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights );
    
    	}
    
    	function parseIncludes( string ) {
    
    		var pattern = /^[ \t]*#include +<([\w\d.]+)>/gm;
    
    		function replace( match, include ) {
    
    			var replace = ShaderChunk[ include ];
    
    			if ( replace === undefined ) {
    
    				throw new Error( 'Can not resolve #include <' + include + '>' );
    
    			}
    
    			return parseIncludes( replace );
    
    		}
    
    		return string.replace( pattern, replace );
    
    	}
    
    	function unrollLoops( string ) {
    
    		var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
    
    		function replace( match, start, end, snippet ) {
    
    			var unroll = '';
    
    			for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {
    
    				unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' );
    
    			}
    
    			return unroll;
    
    		}
    
    		return string.replace( pattern, replace );
    
    	}
    
    	function WebGLProgram( renderer, code, material, parameters ) {
    
    		var gl = renderer.context;
    
    		var extensions = material.extensions;
    		var defines = material.defines;
    
    		var vertexShader = material.__webglShader.vertexShader;
    		var fragmentShader = material.__webglShader.fragmentShader;
    
    		var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
    
    		if ( parameters.shadowMapType === PCFShadowMap ) {
    
    			shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
    
    		} else if ( parameters.shadowMapType === PCFSoftShadowMap ) {
    
    			shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
    
    		}
    
    		var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
    		var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
    		var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
    
    		if ( parameters.envMap ) {
    
    			switch ( material.envMap.mapping ) {
    
    				case CubeReflectionMapping:
    				case CubeRefractionMapping:
    					envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
    					break;
    
    				case CubeUVReflectionMapping:
    				case CubeUVRefractionMapping:
    					envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
    					break;
    
    				case EquirectangularReflectionMapping:
    				case EquirectangularRefractionMapping:
    					envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
    					break;
    
    				case SphericalReflectionMapping:
    					envMapTypeDefine = 'ENVMAP_TYPE_SPHERE';
    					break;
    
    			}
    
    			switch ( material.envMap.mapping ) {
    
    				case CubeRefractionMapping:
    				case EquirectangularRefractionMapping:
    					envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
    					break;
    
    			}
    
    			switch ( material.combine ) {
    
    				case MultiplyOperation:
    					envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
    					break;
    
    				case MixOperation:
    					envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
    					break;
    
    				case AddOperation:
    					envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
    					break;
    
    			}
    
    		}
    
    		var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;
    
    		// console.log( 'building new program ' );
    
    		//
    
    		var customExtensions = generateExtensions( extensions, parameters, renderer.extensions );
    
    		var customDefines = generateDefines( defines );
    
    		//
    
    		var program = gl.createProgram();
    
    		var prefixVertex, prefixFragment;
    
    		if ( material.isRawShaderMaterial ) {
    
    			prefixVertex = [
    
    				customDefines,
    
    				'\n'
    
    			].filter( filterEmptyLine ).join( '\n' );
    
    			prefixFragment = [
    
    				customExtensions,
    				customDefines,
    
    				'\n'
    
    			].filter( filterEmptyLine ).join( '\n' );
    
    		} else {
    
    			prefixVertex = [
    
    				'precision ' + parameters.precision + ' float;',
    				'precision ' + parameters.precision + ' int;',
    
    				'#define SHADER_NAME ' + material.__webglShader.name,
    
    				customDefines,
    
    				parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',
    
    				'#define GAMMA_FACTOR ' + gammaFactorDefine,
    
    				'#define MAX_BONES ' + parameters.maxBones,
    				( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
    				( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',
    
    				parameters.map ? '#define USE_MAP' : '',
    				parameters.envMap ? '#define USE_ENVMAP' : '',
    				parameters.envMap ? '#define ' + envMapModeDefine : '',
    				parameters.lightMap ? '#define USE_LIGHTMAP' : '',
    				parameters.aoMap ? '#define USE_AOMAP' : '',
    				parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
    				parameters.bumpMap ? '#define USE_BUMPMAP' : '',
    				parameters.normalMap ? '#define USE_NORMALMAP' : '',
    				parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
    				parameters.specularMap ? '#define USE_SPECULARMAP' : '',
    				parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
    				parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
    				parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
    				parameters.vertexColors ? '#define USE_COLOR' : '',
    
    				parameters.flatShading ? '#define FLAT_SHADED' : '',
    
    				parameters.skinning ? '#define USE_SKINNING' : '',
    				parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',
    
    				parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
    				parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
    				parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
    				parameters.flipSided ? '#define FLIP_SIDED' : '',
    
    				'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
    
    				parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
    				parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
    
    				parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',
    
    				parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
    				parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
    
    				'uniform mat4 modelMatrix;',
    				'uniform mat4 modelViewMatrix;',
    				'uniform mat4 projectionMatrix;',
    				'uniform mat4 viewMatrix;',
    				'uniform mat3 normalMatrix;',
    				'uniform vec3 cameraPosition;',
    
    				'attribute vec3 position;',
    				'attribute vec3 normal;',
    				'attribute vec2 uv;',
    
    				'#ifdef USE_COLOR',
    
    				'	attribute vec3 color;',
    
    				'#endif',
    
    				'#ifdef USE_MORPHTARGETS',
    
    				'	attribute vec3 morphTarget0;',
    				'	attribute vec3 morphTarget1;',
    				'	attribute vec3 morphTarget2;',
    				'	attribute vec3 morphTarget3;',
    
    				'	#ifdef USE_MORPHNORMALS',
    
    				'		attribute vec3 morphNormal0;',
    				'		attribute vec3 morphNormal1;',
    				'		attribute vec3 morphNormal2;',
    				'		attribute vec3 morphNormal3;',
    
    				'	#else',
    
    				'		attribute vec3 morphTarget4;',
    				'		attribute vec3 morphTarget5;',
    				'		attribute vec3 morphTarget6;',
    				'		attribute vec3 morphTarget7;',
    
    				'	#endif',
    
    				'#endif',
    
    				'#ifdef USE_SKINNING',
    
    				'	attribute vec4 skinIndex;',
    				'	attribute vec4 skinWeight;',
    
    				'#endif',
    
    				'\n'
    
    			].filter( filterEmptyLine ).join( '\n' );
    
    			prefixFragment = [
    
    				customExtensions,
    
    				'precision ' + parameters.precision + ' float;',
    				'precision ' + parameters.precision + ' int;',
    
    				'#define SHADER_NAME ' + material.__webglShader.name,
    
    				customDefines,
    
    				parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '',
    
    				'#define GAMMA_FACTOR ' + gammaFactorDefine,
    
    				( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
    				( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',
    
    				parameters.map ? '#define USE_MAP' : '',
    				parameters.envMap ? '#define USE_ENVMAP' : '',
    				parameters.envMap ? '#define ' + envMapTypeDefine : '',
    				parameters.envMap ? '#define ' + envMapModeDefine : '',
    				parameters.envMap ? '#define ' + envMapBlendingDefine : '',
    				parameters.lightMap ? '#define USE_LIGHTMAP' : '',
    				parameters.aoMap ? '#define USE_AOMAP' : '',
    				parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
    				parameters.bumpMap ? '#define USE_BUMPMAP' : '',
    				parameters.normalMap ? '#define USE_NORMALMAP' : '',
    				parameters.specularMap ? '#define USE_SPECULARMAP' : '',
    				parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
    				parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
    				parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
    				parameters.vertexColors ? '#define USE_COLOR' : '',
    
    				parameters.gradientMap ? '#define USE_GRADIENTMAP' : '',
    
    				parameters.flatShading ? '#define FLAT_SHADED' : '',
    
    				parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
    				parameters.flipSided ? '#define FLIP_SIDED' : '',
    
    				'#define NUM_CLIPPING_PLANES ' + parameters.numClippingPlanes,
    				'#define UNION_CLIPPING_PLANES ' + (parameters.numClippingPlanes - parameters.numClipIntersection),
    
    				parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
    				parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',
    
    				parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : '',
    
    				parameters.physicallyCorrectLights ? "#define PHYSICALLY_CORRECT_LIGHTS" : '',
    
    				parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
    				parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',
    
    				parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '',
    
    				'uniform mat4 viewMatrix;',
    				'uniform vec3 cameraPosition;',
    
    				( parameters.toneMapping !== NoToneMapping ) ? "#define TONE_MAPPING" : '',
    				( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '',  // this code is required here because it is used by the toneMapping() function defined below
    				( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( "toneMapping", parameters.toneMapping ) : '',
    
    				parameters.dithering ? '#define DITHERING' : '',
    
    				( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below
    				parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
    				parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
    				parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
    				parameters.outputEncoding ? getTexelEncodingFunction( "linearToOutputTexel", parameters.outputEncoding ) : '',
    
    				parameters.depthPacking ? "#define DEPTH_PACKING " + material.depthPacking : '',
    
    				'\n'
    
    			].filter( filterEmptyLine ).join( '\n' );
    
    		}
    
    		vertexShader = parseIncludes( vertexShader, parameters );
    		vertexShader = replaceLightNums( vertexShader, parameters );
    
    		fragmentShader = parseIncludes( fragmentShader, parameters );
    		fragmentShader = replaceLightNums( fragmentShader, parameters );
    
    		if ( ! material.isShaderMaterial ) {
    
    			vertexShader = unrollLoops( vertexShader );
    			fragmentShader = unrollLoops( fragmentShader );
    
    		}
    
    		var vertexGlsl = prefixVertex + vertexShader;
    		var fragmentGlsl = prefixFragment + fragmentShader;
    
    		// console.log( '*VERTEX*', vertexGlsl );
    		// console.log( '*FRAGMENT*', fragmentGlsl );
    
    		var glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl );
    		var glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl );
    
    		gl.attachShader( program, glVertexShader );
    		gl.attachShader( program, glFragmentShader );
    
    		// Force a particular attribute to index 0.
    
    		if ( material.index0AttributeName !== undefined ) {
    
    			gl.bindAttribLocation( program, 0, material.index0AttributeName );
    
    		} else if ( parameters.morphTargets === true ) {
    
    			// programs with morphTargets displace position out of attribute 0
    			gl.bindAttribLocation( program, 0, 'position' );
    
    		}
    
    		gl.linkProgram( program );
    
    		var programLog = gl.getProgramInfoLog( program );
    		var vertexLog = gl.getShaderInfoLog( glVertexShader );
    		var fragmentLog = gl.getShaderInfoLog( glFragmentShader );
    
    		var runnable = true;
    		var haveDiagnostics = true;
    
    		// console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) );
    		// console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) );
    
    		if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) {
    
    			runnable = false;
    
    			console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog );
    
    		} else if ( programLog !== '' ) {
    
    			console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );
    
    		} else if ( vertexLog === '' || fragmentLog === '' ) {
    
    			haveDiagnostics = false;
    
    		}
    
    		if ( haveDiagnostics ) {
    
    			this.diagnostics = {
    
    				runnable: runnable,
    				material: material,
    
    				programLog: programLog,
    
    				vertexShader: {
    
    					log: vertexLog,
    					prefix: prefixVertex
    
    				},
    
    				fragmentShader: {
    
    					log: fragmentLog,
    					prefix: prefixFragment
    
    				}
    
    			};
    
    		}
    
    		// clean up
    
    		gl.deleteShader( glVertexShader );
    		gl.deleteShader( glFragmentShader );
    
    		// set up caching for uniform locations
    
    		var cachedUniforms;
    
    		this.getUniforms = function() {
    
    			if ( cachedUniforms === undefined ) {
    
    				cachedUniforms =
    					new WebGLUniforms( gl, program, renderer );
    
    			}
    
    			return cachedUniforms;
    
    		};
    
    		// set up caching for attribute locations
    
    		var cachedAttributes;
    
    		this.getAttributes = function() {
    
    			if ( cachedAttributes === undefined ) {
    
    				cachedAttributes = fetchAttributeLocations( gl, program );
    
    			}
    
    			return cachedAttributes;
    
    		};
    
    		// free resource
    
    		this.destroy = function() {
    
    			gl.deleteProgram( program );
    			this.program = undefined;
    
    		};
    
    		// DEPRECATED
    
    		Object.defineProperties( this, {
    
    			uniforms: {
    				get: function() {
    
    					console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' );
    					return this.getUniforms();
    
    				}
    			},
    
    			attributes: {
    				get: function() {
    
    					console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' );
    					return this.getAttributes();
    
    				}
    			}
    
    		} );
    
    
    		//
    
    		this.id = programIdCount ++;
    		this.code = code;
    		this.usedTimes = 1;
    		this.program = program;
    		this.vertexShader = glVertexShader;
    		this.fragmentShader = glFragmentShader;
    
    		return this;
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLPrograms( renderer, capabilities ) {
    
    		var programs = [];
    
    		var shaderIDs = {
    			MeshDepthMaterial: 'depth',
    			MeshNormalMaterial: 'normal',
    			MeshBasicMaterial: 'basic',
    			MeshLambertMaterial: 'lambert',
    			MeshPhongMaterial: 'phong',
    			MeshToonMaterial: 'phong',
    			MeshStandardMaterial: 'physical',
    			MeshPhysicalMaterial: 'physical',
    			LineBasicMaterial: 'basic',
    			LineDashedMaterial: 'dashed',
    			PointsMaterial: 'points'
    		};
    
    		var parameterNames = [
    			"precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding",
    			"lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap",
    			"roughnessMap", "metalnessMap", "gradientMap",
    			"alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp",
    			"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
    			"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
    			"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
    			"numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights",
    			"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
    			"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering"
    		];
    
    
    		function allocateBones( object ) {
    
    			var skeleton = object.skeleton;
    			var bones = skeleton.bones;
    
    			if ( capabilities.floatVertexTextures ) {
    
    				return 1024;
    
    			} else {
    
    				// default for when object is not specified
    				// ( for example when prebuilding shader to be used with multiple objects )
    				//
    				//  - leave some extra space for other uniforms
    				//  - limit here is ANGLE's 254 max uniform vectors
    				//    (up to 54 should be safe)
    
    				var nVertexUniforms = capabilities.maxVertexUniforms;
    				var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );
    
    				var maxBones = Math.min( nVertexMatrices, bones.length );
    
    				if ( maxBones < bones.length ) {
    
    					console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' );
    					return 0;
    
    				}
    
    				return maxBones;
    
    			}
    
    		}
    
    		function getTextureEncodingFromMap( map, gammaOverrideLinear ) {
    
    			var encoding;
    
    			if ( ! map ) {
    
    				encoding = LinearEncoding;
    
    			} else if ( map.isTexture ) {
    
    				encoding = map.encoding;
    
    			} else if ( map.isWebGLRenderTarget ) {
    
    				console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." );
    				encoding = map.texture.encoding;
    
    			}
    
    			// add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point.
    			if ( encoding === LinearEncoding && gammaOverrideLinear ) {
    
    				encoding = GammaEncoding;
    
    			}
    
    			return encoding;
    
    		}
    
    		this.getParameters = function ( material, lights, fog, nClipPlanes, nClipIntersection, object ) {
    
    			var shaderID = shaderIDs[ material.type ];
    
    			// heuristics to create shader parameters according to lights in the scene
    			// (not to blow over maxLights budget)
    
    			var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0;
    			var precision = renderer.getPrecision();
    
    			if ( material.precision !== null ) {
    
    				precision = capabilities.getMaxPrecision( material.precision );
    
    				if ( precision !== material.precision ) {
    
    					console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );
    
    				}
    
    			}
    
    			var currentRenderTarget = renderer.getRenderTarget();
    
    			var parameters = {
    
    				shaderID: shaderID,
    
    				precision: precision,
    				supportsVertexTextures: capabilities.vertexTextures,
    				outputEncoding: getTextureEncodingFromMap( ( ! currentRenderTarget ) ? null : currentRenderTarget.texture, renderer.gammaOutput ),
    				map: !! material.map,
    				mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ),
    				envMap: !! material.envMap,
    				envMapMode: material.envMap && material.envMap.mapping,
    				envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ),
    				envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === CubeUVReflectionMapping ) || ( material.envMap.mapping === CubeUVRefractionMapping ) ),
    				lightMap: !! material.lightMap,
    				aoMap: !! material.aoMap,
    				emissiveMap: !! material.emissiveMap,
    				emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ),
    				bumpMap: !! material.bumpMap,
    				normalMap: !! material.normalMap,
    				displacementMap: !! material.displacementMap,
    				roughnessMap: !! material.roughnessMap,
    				metalnessMap: !! material.metalnessMap,
    				specularMap: !! material.specularMap,
    				alphaMap: !! material.alphaMap,
    
    				gradientMap: !! material.gradientMap,
    
    				combine: material.combine,
    
    				vertexColors: material.vertexColors,
    
    				fog: !! fog,
    				useFog: material.fog,
    				fogExp: ( fog && fog.isFogExp2 ),
    
    				flatShading: material.shading === FlatShading,
    
    				sizeAttenuation: material.sizeAttenuation,
    				logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer,
    
    				skinning: material.skinning && maxBones > 0,
    				maxBones: maxBones,
    				useVertexTexture: capabilities.floatVertexTextures,
    
    				morphTargets: material.morphTargets,
    				morphNormals: material.morphNormals,
    				maxMorphTargets: renderer.maxMorphTargets,
    				maxMorphNormals: renderer.maxMorphNormals,
    
    				numDirLights: lights.directional.length,
    				numPointLights: lights.point.length,
    				numSpotLights: lights.spot.length,
    				numRectAreaLights: lights.rectArea.length,
    				numHemiLights: lights.hemi.length,
    
    				numClippingPlanes: nClipPlanes,
    				numClipIntersection: nClipIntersection,
    
    				dithering: material.dithering,
    
    				shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0,
    				shadowMapType: renderer.shadowMap.type,
    
    				toneMapping: renderer.toneMapping,
    				physicallyCorrectLights: renderer.physicallyCorrectLights,
    
    				premultipliedAlpha: material.premultipliedAlpha,
    
    				alphaTest: material.alphaTest,
    				doubleSided: material.side === DoubleSide,
    				flipSided: material.side === BackSide,
    
    				depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false
    
    			};
    
    			return parameters;
    
    		};
    
    		this.getProgramCode = function ( material, parameters ) {
    
    			var array = [];
    
    			if ( parameters.shaderID ) {
    
    				array.push( parameters.shaderID );
    
    			} else {
    
    				array.push( material.fragmentShader );
    				array.push( material.vertexShader );
    
    			}
    
    			if ( material.defines !== undefined ) {
    
    				for ( var name in material.defines ) {
    
    					array.push( name );
    					array.push( material.defines[ name ] );
    
    				}
    
    			}
    
    			for ( var i = 0; i < parameterNames.length; i ++ ) {
    
    				array.push( parameters[ parameterNames[ i ] ] );
    
    			}
    
    			return array.join();
    
    		};
    
    		this.acquireProgram = function ( material, parameters, code ) {
    
    			var program;
    
    			// Check if code has been already compiled
    			for ( var p = 0, pl = programs.length; p < pl; p ++ ) {
    
    				var programInfo = programs[ p ];
    
    				if ( programInfo.code === code ) {
    
    					program = programInfo;
    					++ program.usedTimes;
    
    					break;
    
    				}
    
    			}
    
    			if ( program === undefined ) {
    
    				program = new WebGLProgram( renderer, code, material, parameters );
    				programs.push( program );
    
    			}
    
    			return program;
    
    		};
    
    		this.releaseProgram = function ( program ) {
    
    			if ( -- program.usedTimes === 0 ) {
    
    				// Remove from unordered set
    				var i = programs.indexOf( program );
    				programs[ i ] = programs[ programs.length - 1 ];
    				programs.pop();
    
    				// Free WebGL resources
    				program.destroy();
    
    			}
    
    		};
    
    		// Exposed for resource monitoring & error feedback via renderer.info:
    		this.programs = programs;
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLTextures( _gl, extensions, state, properties, capabilities, paramThreeToGL, infoMemory ) {
    
    		var _isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && _gl instanceof WebGL2RenderingContext );
    
    		//
    
    		function clampToMaxSize( image, maxSize ) {
    
    			if ( image.width > maxSize || image.height > maxSize ) {
    
    				// Warning: Scaling through the canvas will only work with images that use
    				// premultiplied alpha.
    
    				var scale = maxSize / Math.max( image.width, image.height );
    
    				var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
    				canvas.width = Math.floor( image.width * scale );
    				canvas.height = Math.floor( image.height * scale );
    
    				var context = canvas.getContext( '2d' );
    				context.drawImage( image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height );
    
    				console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image );
    
    				return canvas;
    
    			}
    
    			return image;
    
    		}
    
    		function isPowerOfTwo( image ) {
    
    			return _Math.isPowerOfTwo( image.width ) && _Math.isPowerOfTwo( image.height );
    
    		}
    
    		function makePowerOfTwo( image ) {
    
    			if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement ) {
    
    				var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
    				canvas.width = _Math.nearestPowerOfTwo( image.width );
    				canvas.height = _Math.nearestPowerOfTwo( image.height );
    
    				var context = canvas.getContext( '2d' );
    				context.drawImage( image, 0, 0, canvas.width, canvas.height );
    
    				console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image );
    
    				return canvas;
    
    			}
    
    			return image;
    
    		}
    
    		function textureNeedsPowerOfTwo( texture ) {
    
    			return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) ||
    				( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter );
    
    		}
    
    		// Fallback filters for non-power-of-2 textures
    
    		function filterFallback( f ) {
    
    			if ( f === NearestFilter || f === NearestMipMapNearestFilter || f === NearestMipMapLinearFilter ) {
    
    				return _gl.NEAREST;
    
    			}
    
    			return _gl.LINEAR;
    
    		}
    
    		//
    
    		function onTextureDispose( event ) {
    
    			var texture = event.target;
    
    			texture.removeEventListener( 'dispose', onTextureDispose );
    
    			deallocateTexture( texture );
    
    			infoMemory.textures --;
    
    
    		}
    
    		function onRenderTargetDispose( event ) {
    
    			var renderTarget = event.target;
    
    			renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );
    
    			deallocateRenderTarget( renderTarget );
    
    			infoMemory.textures --;
    
    		}
    
    		//
    
    		function deallocateTexture( texture ) {
    
    			var textureProperties = properties.get( texture );
    
    			if ( texture.image && textureProperties.__image__webglTextureCube ) {
    
    				// cube texture
    
    				_gl.deleteTexture( textureProperties.__image__webglTextureCube );
    
    			} else {
    
    				// 2D texture
    
    				if ( textureProperties.__webglInit === undefined ) return;
    
    				_gl.deleteTexture( textureProperties.__webglTexture );
    
    			}
    
    			// remove all webgl properties
    			properties.remove( texture );
    
    		}
    
    		function deallocateRenderTarget( renderTarget ) {
    
    			var renderTargetProperties = properties.get( renderTarget );
    			var textureProperties = properties.get( renderTarget.texture );
    
    			if ( ! renderTarget ) return;
    
    			if ( textureProperties.__webglTexture !== undefined ) {
    
    				_gl.deleteTexture( textureProperties.__webglTexture );
    
    			}
    
    			if ( renderTarget.depthTexture ) {
    
    				renderTarget.depthTexture.dispose();
    
    			}
    
    			if ( renderTarget.isWebGLRenderTargetCube ) {
    
    				for ( var i = 0; i < 6; i ++ ) {
    
    					_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] );
    					if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] );
    
    				}
    
    			} else {
    
    				_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer );
    				if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer );
    
    			}
    
    			properties.remove( renderTarget.texture );
    			properties.remove( renderTarget );
    
    		}
    
    		//
    
    
    
    		function setTexture2D( texture, slot ) {
    
    			var textureProperties = properties.get( texture );
    
    			if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
    
    				var image = texture.image;
    
    				if ( image === undefined ) {
    
    					console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined', texture );
    
    				} else if ( image.complete === false ) {
    
    					console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete', texture );
    
    				} else {
    
    					uploadTexture( textureProperties, texture, slot );
    					return;
    
    				}
    
    			}
    
    			state.activeTexture( _gl.TEXTURE0 + slot );
    			state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
    
    		}
    
    		function setTextureCube( texture, slot ) {
    
    			var textureProperties = properties.get( texture );
    
    			if ( texture.image.length === 6 ) {
    
    				if ( texture.version > 0 && textureProperties.__version !== texture.version ) {
    
    					if ( ! textureProperties.__image__webglTextureCube ) {
    
    						texture.addEventListener( 'dispose', onTextureDispose );
    
    						textureProperties.__image__webglTextureCube = _gl.createTexture();
    
    						infoMemory.textures ++;
    
    					}
    
    					state.activeTexture( _gl.TEXTURE0 + slot );
    					state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );
    
    					_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );
    
    					var isCompressed = ( texture && texture.isCompressedTexture );
    					var isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture );
    
    					var cubeImage = [];
    
    					for ( var i = 0; i < 6; i ++ ) {
    
    						if ( ! isCompressed && ! isDataTexture ) {
    
    							cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize );
    
    						} else {
    
    							cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];
    
    						}
    
    					}
    
    					var image = cubeImage[ 0 ],
    					isPowerOfTwoImage = isPowerOfTwo( image ),
    					glFormat = paramThreeToGL( texture.format ),
    					glType = paramThreeToGL( texture.type );
    
    					setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage );
    
    					for ( var i = 0; i < 6; i ++ ) {
    
    						if ( ! isCompressed ) {
    
    							if ( isDataTexture ) {
    
    								state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );
    
    							} else {
    
    								state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] );
    
    							}
    
    						} else {
    
    							var mipmap, mipmaps = cubeImage[ i ].mipmaps;
    
    							for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) {
    
    								mipmap = mipmaps[ j ];
    
    								if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {
    
    									if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {
    
    										state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );
    
    									} else {
    
    										console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()" );
    
    									}
    
    								} else {
    
    									state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
    
    								}
    
    							}
    
    						}
    
    					}
    
    					if ( texture.generateMipmaps && isPowerOfTwoImage ) {
    
    						_gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
    
    					}
    
    					textureProperties.__version = texture.version;
    
    					if ( texture.onUpdate ) texture.onUpdate( texture );
    
    				} else {
    
    					state.activeTexture( _gl.TEXTURE0 + slot );
    					state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );
    
    				}
    
    			}
    
    		}
    
    		function setTextureCubeDynamic( texture, slot ) {
    
    			state.activeTexture( _gl.TEXTURE0 + slot );
    			state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture );
    
    		}
    
    		function setTextureParameters( textureType, texture, isPowerOfTwoImage ) {
    
    			var extension;
    
    			if ( isPowerOfTwoImage ) {
    
    				_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) );
    				_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) );
    
    				_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) );
    				_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) );
    
    			} else {
    
    				_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE );
    				_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE );
    
    				if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) {
    
    					console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture );
    
    				}
    
    				_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) );
    				_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) );
    
    				if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) {
    
    					console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture );
    
    				}
    
    			}
    
    			extension = extensions.get( 'EXT_texture_filter_anisotropic' );
    
    			if ( extension ) {
    
    				if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return;
    				if ( texture.type === HalfFloatType && extensions.get( 'OES_texture_half_float_linear' ) === null ) return;
    
    				if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {
    
    					_gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) );
    					properties.get( texture ).__currentAnisotropy = texture.anisotropy;
    
    				}
    
    			}
    
    		}
    
    		function uploadTexture( textureProperties, texture, slot ) {
    
    			if ( textureProperties.__webglInit === undefined ) {
    
    				textureProperties.__webglInit = true;
    
    				texture.addEventListener( 'dispose', onTextureDispose );
    
    				textureProperties.__webglTexture = _gl.createTexture();
    
    				infoMemory.textures ++;
    
    			}
    
    			state.activeTexture( _gl.TEXTURE0 + slot );
    			state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
    
    			_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );
    			_gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha );
    			_gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment );
    
    			var image = clampToMaxSize( texture.image, capabilities.maxTextureSize );
    
    			if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) {
    
    				image = makePowerOfTwo( image );
    
    			}
    
    			var isPowerOfTwoImage = isPowerOfTwo( image ),
    			glFormat = paramThreeToGL( texture.format ),
    			glType = paramThreeToGL( texture.type );
    
    			setTextureParameters( _gl.TEXTURE_2D, texture, isPowerOfTwoImage );
    
    			var mipmap, mipmaps = texture.mipmaps;
    
    			if ( texture.isDepthTexture ) {
    
    				// populate depth texture with dummy data
    
    				var internalFormat = _gl.DEPTH_COMPONENT;
    
    				if ( texture.type === FloatType ) {
    
    					if ( !_isWebGL2 ) throw new Error('Float Depth Texture only supported in WebGL2.0');
    					internalFormat = _gl.DEPTH_COMPONENT32F;
    
    				} else if ( _isWebGL2 ) {
    
    					// WebGL 2.0 requires signed internalformat for glTexImage2D
    					internalFormat = _gl.DEPTH_COMPONENT16;
    
    				}
    
    				if ( texture.format === DepthFormat && internalFormat === _gl.DEPTH_COMPONENT ) {
    
    					// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
    					// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
    					// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
    					if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) {
    
    					        console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' );
    
    						texture.type = UnsignedShortType;
    						glType = paramThreeToGL( texture.type );
    
    					}
    
    				}
    
    				// Depth stencil textures need the DEPTH_STENCIL internal format
    				// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
    				if ( texture.format === DepthStencilFormat ) {
    
    					internalFormat = _gl.DEPTH_STENCIL;
    
    					// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
    					// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
    					// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
    					if ( texture.type !== UnsignedInt248Type ) {
    
    					        console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' );
    
    						texture.type = UnsignedInt248Type;
    						glType = paramThreeToGL( texture.type );
    
    					}
    
    				}
    
    				state.texImage2D( _gl.TEXTURE_2D, 0, internalFormat, image.width, image.height, 0, glFormat, glType, null );
    
    			} else if ( texture.isDataTexture ) {
    
    				// use manually created mipmaps if available
    				// if there are no manual mipmaps
    				// set 0 level mipmap and then use GL to generate other mipmap levels
    
    				if ( mipmaps.length > 0 && isPowerOfTwoImage ) {
    
    					for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
    
    						mipmap = mipmaps[ i ];
    						state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
    
    					}
    
    					texture.generateMipmaps = false;
    
    				} else {
    
    					state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data );
    
    				}
    
    			} else if ( texture.isCompressedTexture ) {
    
    				for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
    
    					mipmap = mipmaps[ i ];
    
    					if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {
    
    						if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {
    
    							state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );
    
    						} else {
    
    							console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()" );
    
    						}
    
    					} else {
    
    						state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );
    
    					}
    
    				}
    
    			} else {
    
    				// regular Texture (image, video, canvas)
    
    				// use manually created mipmaps if available
    				// if there are no manual mipmaps
    				// set 0 level mipmap and then use GL to generate other mipmap levels
    
    				if ( mipmaps.length > 0 && isPowerOfTwoImage ) {
    
    					for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {
    
    						mipmap = mipmaps[ i ];
    						state.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap );
    
    					}
    
    					texture.generateMipmaps = false;
    
    				} else {
    
    					state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image );
    
    				}
    
    			}
    
    			if ( texture.generateMipmaps && isPowerOfTwoImage ) _gl.generateMipmap( _gl.TEXTURE_2D );
    
    			textureProperties.__version = texture.version;
    
    			if ( texture.onUpdate ) texture.onUpdate( texture );
    
    		}
    
    		// Render targets
    
    		// Setup storage for target texture and bind it to correct framebuffer
    		function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) {
    
    			var glFormat = paramThreeToGL( renderTarget.texture.format );
    			var glType = paramThreeToGL( renderTarget.texture.type );
    			state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
    			_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
    			_gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 );
    			_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );
    
    		}
    
    		// Setup storage for internal depth/stencil buffers and bind to correct framebuffer
    		function setupRenderBufferStorage( renderbuffer, renderTarget ) {
    
    			_gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer );
    
    			if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {
    
    				_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height );
    				_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );
    
    			} else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {
    
    				_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height );
    				_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );
    
    			} else {
    
    				// FIXME: We don't support !depth !stencil
    				_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height );
    
    			}
    
    			_gl.bindRenderbuffer( _gl.RENDERBUFFER, null );
    
    		}
    
    		// Setup resources for a Depth Texture for a FBO (needs an extension)
    		function setupDepthTexture( framebuffer, renderTarget ) {
    
    			var isCube = ( renderTarget && renderTarget.isWebGLRenderTargetCube );
    			if ( isCube ) throw new Error('Depth Texture with cube render targets is not supported!');
    
    			_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
    
    			if ( !( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) {
    
    				throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');
    
    			}
    
    			// upload an empty depth texture with framebuffer size
    			if ( !properties.get( renderTarget.depthTexture ).__webglTexture ||
    					renderTarget.depthTexture.image.width !== renderTarget.width ||
    					renderTarget.depthTexture.image.height !== renderTarget.height ) {
    				renderTarget.depthTexture.image.width = renderTarget.width;
    				renderTarget.depthTexture.image.height = renderTarget.height;
    				renderTarget.depthTexture.needsUpdate = true;
    			}
    
    			setTexture2D( renderTarget.depthTexture, 0 );
    
    			var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;
    
    			if ( renderTarget.depthTexture.format === DepthFormat ) {
    
    				_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );
    
    			} else if ( renderTarget.depthTexture.format === DepthStencilFormat ) {
    
    				_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );
    
    			} else {
    
    				throw new Error('Unknown depthTexture format')
    
    			}
    
    		}
    
    		// Setup GL resources for a non-texture depth buffer
    		function setupDepthRenderbuffer( renderTarget ) {
    
    			var renderTargetProperties = properties.get( renderTarget );
    
    			var isCube = ( renderTarget.isWebGLRenderTargetCube === true );
    
    			if ( renderTarget.depthTexture ) {
    
    				if ( isCube ) throw new Error('target.depthTexture not supported in Cube render targets');
    
    				setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );
    
    			} else {
    
    				if ( isCube ) {
    
    					renderTargetProperties.__webglDepthbuffer = [];
    
    					for ( var i = 0; i < 6; i ++ ) {
    
    						_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] );
    						renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer();
    						setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget );
    
    					}
    
    				} else {
    
    					_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer );
    					renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
    					setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget );
    
    				}
    
    			}
    
    			_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );
    
    		}
    
    		// Set up GL resources for the render target
    		function setupRenderTarget( renderTarget ) {
    
    			var renderTargetProperties = properties.get( renderTarget );
    			var textureProperties = properties.get( renderTarget.texture );
    
    			renderTarget.addEventListener( 'dispose', onRenderTargetDispose );
    
    			textureProperties.__webglTexture = _gl.createTexture();
    
    			infoMemory.textures ++;
    
    			var isCube = ( renderTarget.isWebGLRenderTargetCube === true );
    			var isTargetPowerOfTwo = isPowerOfTwo( renderTarget );
    
    			// Setup framebuffer
    
    			if ( isCube ) {
    
    				renderTargetProperties.__webglFramebuffer = [];
    
    				for ( var i = 0; i < 6; i ++ ) {
    
    					renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();
    
    				}
    
    			} else {
    
    				renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
    
    			}
    
    			// Setup color buffer
    
    			if ( isCube ) {
    
    				state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture );
    				setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo );
    
    				for ( var i = 0; i < 6; i ++ ) {
    
    					setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i );
    
    				}
    
    				if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP );
    				state.bindTexture( _gl.TEXTURE_CUBE_MAP, null );
    
    			} else {
    
    				state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
    				setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo );
    				setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D );
    
    				if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D );
    				state.bindTexture( _gl.TEXTURE_2D, null );
    
    			}
    
    			// Setup depth and stencil buffers
    
    			if ( renderTarget.depthBuffer ) {
    
    				setupDepthRenderbuffer( renderTarget );
    
    			}
    
    		}
    
    		function updateRenderTargetMipmap( renderTarget ) {
    
    			var texture = renderTarget.texture;
    
    			if ( texture.generateMipmaps && isPowerOfTwo( renderTarget ) &&
    					texture.minFilter !== NearestFilter &&
    					texture.minFilter !== LinearFilter ) {
    
    				var target = (renderTarget && renderTarget.isWebGLRenderTargetCube) ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
    				var webglTexture = properties.get( texture ).__webglTexture;
    
    				state.bindTexture( target, webglTexture );
    				_gl.generateMipmap( target );
    				state.bindTexture( target, null );
    
    			}
    
    		}
    
    		this.setTexture2D = setTexture2D;
    		this.setTextureCube = setTextureCube;
    		this.setTextureCubeDynamic = setTextureCubeDynamic;
    		this.setupRenderTarget = setupRenderTarget;
    		this.updateRenderTargetMipmap = updateRenderTargetMipmap;
    
    	}
    
    	/**
    	 * @author fordacious / fordacious.github.io
    	 */
    
    	function WebGLProperties() {
    
    		var properties = {};
    
    		function get( object ) {
    
    			var uuid = object.uuid;
    			var map = properties[ uuid ];
    
    			if ( map === undefined ) {
    
    				map = {};
    				properties[ uuid ] = map;
    
    			}
    
    			return map;
    
    		}
    
    		function remove( object ) {
    
    			delete properties[ object.uuid ];
    
    		}
    
    		function clear() {
    
    			properties = {};
    
    		}
    
    		return {
    			get: get,
    			remove: remove,
    			clear: clear
    		};
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLState( gl, extensions, paramThreeToGL ) {
    
    		function ColorBuffer() {
    
    			var locked = false;
    
    			var color = new Vector4();
    			var currentColorMask = null;
    			var currentColorClear = new Vector4();
    
    			return {
    
    				setMask: function ( colorMask ) {
    
    					if ( currentColorMask !== colorMask && ! locked ) {
    
    						gl.colorMask( colorMask, colorMask, colorMask, colorMask );
    						currentColorMask = colorMask;
    
    					}
    
    				},
    
    				setLocked: function ( lock ) {
    
    					locked = lock;
    
    				},
    
    				setClear: function ( r, g, b, a, premultipliedAlpha ) {
    
    					if ( premultipliedAlpha === true ) {
    
    						r *= a; g *= a; b *= a;
    
    					}
    
    					color.set( r, g, b, a );
    
    					if ( currentColorClear.equals( color ) === false ) {
    
    						gl.clearColor( r, g, b, a );
    						currentColorClear.copy( color );
    
    					}
    
    				},
    
    				reset: function () {
    
    					locked = false;
    
    					currentColorMask = null;
    					currentColorClear.set( 0, 0, 0, 1 );
    
    				}
    
    			};
    
    		}
    
    		function DepthBuffer() {
    
    			var locked = false;
    
    			var currentDepthMask = null;
    			var currentDepthFunc = null;
    			var currentDepthClear = null;
    
    			return {
    
    				setTest: function ( depthTest ) {
    
    					if ( depthTest ) {
    
    						enable( gl.DEPTH_TEST );
    
    					} else {
    
    						disable( gl.DEPTH_TEST );
    
    					}
    
    				},
    
    				setMask: function ( depthMask ) {
    
    					if ( currentDepthMask !== depthMask && ! locked ) {
    
    						gl.depthMask( depthMask );
    						currentDepthMask = depthMask;
    
    					}
    
    				},
    
    				setFunc: function ( depthFunc ) {
    
    					if ( currentDepthFunc !== depthFunc ) {
    
    						if ( depthFunc ) {
    
    							switch ( depthFunc ) {
    
    								case NeverDepth:
    
    									gl.depthFunc( gl.NEVER );
    									break;
    
    								case AlwaysDepth:
    
    									gl.depthFunc( gl.ALWAYS );
    									break;
    
    								case LessDepth:
    
    									gl.depthFunc( gl.LESS );
    									break;
    
    								case LessEqualDepth:
    
    									gl.depthFunc( gl.LEQUAL );
    									break;
    
    								case EqualDepth:
    
    									gl.depthFunc( gl.EQUAL );
    									break;
    
    								case GreaterEqualDepth:
    
    									gl.depthFunc( gl.GEQUAL );
    									break;
    
    								case GreaterDepth:
    
    									gl.depthFunc( gl.GREATER );
    									break;
    
    								case NotEqualDepth:
    
    									gl.depthFunc( gl.NOTEQUAL );
    									break;
    
    								default:
    
    									gl.depthFunc( gl.LEQUAL );
    
    							}
    
    						} else {
    
    							gl.depthFunc( gl.LEQUAL );
    
    						}
    
    						currentDepthFunc = depthFunc;
    
    					}
    
    				},
    
    				setLocked: function ( lock ) {
    
    					locked = lock;
    
    				},
    
    				setClear: function ( depth ) {
    
    					if ( currentDepthClear !== depth ) {
    
    						gl.clearDepth( depth );
    						currentDepthClear = depth;
    
    					}
    
    				},
    
    				reset: function () {
    
    					locked = false;
    
    					currentDepthMask = null;
    					currentDepthFunc = null;
    					currentDepthClear = null;
    
    				}
    
    			};
    
    		}
    
    		function StencilBuffer() {
    
    			var locked = false;
    
    			var currentStencilMask = null;
    			var currentStencilFunc = null;
    			var currentStencilRef = null;
    			var currentStencilFuncMask = null;
    			var currentStencilFail = null;
    			var currentStencilZFail = null;
    			var currentStencilZPass = null;
    			var currentStencilClear = null;
    
    			return {
    
    				setTest: function ( stencilTest ) {
    
    					if ( stencilTest ) {
    
    						enable( gl.STENCIL_TEST );
    
    					} else {
    
    						disable( gl.STENCIL_TEST );
    
    					}
    
    				},
    
    				setMask: function ( stencilMask ) {
    
    					if ( currentStencilMask !== stencilMask && ! locked ) {
    
    						gl.stencilMask( stencilMask );
    						currentStencilMask = stencilMask;
    
    					}
    
    				},
    
    				setFunc: function ( stencilFunc, stencilRef, stencilMask ) {
    
    					if ( currentStencilFunc !== stencilFunc ||
    					     currentStencilRef 	!== stencilRef 	||
    					     currentStencilFuncMask !== stencilMask ) {
    
    						gl.stencilFunc( stencilFunc, stencilRef, stencilMask );
    
    						currentStencilFunc = stencilFunc;
    						currentStencilRef = stencilRef;
    						currentStencilFuncMask = stencilMask;
    
    					}
    
    				},
    
    				setOp: function ( stencilFail, stencilZFail, stencilZPass ) {
    
    					if ( currentStencilFail	 !== stencilFail 	||
    					     currentStencilZFail !== stencilZFail ||
    					     currentStencilZPass !== stencilZPass ) {
    
    						gl.stencilOp( stencilFail, stencilZFail, stencilZPass );
    
    						currentStencilFail = stencilFail;
    						currentStencilZFail = stencilZFail;
    						currentStencilZPass = stencilZPass;
    
    					}
    
    				},
    
    				setLocked: function ( lock ) {
    
    					locked = lock;
    
    				},
    
    				setClear: function ( stencil ) {
    
    					if ( currentStencilClear !== stencil ) {
    
    						gl.clearStencil( stencil );
    						currentStencilClear = stencil;
    
    					}
    
    				},
    
    				reset: function () {
    
    					locked = false;
    
    					currentStencilMask = null;
    					currentStencilFunc = null;
    					currentStencilRef = null;
    					currentStencilFuncMask = null;
    					currentStencilFail = null;
    					currentStencilZFail = null;
    					currentStencilZPass = null;
    					currentStencilClear = null;
    
    				}
    
    			};
    
    		}
    
    		//
    
    		var colorBuffer = new ColorBuffer();
    		var depthBuffer = new DepthBuffer();
    		var stencilBuffer = new StencilBuffer();
    
    		var maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
    		var newAttributes = new Uint8Array( maxVertexAttributes );
    		var enabledAttributes = new Uint8Array( maxVertexAttributes );
    		var attributeDivisors = new Uint8Array( maxVertexAttributes );
    
    		var capabilities = {};
    
    		var compressedTextureFormats = null;
    
    		var currentBlending = null;
    		var currentBlendEquation = null;
    		var currentBlendSrc = null;
    		var currentBlendDst = null;
    		var currentBlendEquationAlpha = null;
    		var currentBlendSrcAlpha = null;
    		var currentBlendDstAlpha = null;
    		var currentPremultipledAlpha = false;
    
    		var currentFlipSided = null;
    		var currentCullFace = null;
    
    		var currentLineWidth = null;
    
    		var currentPolygonOffsetFactor = null;
    		var currentPolygonOffsetUnits = null;
    
    		var currentScissorTest = null;
    
    		var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
    
    		var version = parseFloat( /^WebGL\ ([0-9])/.exec( gl.getParameter( gl.VERSION ) )[ 1 ] );
    		var lineWidthAvailable = parseFloat( version ) >= 1.0;
    
    		var currentTextureSlot = null;
    		var currentBoundTextures = {};
    
    		var currentScissor = new Vector4();
    		var currentViewport = new Vector4();
    
    		function createTexture( type, target, count ) {
    
    			var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4.
    			var texture = gl.createTexture();
    
    			gl.bindTexture( type, texture );
    			gl.texParameteri( type, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
    			gl.texParameteri( type, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
    
    			for ( var i = 0; i < count; i ++ ) {
    
    				gl.texImage2D( target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data );
    
    			}
    
    			return texture;
    
    		}
    
    		var emptyTextures = {};
    		emptyTextures[ gl.TEXTURE_2D ] = createTexture( gl.TEXTURE_2D, gl.TEXTURE_2D, 1 );
    		emptyTextures[ gl.TEXTURE_CUBE_MAP ] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 );
    
    		//
    
    		function init() {
    
    			colorBuffer.setClear( 0, 0, 0, 1 );
    			depthBuffer.setClear( 1 );
    			stencilBuffer.setClear( 0 );
    
    			enable( gl.DEPTH_TEST );
    			depthBuffer.setFunc( LessEqualDepth );
    
    			setFlipSided( false );
    			setCullFace( CullFaceBack );
    			enable( gl.CULL_FACE );
    
    			enable( gl.BLEND );
    			setBlending( NormalBlending );
    
    		}
    
    		function initAttributes() {
    
    			for ( var i = 0, l = newAttributes.length; i < l; i ++ ) {
    
    				newAttributes[ i ] = 0;
    
    			}
    
    		}
    
    		function enableAttribute( attribute ) {
    
    			newAttributes[ attribute ] = 1;
    
    			if ( enabledAttributes[ attribute ] === 0 ) {
    
    				gl.enableVertexAttribArray( attribute );
    				enabledAttributes[ attribute ] = 1;
    
    			}
    
    			if ( attributeDivisors[ attribute ] !== 0 ) {
    
    				var extension = extensions.get( 'ANGLE_instanced_arrays' );
    
    				extension.vertexAttribDivisorANGLE( attribute, 0 );
    				attributeDivisors[ attribute ] = 0;
    
    			}
    
    		}
    
    		function enableAttributeAndDivisor( attribute, meshPerAttribute ) {
    
    			newAttributes[ attribute ] = 1;
    
    			if ( enabledAttributes[ attribute ] === 0 ) {
    
    				gl.enableVertexAttribArray( attribute );
    				enabledAttributes[ attribute ] = 1;
    
    			}
    
    			if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {
    
    				var extension = extensions.get( 'ANGLE_instanced_arrays' );
    
    				extension.vertexAttribDivisorANGLE( attribute, meshPerAttribute );
    				attributeDivisors[ attribute ] = meshPerAttribute;
    
    			}
    
    		}
    
    		function disableUnusedAttributes() {
    
    			for ( var i = 0, l = enabledAttributes.length; i !== l; ++ i ) {
    
    				if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {
    
    					gl.disableVertexAttribArray( i );
    					enabledAttributes[ i ] = 0;
    
    				}
    
    			}
    
    		}
    
    		function enable( id ) {
    
    			if ( capabilities[ id ] !== true ) {
    
    				gl.enable( id );
    				capabilities[ id ] = true;
    
    			}
    
    		}
    
    		function disable( id ) {
    
    			if ( capabilities[ id ] !== false ) {
    
    				gl.disable( id );
    				capabilities[ id ] = false;
    
    			}
    
    		}
    
    		function getCompressedTextureFormats() {
    
    			if ( compressedTextureFormats === null ) {
    
    				compressedTextureFormats = [];
    
    				if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) ||
    				     extensions.get( 'WEBGL_compressed_texture_s3tc' ) ||
    				     extensions.get( 'WEBGL_compressed_texture_etc1' ) ) {
    
    					var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS );
    
    					for ( var i = 0; i < formats.length; i ++ ) {
    
    						compressedTextureFormats.push( formats[ i ] );
    
    					}
    
    				}
    
    			}
    
    			return compressedTextureFormats;
    
    		}
    
    		function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {
    
    			if ( blending !== NoBlending ) {
    
    				enable( gl.BLEND );
    
    			} else {
    
    				disable( gl.BLEND );
    
    			}
    
    			if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) {
    
    				if ( blending === AdditiveBlending ) {
    
    					if ( premultipliedAlpha ) {
    
    						gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
    						gl.blendFuncSeparate( gl.ONE, gl.ONE, gl.ONE, gl.ONE );
    
    					} else {
    
    						gl.blendEquation( gl.FUNC_ADD );
    						gl.blendFunc( gl.SRC_ALPHA, gl.ONE );
    
    					}
    
    				} else if ( blending === SubtractiveBlending ) {
    
    					if ( premultipliedAlpha ) {
    
    						gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
    						gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA );
    
    					} else {
    
    						gl.blendEquation( gl.FUNC_ADD );
    						gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR );
    
    					}
    
    				} else if ( blending === MultiplyBlending ) {
    
    					if ( premultipliedAlpha ) {
    
    						gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
    						gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA );
    
    					} else {
    
    						gl.blendEquation( gl.FUNC_ADD );
    						gl.blendFunc( gl.ZERO, gl.SRC_COLOR );
    
    					}
    
    				} else {
    
    					if ( premultipliedAlpha ) {
    
    						gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
    						gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );
    
    					} else {
    
    						gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
    						gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );
    
    					}
    
    				}
    
    				currentBlending = blending;
    				currentPremultipledAlpha = premultipliedAlpha;
    
    			}
    
    			if ( blending === CustomBlending ) {
    
    				blendEquationAlpha = blendEquationAlpha || blendEquation;
    				blendSrcAlpha = blendSrcAlpha || blendSrc;
    				blendDstAlpha = blendDstAlpha || blendDst;
    
    				if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {
    
    					gl.blendEquationSeparate( paramThreeToGL( blendEquation ), paramThreeToGL( blendEquationAlpha ) );
    
    					currentBlendEquation = blendEquation;
    					currentBlendEquationAlpha = blendEquationAlpha;
    
    				}
    
    				if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {
    
    					gl.blendFuncSeparate( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ), paramThreeToGL( blendSrcAlpha ), paramThreeToGL( blendDstAlpha ) );
    
    					currentBlendSrc = blendSrc;
    					currentBlendDst = blendDst;
    					currentBlendSrcAlpha = blendSrcAlpha;
    					currentBlendDstAlpha = blendDstAlpha;
    
    				}
    
    			} else {
    
    				currentBlendEquation = null;
    				currentBlendSrc = null;
    				currentBlendDst = null;
    				currentBlendEquationAlpha = null;
    				currentBlendSrcAlpha = null;
    				currentBlendDstAlpha = null;
    
    			}
    
    		}
    
    		function setMaterial( material ) {
    
    			material.side === DoubleSide
    				? disable( gl.CULL_FACE )
    				: enable( gl.CULL_FACE );
    
    			setFlipSided( material.side === BackSide );
    
    			material.transparent === true
    				? setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha )
    				: setBlending( NoBlending );
    
    			depthBuffer.setFunc( material.depthFunc );
    			depthBuffer.setTest( material.depthTest );
    			depthBuffer.setMask( material.depthWrite );
    			colorBuffer.setMask( material.colorWrite );
    
    			setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );
    
    		}
    
    		//
    
    		function setFlipSided( flipSided ) {
    
    			if ( currentFlipSided !== flipSided ) {
    
    				if ( flipSided ) {
    
    					gl.frontFace( gl.CW );
    
    				} else {
    
    					gl.frontFace( gl.CCW );
    
    				}
    
    				currentFlipSided = flipSided;
    
    			}
    
    		}
    
    		function setCullFace( cullFace ) {
    
    			if ( cullFace !== CullFaceNone ) {
    
    				enable( gl.CULL_FACE );
    
    				if ( cullFace !== currentCullFace ) {
    
    					if ( cullFace === CullFaceBack ) {
    
    						gl.cullFace( gl.BACK );
    
    					} else if ( cullFace === CullFaceFront ) {
    
    						gl.cullFace( gl.FRONT );
    
    					} else {
    
    						gl.cullFace( gl.FRONT_AND_BACK );
    
    					}
    
    				}
    
    			} else {
    
    				disable( gl.CULL_FACE );
    
    			}
    
    			currentCullFace = cullFace;
    
    		}
    
    		function setLineWidth( width ) {
    
    			if ( width !== currentLineWidth ) {
    
    				if ( lineWidthAvailable ) gl.lineWidth( width );
    
    				currentLineWidth = width;
    
    			}
    
    		}
    
    		function setPolygonOffset( polygonOffset, factor, units ) {
    
    			if ( polygonOffset ) {
    
    				enable( gl.POLYGON_OFFSET_FILL );
    
    				if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) {
    
    					gl.polygonOffset( factor, units );
    
    					currentPolygonOffsetFactor = factor;
    					currentPolygonOffsetUnits = units;
    
    				}
    
    			} else {
    
    				disable( gl.POLYGON_OFFSET_FILL );
    
    			}
    
    		}
    
    		function getScissorTest() {
    
    			return currentScissorTest;
    
    		}
    
    		function setScissorTest( scissorTest ) {
    
    			currentScissorTest = scissorTest;
    
    			if ( scissorTest ) {
    
    				enable( gl.SCISSOR_TEST );
    
    			} else {
    
    				disable( gl.SCISSOR_TEST );
    
    			}
    
    		}
    
    		// texture
    
    		function activeTexture( webglSlot ) {
    
    			if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1;
    
    			if ( currentTextureSlot !== webglSlot ) {
    
    				gl.activeTexture( webglSlot );
    				currentTextureSlot = webglSlot;
    
    			}
    
    		}
    
    		function bindTexture( webglType, webglTexture ) {
    
    			if ( currentTextureSlot === null ) {
    
    				activeTexture();
    
    			}
    
    			var boundTexture = currentBoundTextures[ currentTextureSlot ];
    
    			if ( boundTexture === undefined ) {
    
    				boundTexture = { type: undefined, texture: undefined };
    				currentBoundTextures[ currentTextureSlot ] = boundTexture;
    
    			}
    
    			if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {
    
    				gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] );
    
    				boundTexture.type = webglType;
    				boundTexture.texture = webglTexture;
    
    			}
    
    		}
    
    		function compressedTexImage2D() {
    
    			try {
    
    				gl.compressedTexImage2D.apply( gl, arguments );
    
    			} catch ( error ) {
    
    				console.error( error );
    
    			}
    
    		}
    
    		function texImage2D() {
    
    			try {
    
    				gl.texImage2D.apply( gl, arguments );
    
    			} catch ( error ) {
    
    				console.error( error );
    
    			}
    
    		}
    
    		//
    
    		function scissor( scissor ) {
    
    			if ( currentScissor.equals( scissor ) === false ) {
    
    				gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w );
    				currentScissor.copy( scissor );
    
    			}
    
    		}
    
    		function viewport( viewport ) {
    
    			if ( currentViewport.equals( viewport ) === false ) {
    
    				gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w );
    				currentViewport.copy( viewport );
    
    			}
    
    		}
    
    		//
    
    		function reset() {
    
    			for ( var i = 0; i < enabledAttributes.length; i ++ ) {
    
    				if ( enabledAttributes[ i ] === 1 ) {
    
    					gl.disableVertexAttribArray( i );
    					enabledAttributes[ i ] = 0;
    
    				}
    
    			}
    
    			capabilities = {};
    
    			compressedTextureFormats = null;
    
    			currentTextureSlot = null;
    			currentBoundTextures = {};
    
    			currentBlending = null;
    
    			currentFlipSided = null;
    			currentCullFace = null;
    
    			colorBuffer.reset();
    			depthBuffer.reset();
    			stencilBuffer.reset();
    
    		}
    
    		return {
    
    			buffers: {
    				color: colorBuffer,
    				depth: depthBuffer,
    				stencil: stencilBuffer
    			},
    
    			init: init,
    			initAttributes: initAttributes,
    			enableAttribute: enableAttribute,
    			enableAttributeAndDivisor: enableAttributeAndDivisor,
    			disableUnusedAttributes: disableUnusedAttributes,
    			enable: enable,
    			disable: disable,
    			getCompressedTextureFormats: getCompressedTextureFormats,
    
    			setBlending: setBlending,
    			setMaterial: setMaterial,
    
    			setFlipSided: setFlipSided,
    			setCullFace: setCullFace,
    
    			setLineWidth: setLineWidth,
    			setPolygonOffset: setPolygonOffset,
    
    			getScissorTest: getScissorTest,
    			setScissorTest: setScissorTest,
    
    			activeTexture: activeTexture,
    			bindTexture: bindTexture,
    			compressedTexImage2D: compressedTexImage2D,
    			texImage2D: texImage2D,
    
    			scissor: scissor,
    			viewport: viewport,
    
    			reset: reset
    
    		};
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLCapabilities( gl, extensions, parameters ) {
    
    		var maxAnisotropy;
    
    		function getMaxAnisotropy() {
    
    			if ( maxAnisotropy !== undefined ) return maxAnisotropy;
    
    			var extension = extensions.get( 'EXT_texture_filter_anisotropic' );
    
    			if ( extension !== null ) {
    
    				maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );
    
    			} else {
    
    				maxAnisotropy = 0;
    
    			}
    
    			return maxAnisotropy;
    
    		}
    
    		function getMaxPrecision( precision ) {
    
    			if ( precision === 'highp' ) {
    
    				if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 &&
    				     gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) {
    
    					return 'highp';
    
    				}
    
    				precision = 'mediump';
    
    			}
    
    			if ( precision === 'mediump' ) {
    
    				if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 &&
    				     gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) {
    
    					return 'mediump';
    
    				}
    
    			}
    
    			return 'lowp';
    
    		}
    
    		var precision = parameters.precision !== undefined ? parameters.precision : 'highp';
    		var maxPrecision = getMaxPrecision( precision );
    
    		if ( maxPrecision !== precision ) {
    
    			console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' );
    			precision = maxPrecision;
    
    		}
    
    		var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true && !! extensions.get( 'EXT_frag_depth' );
    
    		var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
    		var maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS );
    		var maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE );
    		var maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE );
    
    		var maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
    		var maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS );
    		var maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS );
    		var maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS );
    
    		var vertexTextures = maxVertexTextures > 0;
    		var floatFragmentTextures = !! extensions.get( 'OES_texture_float' );
    		var floatVertexTextures = vertexTextures && floatFragmentTextures;
    
    		return {
    
    			getMaxAnisotropy: getMaxAnisotropy,
    			getMaxPrecision: getMaxPrecision,
    
    			precision: precision,
    			logarithmicDepthBuffer: logarithmicDepthBuffer,
    
    			maxTextures: maxTextures,
    			maxVertexTextures: maxVertexTextures,
    			maxTextureSize: maxTextureSize,
    			maxCubemapSize: maxCubemapSize,
    
    			maxAttributes: maxAttributes,
    			maxVertexUniforms: maxVertexUniforms,
    			maxVaryings: maxVaryings,
    			maxFragmentUniforms: maxFragmentUniforms,
    
    			vertexTextures: vertexTextures,
    			floatFragmentTextures: floatFragmentTextures,
    			floatVertexTextures: floatVertexTextures
    
    		};
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function WebGLExtensions( gl ) {
    
    		var extensions = {};
    
    		return {
    
    			get: function ( name ) {
    
    				if ( extensions[ name ] !== undefined ) {
    
    					return extensions[ name ];
    
    				}
    
    				var extension;
    
    				switch ( name ) {
    
    					case 'WEBGL_depth_texture':
    						extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
    						break;
    
    					case 'EXT_texture_filter_anisotropic':
    						extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
    						break;
    
    					case 'WEBGL_compressed_texture_s3tc':
    						extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
    						break;
    
    					case 'WEBGL_compressed_texture_pvrtc':
    						extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
    						break;
    
    					case 'WEBGL_compressed_texture_etc1':
    						extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' );
    						break;
    
    					default:
    						extension = gl.getExtension( name );
    
    				}
    
    				if ( extension === null ) {
    
    					console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );
    
    				}
    
    				extensions[ name ] = extension;
    
    				return extension;
    
    			}
    
    		};
    
    	}
    
    	/**
    	 * @author tschw
    	 */
    
    	function WebGLClipping() {
    
    		var scope = this,
    
    			globalState = null,
    			numGlobalPlanes = 0,
    			localClippingEnabled = false,
    			renderingShadows = false,
    
    			plane = new Plane(),
    			viewNormalMatrix = new Matrix3(),
    
    			uniform = { value: null, needsUpdate: false };
    
    		this.uniform = uniform;
    		this.numPlanes = 0;
    		this.numIntersection = 0;
    
    		this.init = function( planes, enableLocalClipping, camera ) {
    
    			var enabled =
    				planes.length !== 0 ||
    				enableLocalClipping ||
    				// enable state of previous frame - the clipping code has to
    				// run another frame in order to reset the state:
    				numGlobalPlanes !== 0 ||
    				localClippingEnabled;
    
    			localClippingEnabled = enableLocalClipping;
    
    			globalState = projectPlanes( planes, camera, 0 );
    			numGlobalPlanes = planes.length;
    
    			return enabled;
    
    		};
    
    		this.beginShadows = function() {
    
    			renderingShadows = true;
    			projectPlanes( null );
    
    		};
    
    		this.endShadows = function() {
    
    			renderingShadows = false;
    			resetGlobalState();
    
    		};
    
    		this.setState = function( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {
    
    			if ( ! localClippingEnabled ||
    					planes === null || planes.length === 0 ||
    					renderingShadows && ! clipShadows ) {
    				// there's no local clipping
    
    				if ( renderingShadows ) {
    					// there's no global clipping
    
    					projectPlanes( null );
    
    				} else {
    
    					resetGlobalState();
    				}
    
    			} else {
    
    				var nGlobal = renderingShadows ? 0 : numGlobalPlanes,
    					lGlobal = nGlobal * 4,
    
    					dstArray = cache.clippingState || null;
    
    				uniform.value = dstArray; // ensure unique state
    
    				dstArray = projectPlanes( planes, camera, lGlobal, fromCache );
    
    				for ( var i = 0; i !== lGlobal; ++ i ) {
    
    					dstArray[ i ] = globalState[ i ];
    
    				}
    
    				cache.clippingState = dstArray;
    				this.numIntersection = clipIntersection ? this.numPlanes : 0;
    				this.numPlanes += nGlobal;
    
    			}
    
    
    		};
    
    		function resetGlobalState() {
    
    			if ( uniform.value !== globalState ) {
    
    				uniform.value = globalState;
    				uniform.needsUpdate = numGlobalPlanes > 0;
    
    			}
    
    			scope.numPlanes = numGlobalPlanes;
    			scope.numIntersection = 0;
    
    		}
    
    		function projectPlanes( planes, camera, dstOffset, skipTransform ) {
    
    			var nPlanes = planes !== null ? planes.length : 0,
    				dstArray = null;
    
    			if ( nPlanes !== 0 ) {
    
    				dstArray = uniform.value;
    
    				if ( skipTransform !== true || dstArray === null ) {
    
    					var flatSize = dstOffset + nPlanes * 4,
    						viewMatrix = camera.matrixWorldInverse;
    
    					viewNormalMatrix.getNormalMatrix( viewMatrix );
    
    					if ( dstArray === null || dstArray.length < flatSize ) {
    
    						dstArray = new Float32Array( flatSize );
    
    					}
    
    					for ( var i = 0, i4 = dstOffset;
    										i !== nPlanes; ++ i, i4 += 4 ) {
    
    						plane.copy( planes[ i ] ).
    								applyMatrix4( viewMatrix, viewNormalMatrix );
    
    						plane.normal.toArray( dstArray, i4 );
    						dstArray[ i4 + 3 ] = plane.constant;
    
    					}
    
    				}
    
    				uniform.value = dstArray;
    				uniform.needsUpdate = true;
    
    			}
    
    			scope.numPlanes = nPlanes;
    			
    			return dstArray;
    
    		}
    
    	}
    
    	// import { Sphere } from '../math/Sphere';
    	/**
    	 * @author supereggbert / http://www.paulbrunt.co.uk/
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author szimek / https://github.com/szimek/
    	 * @author tschw
    	 */
    
    	function WebGLRenderer( parameters ) {
    
    		console.log( 'THREE.WebGLRenderer', REVISION );
    
    		parameters = parameters || {};
    
    		var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ),
    			_context = parameters.context !== undefined ? parameters.context : null,
    
    			_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
    			_depth = parameters.depth !== undefined ? parameters.depth : true,
    			_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
    			_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
    			_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
    			_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false;
    
    		var lights = [];
    
    		var currentRenderList = null;
    
    		var morphInfluences = new Float32Array( 8 );
    
    		var sprites = [];
    		var lensFlares = [];
    
    		// public properties
    
    		this.domElement = _canvas;
    		this.context = null;
    
    		// clearing
    
    		this.autoClear = true;
    		this.autoClearColor = true;
    		this.autoClearDepth = true;
    		this.autoClearStencil = true;
    
    		// scene graph
    
    		this.sortObjects = true;
    
    		// user-defined clipping
    
    		this.clippingPlanes = [];
    		this.localClippingEnabled = false;
    
    		// physically based shading
    
    		this.gammaFactor = 2.0;	// for backwards compatibility
    		this.gammaInput = false;
    		this.gammaOutput = false;
    
    		// physical lights
    
    		this.physicallyCorrectLights = false;
    
    		// tone mapping
    
    		this.toneMapping = LinearToneMapping;
    		this.toneMappingExposure = 1.0;
    		this.toneMappingWhitePoint = 1.0;
    
    		// morphs
    
    		this.maxMorphTargets = 8;
    		this.maxMorphNormals = 4;
    
    		// internal properties
    
    		var _this = this,
    
    			// internal state cache
    
    			_currentProgram = null,
    			_currentRenderTarget = null,
    			_currentFramebuffer = null,
    			_currentMaterialId = - 1,
    			_currentGeometryProgram = '',
    			_currentCamera = null,
    
    			_currentScissor = new Vector4(),
    			_currentScissorTest = null,
    
    			_currentViewport = new Vector4(),
    
    			//
    
    			_usedTextureUnits = 0,
    
    			//
    
    			_clearColor = new Color( 0x000000 ),
    			_clearAlpha = 0,
    
    			_width = _canvas.width,
    			_height = _canvas.height,
    
    			_pixelRatio = 1,
    
    			_scissor = new Vector4( 0, 0, _width, _height ),
    			_scissorTest = false,
    
    			_viewport = new Vector4( 0, 0, _width, _height ),
    
    			// frustum
    
    			_frustum = new Frustum(),
    
    			// clipping
    
    			_clipping = new WebGLClipping(),
    			_clippingEnabled = false,
    			_localClippingEnabled = false,
    
    			// camera matrices cache
    
    			_projScreenMatrix = new Matrix4(),
    
    			_vector3 = new Vector3(),
    			_matrix4 = new Matrix4(),
    			_matrix42 = new Matrix4(),
    
    			// light arrays cache
    
    			_lights = {
    
    				hash: '',
    
    				ambient: [ 0, 0, 0 ],
    				directional: [],
    				directionalShadowMap: [],
    				directionalShadowMatrix: [],
    				spot: [],
    				spotShadowMap: [],
    				spotShadowMatrix: [],
    				rectArea: [],
    				point: [],
    				pointShadowMap: [],
    				pointShadowMatrix: [],
    				hemi: [],
    
    				shadows: []
    
    			},
    
    			// info
    
    			_infoMemory = {
    				geometries: 0,
    				textures: 0
    			},
    
    			_infoRender = {
    
    				frame: 0,
    				calls: 0,
    				vertices: 0,
    				faces: 0,
    				points: 0
    
    			};
    
    		this.info = {
    
    			render: _infoRender,
    			memory: _infoMemory,
    			programs: null
    
    		};
    
    
    		// initialize
    
    		var _gl;
    
    		try {
    
    			var contextAttributes = {
    				alpha: _alpha,
    				depth: _depth,
    				stencil: _stencil,
    				antialias: _antialias,
    				premultipliedAlpha: _premultipliedAlpha,
    				preserveDrawingBuffer: _preserveDrawingBuffer
    			};
    
    			_gl = _context || _canvas.getContext( 'webgl', contextAttributes ) || _canvas.getContext( 'experimental-webgl', contextAttributes );
    
    			if ( _gl === null ) {
    
    				if ( _canvas.getContext( 'webgl' ) !== null ) {
    
    					throw 'Error creating WebGL context with your selected attributes.';
    
    				} else {
    
    					throw 'Error creating WebGL context.';
    
    				}
    
    			}
    
    			// Some experimental-webgl implementations do not have getShaderPrecisionFormat
    
    			if ( _gl.getShaderPrecisionFormat === undefined ) {
    
    				_gl.getShaderPrecisionFormat = function () {
    
    					return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };
    
    				};
    
    			}
    
    			_canvas.addEventListener( 'webglcontextlost', onContextLost, false );
    
    		} catch ( error ) {
    
    			console.error( 'THREE.WebGLRenderer: ' + error );
    
    		}
    
    		var extensions = new WebGLExtensions( _gl );
    
    		extensions.get( 'WEBGL_depth_texture' );
    		extensions.get( 'OES_texture_float' );
    		extensions.get( 'OES_texture_float_linear' );
    		extensions.get( 'OES_texture_half_float' );
    		extensions.get( 'OES_texture_half_float_linear' );
    		extensions.get( 'OES_standard_derivatives' );
    		extensions.get( 'ANGLE_instanced_arrays' );
    
    		if ( extensions.get( 'OES_element_index_uint' ) ) {
    
    			BufferGeometry.MaxIndex = 4294967296;
    
    		}
    
    		var capabilities = new WebGLCapabilities( _gl, extensions, parameters );
    
    		var state = new WebGLState( _gl, extensions, paramThreeToGL );
    
    		var properties = new WebGLProperties();
    		var textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, paramThreeToGL, _infoMemory );
    		var attributes = new WebGLAttributes( _gl );
    		var geometries = new WebGLGeometries( _gl, attributes, _infoMemory );
    		var objects = new WebGLObjects( _gl, geometries, _infoRender );
    		var programCache = new WebGLPrograms( this, capabilities );
    		var lightCache = new WebGLLights();
    		var renderLists = new WebGLRenderLists();
    
    		this.info.programs = programCache.programs;
    
    		var bufferRenderer = new WebGLBufferRenderer( _gl, extensions, _infoRender );
    		var indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, _infoRender );
    
    		//
    
    		var backgroundPlaneCamera, backgroundPlaneMesh;
    		var backgroundBoxCamera, backgroundBoxMesh;
    
    		//
    
    		function getTargetPixelRatio() {
    
    			return _currentRenderTarget === null ? _pixelRatio : 1;
    
    		}
    
    		function setDefaultGLState() {
    
    			state.init();
    
    			state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) );
    			state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) );
    
    			state.buffers.color.setClear( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha, _premultipliedAlpha );
    
    		}
    
    		function resetGLState() {
    
    			_currentProgram = null;
    			_currentCamera = null;
    
    			_currentGeometryProgram = '';
    			_currentMaterialId = - 1;
    
    			state.reset();
    
    		}
    
    		setDefaultGLState();
    
    		this.context = _gl;
    		this.capabilities = capabilities;
    		this.extensions = extensions;
    		this.properties = properties;
    		this.state = state;
    
    		// shadow map
    
    		var shadowMap = new WebGLShadowMap( this, _lights, objects, capabilities );
    
    		this.shadowMap = shadowMap;
    
    
    		// Plugins
    
    		var spritePlugin = new SpritePlugin( this, sprites );
    		var lensFlarePlugin = new LensFlarePlugin( this, lensFlares );
    
    		// API
    
    		this.getContext = function () {
    
    			return _gl;
    
    		};
    
    		this.getContextAttributes = function () {
    
    			return _gl.getContextAttributes();
    
    		};
    
    		this.forceContextLoss = function () {
    
    			var extension = extensions.get( 'WEBGL_lose_context' );
    			if ( extension ) extension.loseContext();
    
    		};
    
    		this.getMaxAnisotropy = function () {
    
    			return capabilities.getMaxAnisotropy();
    
    		};
    
    		this.getPrecision = function () {
    
    			return capabilities.precision;
    
    		};
    
    		this.getPixelRatio = function () {
    
    			return _pixelRatio;
    
    		};
    
    		this.setPixelRatio = function ( value ) {
    
    			if ( value === undefined ) return;
    
    			_pixelRatio = value;
    
    			this.setSize( _viewport.z, _viewport.w, false );
    
    		};
    
    		this.getSize = function () {
    
    			return {
    				width: _width,
    				height: _height
    			};
    
    		};
    
    		this.setSize = function ( width, height, updateStyle ) {
    
    			_width = width;
    			_height = height;
    
    			_canvas.width = width * _pixelRatio;
    			_canvas.height = height * _pixelRatio;
    
    			if ( updateStyle !== false ) {
    
    				_canvas.style.width = width + 'px';
    				_canvas.style.height = height + 'px';
    
    			}
    
    			this.setViewport( 0, 0, width, height );
    
    		};
    
    		this.setViewport = function ( x, y, width, height ) {
    
    			state.viewport( _viewport.set( x, y, width, height ) );
    
    		};
    
    		this.setScissor = function ( x, y, width, height ) {
    
    			state.scissor( _scissor.set( x, y, width, height ) );
    
    		};
    
    		this.setScissorTest = function ( boolean ) {
    
    			state.setScissorTest( _scissorTest = boolean );
    
    		};
    
    		// Clearing
    
    		this.getClearColor = function () {
    
    			return _clearColor;
    
    		};
    
    		this.setClearColor = function ( color, alpha ) {
    
    			_clearColor.set( color );
    
    			_clearAlpha = alpha !== undefined ? alpha : 1;
    
    			state.buffers.color.setClear( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha, _premultipliedAlpha );
    
    		};
    
    		this.getClearAlpha = function () {
    
    			return _clearAlpha;
    
    		};
    
    		this.setClearAlpha = function ( alpha ) {
    
    			_clearAlpha = alpha;
    
    			state.buffers.color.setClear( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha, _premultipliedAlpha );
    
    		};
    
    		this.clear = function ( color, depth, stencil ) {
    
    			var bits = 0;
    
    			if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT;
    			if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT;
    			if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT;
    
    			_gl.clear( bits );
    
    		};
    
    		this.clearColor = function () {
    
    			this.clear( true, false, false );
    
    		};
    
    		this.clearDepth = function () {
    
    			this.clear( false, true, false );
    
    		};
    
    		this.clearStencil = function () {
    
    			this.clear( false, false, true );
    
    		};
    
    		this.clearTarget = function ( renderTarget, color, depth, stencil ) {
    
    			this.setRenderTarget( renderTarget );
    			this.clear( color, depth, stencil );
    
    		};
    
    		// Reset
    
    		this.resetGLState = resetGLState;
    
    		this.dispose = function () {
    
    			_canvas.removeEventListener( 'webglcontextlost', onContextLost, false );
    
    			renderLists.dispose();
    
    		};
    
    		// Events
    
    		function onContextLost( event ) {
    
    			event.preventDefault();
    
    			resetGLState();
    			setDefaultGLState();
    
    			properties.clear();
    			objects.clear();
    
    		}
    
    		function onMaterialDispose( event ) {
    
    			var material = event.target;
    
    			material.removeEventListener( 'dispose', onMaterialDispose );
    
    			deallocateMaterial( material );
    
    		}
    
    		// Buffer deallocation
    
    		function deallocateMaterial( material ) {
    
    			releaseMaterialProgramReference( material );
    
    			properties.remove( material );
    
    		}
    
    
    		function releaseMaterialProgramReference( material ) {
    
    			var programInfo = properties.get( material ).program;
    
    			material.program = undefined;
    
    			if ( programInfo !== undefined ) {
    
    				programCache.releaseProgram( programInfo );
    
    			}
    
    		}
    
    		// Buffer rendering
    
    		function renderObjectImmediate( object, program, material ) {
    
    			object.render( function ( object ) {
    
    				_this.renderBufferImmediate( object, program, material );
    
    			} );
    
    		}
    
    		this.renderBufferImmediate = function ( object, program, material ) {
    
    			state.initAttributes();
    
    			var buffers = properties.get( object );
    
    			if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer();
    			if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer();
    			if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer();
    			if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer();
    
    			var programAttributes = program.getAttributes();
    
    			if ( object.hasPositions ) {
    
    				_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position );
    				_gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW );
    
    				state.enableAttribute( programAttributes.position );
    				_gl.vertexAttribPointer( programAttributes.position, 3, _gl.FLOAT, false, 0, 0 );
    
    			}
    
    			if ( object.hasNormals ) {
    
    				_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal );
    
    				if ( ! material.isMeshPhongMaterial &&
    					! material.isMeshStandardMaterial &&
    					! material.isMeshNormalMaterial &&
    					material.shading === FlatShading ) {
    
    					for ( var i = 0, l = object.count * 3; i < l; i += 9 ) {
    
    						var array = object.normalArray;
    
    						var nx = ( array[ i + 0 ] + array[ i + 3 ] + array[ i + 6 ] ) / 3;
    						var ny = ( array[ i + 1 ] + array[ i + 4 ] + array[ i + 7 ] ) / 3;
    						var nz = ( array[ i + 2 ] + array[ i + 5 ] + array[ i + 8 ] ) / 3;
    
    						array[ i + 0 ] = nx;
    						array[ i + 1 ] = ny;
    						array[ i + 2 ] = nz;
    
    						array[ i + 3 ] = nx;
    						array[ i + 4 ] = ny;
    						array[ i + 5 ] = nz;
    
    						array[ i + 6 ] = nx;
    						array[ i + 7 ] = ny;
    						array[ i + 8 ] = nz;
    
    					}
    
    				}
    
    				_gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW );
    
    				state.enableAttribute( programAttributes.normal );
    
    				_gl.vertexAttribPointer( programAttributes.normal, 3, _gl.FLOAT, false, 0, 0 );
    
    			}
    
    			if ( object.hasUvs && material.map ) {
    
    				_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv );
    				_gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW );
    
    				state.enableAttribute( programAttributes.uv );
    
    				_gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 );
    
    			}
    
    			if ( object.hasColors && material.vertexColors !== NoColors ) {
    
    				_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color );
    				_gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW );
    
    				state.enableAttribute( programAttributes.color );
    
    				_gl.vertexAttribPointer( programAttributes.color, 3, _gl.FLOAT, false, 0, 0 );
    
    			}
    
    			state.disableUnusedAttributes();
    
    			_gl.drawArrays( _gl.TRIANGLES, 0, object.count );
    
    			object.count = 0;
    
    		};
    
    		function absNumericalSort( a, b ) {
    
    			return Math.abs( b[ 0 ] ) - Math.abs( a[ 0 ] );
    
    		}
    
    		this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) {
    
    			state.setMaterial( material );
    
    			var program = setProgram( camera, fog, material, object );
    			var geometryProgram = geometry.id + '_' + program.id + '_' + ( material.wireframe === true );
    
    			var updateBuffers = false;
    
    			if ( geometryProgram !== _currentGeometryProgram ) {
    
    				_currentGeometryProgram = geometryProgram;
    				updateBuffers = true;
    
    			}
    
    			// morph targets
    
    			var morphTargetInfluences = object.morphTargetInfluences;
    
    			if ( morphTargetInfluences !== undefined ) {
    
    				// TODO Remove allocations
    
    				var activeInfluences = [];
    
    				for ( var i = 0, l = morphTargetInfluences.length; i < l; i ++ ) {
    
    					var influence = morphTargetInfluences[ i ];
    					activeInfluences.push( [ influence, i ] );
    
    				}
    
    				activeInfluences.sort( absNumericalSort );
    
    				if ( activeInfluences.length > 8 ) {
    
    					activeInfluences.length = 8;
    
    				}
    
    				var morphAttributes = geometry.morphAttributes;
    
    				for ( var i = 0, l = activeInfluences.length; i < l; i ++ ) {
    
    					var influence = activeInfluences[ i ];
    					morphInfluences[ i ] = influence[ 0 ];
    
    					if ( influence[ 0 ] !== 0 ) {
    
    						var index = influence[ 1 ];
    
    						if ( material.morphTargets === true && morphAttributes.position ) geometry.addAttribute( 'morphTarget' + i, morphAttributes.position[ index ] );
    						if ( material.morphNormals === true && morphAttributes.normal ) geometry.addAttribute( 'morphNormal' + i, morphAttributes.normal[ index ] );
    
    					} else {
    
    						if ( material.morphTargets === true ) geometry.removeAttribute( 'morphTarget' + i );
    						if ( material.morphNormals === true ) geometry.removeAttribute( 'morphNormal' + i );
    
    					}
    
    				}
    
    				for ( var i = activeInfluences.length, il = morphInfluences.length; i < il; i ++ ) {
    
    					morphInfluences[ i ] = 0.0;
    
    				}
    
    				program.getUniforms().setValue( _gl, 'morphTargetInfluences', morphInfluences );
    
    				updateBuffers = true;
    
    			}
    
    			//
    
    			var index = geometry.index;
    			var position = geometry.attributes.position;
    			var rangeFactor = 1;
    
    			if ( material.wireframe === true ) {
    
    				index = geometries.getWireframeAttribute( geometry );
    				rangeFactor = 2;
    
    			}
    
    			var renderer = bufferRenderer;
    
    			if ( index !== null ) {
    
    				renderer = indexedBufferRenderer;
    				renderer.setIndex( index );
    
    			}
    
    			if ( updateBuffers ) {
    
    				setupVertexAttributes( material, program, geometry );
    
    				if ( index !== null ) {
    
    					_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, attributes.get( index ).buffer );
    
    				}
    
    			}
    
    			//
    
    			var dataCount = 0;
    
    			if ( index !== null ) {
    
    				dataCount = index.count;
    
    			} else if ( position !== undefined ) {
    
    				dataCount = position.count;
    
    			}
    
    			var rangeStart = geometry.drawRange.start * rangeFactor;
    			var rangeCount = geometry.drawRange.count * rangeFactor;
    
    			var groupStart = group !== null ? group.start * rangeFactor : 0;
    			var groupCount = group !== null ? group.count * rangeFactor : Infinity;
    
    			var drawStart = Math.max( rangeStart, groupStart );
    			var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;
    
    			var drawCount = Math.max( 0, drawEnd - drawStart + 1 );
    
    			if ( drawCount === 0 ) return;
    
    			//
    
    			if ( object.isMesh ) {
    
    				if ( material.wireframe === true ) {
    
    					state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
    					renderer.setMode( _gl.LINES );
    
    				} else {
    
    					switch ( object.drawMode ) {
    
    						case TrianglesDrawMode:
    							renderer.setMode( _gl.TRIANGLES );
    							break;
    
    						case TriangleStripDrawMode:
    							renderer.setMode( _gl.TRIANGLE_STRIP );
    							break;
    
    						case TriangleFanDrawMode:
    							renderer.setMode( _gl.TRIANGLE_FAN );
    							break;
    
    					}
    
    				}
    
    
    			} else if ( object.isLine ) {
    
    				var lineWidth = material.linewidth;
    
    				if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material
    
    				state.setLineWidth( lineWidth * getTargetPixelRatio() );
    
    				if ( object.isLineSegments ) {
    
    					renderer.setMode( _gl.LINES );
    
    				} else if ( object.isLineLoop ) {
    
    					renderer.setMode( _gl.LINE_LOOP );
    
    				} else {
    
    					renderer.setMode( _gl.LINE_STRIP );
    
    				}
    
    			} else if ( object.isPoints ) {
    
    				renderer.setMode( _gl.POINTS );
    
    			}
    
    			if ( geometry && geometry.isInstancedBufferGeometry ) {
    
    				if ( geometry.maxInstancedCount > 0 ) {
    
    					renderer.renderInstances( geometry, drawStart, drawCount );
    
    				}
    
    			} else {
    
    				renderer.render( drawStart, drawCount );
    
    			}
    
    		};
    
    		function setupVertexAttributes( material, program, geometry, startIndex ) {
    
    			if ( geometry && geometry.isInstancedBufferGeometry ) {
    
    				if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) {
    
    					console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
    					return;
    
    				}
    
    			}
    
    			if ( startIndex === undefined ) startIndex = 0;
    
    			state.initAttributes();
    
    			var geometryAttributes = geometry.attributes;
    
    			var programAttributes = program.getAttributes();
    
    			var materialDefaultAttributeValues = material.defaultAttributeValues;
    
    			for ( var name in programAttributes ) {
    
    				var programAttribute = programAttributes[ name ];
    
    				if ( programAttribute >= 0 ) {
    
    					var geometryAttribute = geometryAttributes[ name ];
    
    					if ( geometryAttribute !== undefined ) {
    
    						var normalized = geometryAttribute.normalized;
    						var size = geometryAttribute.itemSize;
    
    						var attributeProperties = attributes.get( geometryAttribute );
    
    						var buffer = attributeProperties.buffer;
    						var type = attributeProperties.type;
    						var bytesPerElement = attributeProperties.bytesPerElement;
    
    						if ( geometryAttribute.isInterleavedBufferAttribute ) {
    
    							var data = geometryAttribute.data;
    							var stride = data.stride;
    							var offset = geometryAttribute.offset;
    
    							if ( data && data.isInstancedInterleavedBuffer ) {
    
    								state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute );
    
    								if ( geometry.maxInstancedCount === undefined ) {
    
    									geometry.maxInstancedCount = data.meshPerAttribute * data.count;
    
    								}
    
    							} else {
    
    								state.enableAttribute( programAttribute );
    
    							}
    
    							_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
    							_gl.vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, ( startIndex * stride + offset ) * bytesPerElement );
    
    						} else {
    
    							if ( geometryAttribute.isInstancedBufferAttribute ) {
    
    								state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute );
    
    								if ( geometry.maxInstancedCount === undefined ) {
    
    									geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
    
    								}
    
    							} else {
    
    								state.enableAttribute( programAttribute );
    
    							}
    
    							_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
    							_gl.vertexAttribPointer( programAttribute, size, type, normalized, 0, startIndex * size * bytesPerElement );
    
    						}
    
    					} else if ( materialDefaultAttributeValues !== undefined ) {
    
    						var value = materialDefaultAttributeValues[ name ];
    
    						if ( value !== undefined ) {
    
    							switch ( value.length ) {
    
    								case 2:
    									_gl.vertexAttrib2fv( programAttribute, value );
    									break;
    
    								case 3:
    									_gl.vertexAttrib3fv( programAttribute, value );
    									break;
    
    								case 4:
    									_gl.vertexAttrib4fv( programAttribute, value );
    									break;
    
    								default:
    									_gl.vertexAttrib1fv( programAttribute, value );
    
    							}
    
    						}
    
    					}
    
    				}
    
    			}
    
    			state.disableUnusedAttributes();
    
    		}
    
    		// Compile
    
    		this.compile = function ( scene, camera ) {
    
    			lights = [];
    
    			scene.traverse( function ( object ) {
    
    				if ( object.isLight ) {
    
    					lights.push( object );
    
    				}
    
    			} );
    
    			setupLights( lights, camera );
    
    			scene.traverse( function ( object ) {
    
    				if ( object.material ) {
    
    					if ( Array.isArray( object.material ) ) {
    
    						for ( var i = 0; i < object.material.length; i ++ ) {
    
    							initMaterial( object.material[ i ], scene.fog, object );
    
    						}
    
    					} else {
    
    						initMaterial( object.material, scene.fog, object );
    
    					}
    
    				}
    
    			} );
    
    		};
    
    		// Rendering
    
    		this.render = function ( scene, camera, renderTarget, forceClear ) {
    
    			if ( camera !== undefined && camera.isCamera !== true ) {
    
    				console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
    				return;
    
    			}
    
    			// reset caching for this frame
    
    			_currentGeometryProgram = '';
    			_currentMaterialId = - 1;
    			_currentCamera = null;
    
    			// update scene graph
    
    			if ( scene.autoUpdate === true ) scene.updateMatrixWorld();
    
    			// update camera matrices and frustum
    
    			camera.onBeforeRender( _this );
    
    			if ( camera.parent === null ) camera.updateMatrixWorld();
    
    			camera.matrixWorldInverse.getInverse( camera.matrixWorld );
    
    			_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
    			_frustum.setFromMatrix( _projScreenMatrix );
    
    			lights.length = 0;
    			sprites.length = 0;
    			lensFlares.length = 0;
    
    			_localClippingEnabled = this.localClippingEnabled;
    			_clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera );
    
    			currentRenderList = renderLists.get( scene, camera );
    			currentRenderList.init();
    
    			projectObject( scene, camera, _this.sortObjects );
    
    			currentRenderList.finish();
    
    			if ( _this.sortObjects === true ) {
    
    				currentRenderList.sort();
    
    			}
    
    			//
    
    			if ( _clippingEnabled ) _clipping.beginShadows();
    
    			setupShadows( lights );
    
    			shadowMap.render( scene, camera );
    
    			setupLights( lights, camera );
    
    			if ( _clippingEnabled ) _clipping.endShadows();
    
    			//
    
    			_infoRender.frame ++;
    			_infoRender.calls = 0;
    			_infoRender.vertices = 0;
    			_infoRender.faces = 0;
    			_infoRender.points = 0;
    
    			if ( renderTarget === undefined ) {
    
    				renderTarget = null;
    
    			}
    
    			this.setRenderTarget( renderTarget );
    
    			//
    
    			var background = scene.background;
    
    			if ( background === null ) {
    
    				state.buffers.color.setClear( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha, _premultipliedAlpha );
    
    			} else if ( background && background.isColor ) {
    
    				state.buffers.color.setClear( background.r, background.g, background.b, 1, _premultipliedAlpha );
    				forceClear = true;
    
    			}
    
    			if ( this.autoClear || forceClear ) {
    
    				this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil );
    
    			}
    
    			if ( background && background.isCubeTexture ) {
    
    				if ( backgroundBoxCamera === undefined ) {
    
    					backgroundBoxCamera = new PerspectiveCamera();
    
    					backgroundBoxMesh = new Mesh(
    						new BoxBufferGeometry( 5, 5, 5 ),
    						new ShaderMaterial( {
    							uniforms: ShaderLib.cube.uniforms,
    							vertexShader: ShaderLib.cube.vertexShader,
    							fragmentShader: ShaderLib.cube.fragmentShader,
    							side: BackSide,
    							depthTest: false,
    							depthWrite: false,
    							fog: false
    						} )
    					);
    
    				}
    
    				backgroundBoxCamera.projectionMatrix.copy( camera.projectionMatrix );
    
    				backgroundBoxCamera.matrixWorld.extractRotation( camera.matrixWorld );
    				backgroundBoxCamera.matrixWorldInverse.getInverse( backgroundBoxCamera.matrixWorld );
    
    
    				backgroundBoxMesh.material.uniforms[ "tCube" ].value = background;
    				backgroundBoxMesh.modelViewMatrix.multiplyMatrices( backgroundBoxCamera.matrixWorldInverse, backgroundBoxMesh.matrixWorld );
    
    				objects.update( backgroundBoxMesh );
    
    				_this.renderBufferDirect( backgroundBoxCamera, null, backgroundBoxMesh.geometry, backgroundBoxMesh.material, backgroundBoxMesh, null );
    
    			} else if ( background && background.isTexture ) {
    
    				if ( backgroundPlaneCamera === undefined ) {
    
    					backgroundPlaneCamera = new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
    
    					backgroundPlaneMesh = new Mesh(
    						new PlaneBufferGeometry( 2, 2 ),
    						new MeshBasicMaterial( { depthTest: false, depthWrite: false, fog: false } )
    					);
    
    				}
    
    				backgroundPlaneMesh.material.map = background;
    
    				objects.update( backgroundPlaneMesh );
    
    				_this.renderBufferDirect( backgroundPlaneCamera, null, backgroundPlaneMesh.geometry, backgroundPlaneMesh.material, backgroundPlaneMesh, null );
    
    			}
    
    			//
    
    			var opaqueObjects = currentRenderList.opaque;
    			var transparentObjects = currentRenderList.transparent;
    
    			if ( scene.overrideMaterial ) {
    
    				var overrideMaterial = scene.overrideMaterial;
    
    				if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera, overrideMaterial );
    				if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera, overrideMaterial );
    
    			} else {
    
    				// opaque pass (front-to-back order)
    
    				if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera );
    
    				// transparent pass (back-to-front order)
    
    				if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera );
    
    			}
    
    			// custom render plugins (post pass)
    
    			spritePlugin.render( scene, camera );
    			lensFlarePlugin.render( scene, camera, _currentViewport );
    
    			// Generate mipmap if we're using any kind of mipmap filtering
    
    			if ( renderTarget ) {
    
    				textures.updateRenderTargetMipmap( renderTarget );
    
    			}
    
    			// Ensure depth buffer writing is enabled so it can be cleared on next render
    
    			state.buffers.depth.setTest( true );
    			state.buffers.depth.setMask( true );
    			state.buffers.color.setMask( true );
    
    			if ( camera.isArrayCamera && camera.enabled ) {
    
    				_this.setScissorTest( false );
    
    			}
    
    			camera.onAfterRender( _this );
    
    			// _gl.finish();
    
    		};
    
    		/*
    		// TODO Duplicated code (Frustum)
    
    		var _sphere = new Sphere();
    
    		function isObjectViewable( object ) {
    
    			var geometry = object.geometry;
    
    			if ( geometry.boundingSphere === null )
    				geometry.computeBoundingSphere();
    
    			_sphere.copy( geometry.boundingSphere ).
    			applyMatrix4( object.matrixWorld );
    
    			return isSphereViewable( _sphere );
    
    		}
    
    		function isSpriteViewable( sprite ) {
    
    			_sphere.center.set( 0, 0, 0 );
    			_sphere.radius = 0.7071067811865476;
    			_sphere.applyMatrix4( sprite.matrixWorld );
    
    			return isSphereViewable( _sphere );
    
    		}
    
    		function isSphereViewable( sphere ) {
    
    			if ( ! _frustum.intersectsSphere( sphere ) ) return false;
    
    			var numPlanes = _clipping.numPlanes;
    
    			if ( numPlanes === 0 ) return true;
    
    			var planes = _this.clippingPlanes,
    
    				center = sphere.center,
    				negRad = - sphere.radius,
    				i = 0;
    
    			do {
    
    				// out when deeper than radius in the negative halfspace
    				if ( planes[ i ].distanceToPoint( center ) < negRad ) return false;
    
    			} while ( ++ i !== numPlanes );
    
    			return true;
    
    		}
    		*/
    
    		function projectObject( object, camera, sortObjects ) {
    
    			if ( ! object.visible ) return;
    
    			var visible = object.layers.test( camera.layers );
    
    			if ( visible ) {
    
    				if ( object.isLight ) {
    
    					lights.push( object );
    
    				} else if ( object.isSprite ) {
    
    					if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {
    
    						sprites.push( object );
    
    					}
    
    				} else if ( object.isLensFlare ) {
    
    					lensFlares.push( object );
    
    				} else if ( object.isImmediateRenderObject ) {
    
    					if ( sortObjects ) {
    
    						_vector3.setFromMatrixPosition( object.matrixWorld )
    							.applyMatrix4( _projScreenMatrix );
    
    					}
    
    					currentRenderList.push( object, null, object.material, _vector3.z, null );
    
    				} else if ( object.isMesh || object.isLine || object.isPoints ) {
    
    					if ( object.isSkinnedMesh ) {
    
    						object.skeleton.update();
    
    					}
    
    					if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {
    
    						if ( sortObjects ) {
    
    							_vector3.setFromMatrixPosition( object.matrixWorld )
    								.applyMatrix4( _projScreenMatrix );
    
    						}
    
    						var geometry = objects.update( object );
    						var material = object.material;
    
    						if ( Array.isArray( material ) ) {
    
    							var groups = geometry.groups;
    
    							for ( var i = 0, l = groups.length; i < l; i ++ ) {
    
    								var group = groups[ i ];
    								var groupMaterial = material[ group.materialIndex ];
    
    								if ( groupMaterial && groupMaterial.visible ) {
    
    									currentRenderList.push( object, geometry, groupMaterial, _vector3.z, group );
    
    								}
    
    							}
    
    						} else if ( material.visible ) {
    
    							currentRenderList.push( object, geometry, material, _vector3.z, null );
    
    						}
    
    					}
    
    				}
    
    			}
    
    			var children = object.children;
    
    			for ( var i = 0, l = children.length; i < l; i ++ ) {
    
    				projectObject( children[ i ], camera, sortObjects );
    
    			}
    
    		}
    
    		function renderObjects( renderList, scene, camera, overrideMaterial ) {
    
    			for ( var i = 0, l = renderList.length; i < l; i ++ ) {
    
    				var renderItem = renderList[ i ];
    
    				var object = renderItem.object;
    				var geometry = renderItem.geometry;
    				var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial;
    				var group = renderItem.group;
    
    				object.onBeforeRender( _this, scene, camera, geometry, material, group );
    
    				if ( camera.isArrayCamera && camera.enabled ) {
    
    					var cameras = camera.cameras;
    
    					for ( var j = 0, jl = cameras.length; j < jl; j ++ ) {
    
    						var camera2 = cameras[ j ];
    						var bounds = camera2.bounds;
    
    						_this.setViewport(
    							bounds.x * _width * _pixelRatio, bounds.y * _height * _pixelRatio,
    							bounds.z * _width * _pixelRatio, bounds.w * _height * _pixelRatio
    						);
    						_this.setScissor(
    							bounds.x * _width * _pixelRatio, bounds.y * _height * _pixelRatio,
    							bounds.z * _width * _pixelRatio, bounds.w * _height * _pixelRatio
    						);
    						_this.setScissorTest( true );
    
    						renderObject( object, scene, camera2, geometry, material, group );
    
    					}
    
    				} else {
    
    					renderObject( object, scene, camera, geometry, material, group );
    
    				}
    
    				object.onAfterRender( _this, scene, camera, geometry, material, group );
    
    			}
    
    		}
    
    		function renderObject( object, scene, camera, geometry, material, group ) {
    
    			object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
    			object.normalMatrix.getNormalMatrix( object.modelViewMatrix );
    
    			if ( object.isImmediateRenderObject ) {
    
    				state.setMaterial( material );
    
    				var program = setProgram( camera, scene.fog, material, object );
    
    				_currentGeometryProgram = '';
    
    				renderObjectImmediate( object, program, material );
    
    			} else {
    
    				_this.renderBufferDirect( camera, scene.fog, geometry, material, object, group );
    
    			}
    
    		}
    
    		function initMaterial( material, fog, object ) {
    
    			var materialProperties = properties.get( material );
    
    			var parameters = programCache.getParameters(
    				material, _lights, fog, _clipping.numPlanes, _clipping.numIntersection, object );
    
    			var code = programCache.getProgramCode( material, parameters );
    
    			var program = materialProperties.program;
    			var programChange = true;
    
    			if ( program === undefined ) {
    
    				// new material
    				material.addEventListener( 'dispose', onMaterialDispose );
    
    			} else if ( program.code !== code ) {
    
    				// changed glsl or parameters
    				releaseMaterialProgramReference( material );
    
    			} else if ( parameters.shaderID !== undefined ) {
    
    				// same glsl and uniform list
    				return;
    
    			} else {
    
    				// only rebuild uniform list
    				programChange = false;
    
    			}
    
    			if ( programChange ) {
    
    				if ( parameters.shaderID ) {
    
    					var shader = ShaderLib[ parameters.shaderID ];
    
    					materialProperties.__webglShader = {
    						name: material.type,
    						uniforms: UniformsUtils.clone( shader.uniforms ),
    						vertexShader: shader.vertexShader,
    						fragmentShader: shader.fragmentShader
    					};
    
    				} else {
    
    					materialProperties.__webglShader = {
    						name: material.type,
    						uniforms: material.uniforms,
    						vertexShader: material.vertexShader,
    						fragmentShader: material.fragmentShader
    					};
    
    				}
    
    				material.__webglShader = materialProperties.__webglShader;
    
    				program = programCache.acquireProgram( material, parameters, code );
    
    				materialProperties.program = program;
    				material.program = program;
    
    			}
    
    			var programAttributes = program.getAttributes();
    
    			if ( material.morphTargets ) {
    
    				material.numSupportedMorphTargets = 0;
    
    				for ( var i = 0; i < _this.maxMorphTargets; i ++ ) {
    
    					if ( programAttributes[ 'morphTarget' + i ] >= 0 ) {
    
    						material.numSupportedMorphTargets ++;
    
    					}
    
    				}
    
    			}
    
    			if ( material.morphNormals ) {
    
    				material.numSupportedMorphNormals = 0;
    
    				for ( var i = 0; i < _this.maxMorphNormals; i ++ ) {
    
    					if ( programAttributes[ 'morphNormal' + i ] >= 0 ) {
    
    						material.numSupportedMorphNormals ++;
    
    					}
    
    				}
    
    			}
    
    			var uniforms = materialProperties.__webglShader.uniforms;
    
    			if ( ! material.isShaderMaterial &&
    				! material.isRawShaderMaterial ||
    				material.clipping === true ) {
    
    				materialProperties.numClippingPlanes = _clipping.numPlanes;
    				materialProperties.numIntersection = _clipping.numIntersection;
    				uniforms.clippingPlanes = _clipping.uniform;
    
    			}
    
    			materialProperties.fog = fog;
    
    			// store the light setup it was created for
    
    			materialProperties.lightsHash = _lights.hash;
    
    			if ( material.lights ) {
    
    				// wire up the material to this renderer's lighting state
    
    				uniforms.ambientLightColor.value = _lights.ambient;
    				uniforms.directionalLights.value = _lights.directional;
    				uniforms.spotLights.value = _lights.spot;
    				uniforms.rectAreaLights.value = _lights.rectArea;
    				uniforms.pointLights.value = _lights.point;
    				uniforms.hemisphereLights.value = _lights.hemi;
    
    				uniforms.directionalShadowMap.value = _lights.directionalShadowMap;
    				uniforms.directionalShadowMatrix.value = _lights.directionalShadowMatrix;
    				uniforms.spotShadowMap.value = _lights.spotShadowMap;
    				uniforms.spotShadowMatrix.value = _lights.spotShadowMatrix;
    				uniforms.pointShadowMap.value = _lights.pointShadowMap;
    				uniforms.pointShadowMatrix.value = _lights.pointShadowMatrix;
    				// TODO (abelnation): add area lights shadow info to uniforms
    
    			}
    
    			var progUniforms = materialProperties.program.getUniforms(),
    				uniformsList =
    					WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );
    
    			materialProperties.uniformsList = uniformsList;
    
    		}
    
    		function setProgram( camera, fog, material, object ) {
    
    			_usedTextureUnits = 0;
    
    			var materialProperties = properties.get( material );
    
    			if ( _clippingEnabled ) {
    
    				if ( _localClippingEnabled || camera !== _currentCamera ) {
    
    					var useCache =
    						camera === _currentCamera &&
    						material.id === _currentMaterialId;
    
    					// we might want to call this function with some ClippingGroup
    					// object instead of the material, once it becomes feasible
    					// (#8465, #8379)
    					_clipping.setState(
    						material.clippingPlanes, material.clipIntersection, material.clipShadows,
    						camera, materialProperties, useCache );
    
    				}
    
    			}
    
    			if ( material.needsUpdate === false ) {
    
    				if ( materialProperties.program === undefined ) {
    
    					material.needsUpdate = true;
    
    				} else if ( material.fog && materialProperties.fog !== fog ) {
    
    					material.needsUpdate = true;
    
    				} else if ( material.lights && materialProperties.lightsHash !== _lights.hash ) {
    
    					material.needsUpdate = true;
    
    				} else if ( materialProperties.numClippingPlanes !== undefined &&
    					( materialProperties.numClippingPlanes !== _clipping.numPlanes ||
    					materialProperties.numIntersection !== _clipping.numIntersection ) ) {
    
    					material.needsUpdate = true;
    
    				}
    
    			}
    
    			if ( material.needsUpdate ) {
    
    				initMaterial( material, fog, object );
    				material.needsUpdate = false;
    
    			}
    
    			var refreshProgram = false;
    			var refreshMaterial = false;
    			var refreshLights = false;
    
    			var program = materialProperties.program,
    				p_uniforms = program.getUniforms(),
    				m_uniforms = materialProperties.__webglShader.uniforms;
    
    			if ( program.id !== _currentProgram ) {
    
    				_gl.useProgram( program.program );
    				_currentProgram = program.id;
    
    				refreshProgram = true;
    				refreshMaterial = true;
    				refreshLights = true;
    
    			}
    
    			if ( material.id !== _currentMaterialId ) {
    
    				_currentMaterialId = material.id;
    
    				refreshMaterial = true;
    
    			}
    
    			if ( refreshProgram || camera !== _currentCamera ) {
    
    				p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );
    
    				if ( capabilities.logarithmicDepthBuffer ) {
    
    					p_uniforms.setValue( _gl, 'logDepthBufFC',
    						2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );
    
    				}
    
    
    				if ( camera !== _currentCamera ) {
    
    					_currentCamera = camera;
    
    					// lighting uniforms depend on the camera so enforce an update
    					// now, in case this material supports lights - or later, when
    					// the next material that does gets activated:
    
    					refreshMaterial = true;		// set to true on material change
    					refreshLights = true;		// remains set until update done
    
    				}
    
    				// load material specific uniforms
    				// (shader material also gets them for the sake of genericity)
    
    				if ( material.isShaderMaterial ||
    					material.isMeshPhongMaterial ||
    					material.isMeshStandardMaterial ||
    					material.envMap ) {
    
    					var uCamPos = p_uniforms.map.cameraPosition;
    
    					if ( uCamPos !== undefined ) {
    
    						uCamPos.setValue( _gl,
    							_vector3.setFromMatrixPosition( camera.matrixWorld ) );
    
    					}
    
    				}
    
    				if ( material.isMeshPhongMaterial ||
    					material.isMeshLambertMaterial ||
    					material.isMeshBasicMaterial ||
    					material.isMeshStandardMaterial ||
    					material.isShaderMaterial ||
    					material.skinning ) {
    
    					p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );
    
    				}
    
    				p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure );
    				p_uniforms.setValue( _gl, 'toneMappingWhitePoint', _this.toneMappingWhitePoint );
    
    			}
    
    			// skinning uniforms must be set even if material didn't change
    			// auto-setting of texture unit for bone texture must go before other textures
    			// not sure why, but otherwise weird things happen
    
    			if ( material.skinning ) {
    
    				p_uniforms.setOptional( _gl, object, 'bindMatrix' );
    				p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );
    
    				var skeleton = object.skeleton;
    
    				if ( skeleton ) {
    
    					var bones = skeleton.bones;
    
    					if ( capabilities.floatVertexTextures ) {
    
    						if ( skeleton.boneTexture === undefined ) {
    
    							// layout (1 matrix = 4 pixels)
    							//      RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
    							//  with  8x8  pixel texture max   16 bones * 4 pixels =  (8 * 8)
    							//       16x16 pixel texture max   64 bones * 4 pixels = (16 * 16)
    							//       32x32 pixel texture max  256 bones * 4 pixels = (32 * 32)
    							//       64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
    
    
    							var size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix
    							size = _Math.nextPowerOfTwo( Math.ceil( size ) );
    							size = Math.max( size, 4 );
    
    							var boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel
    							boneMatrices.set( skeleton.boneMatrices ); // copy current values
    
    							var boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType );
    
    							skeleton.boneMatrices = boneMatrices;
    							skeleton.boneTexture = boneTexture;
    							skeleton.boneTextureSize = size;
    
    						}
    
    						p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture );
    						p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize );
    
    					} else {
    
    						p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );
    
    					}
    
    				}
    
    			}
    
    			if ( refreshMaterial ) {
    
    				if ( material.lights ) {
    
    					// the current material requires lighting info
    
    					// note: all lighting uniforms are always set correctly
    					// they simply reference the renderer's state for their
    					// values
    					//
    					// use the current material's .needsUpdate flags to set
    					// the GL state when required
    
    					markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );
    
    				}
    
    				// refresh uniforms common to several materials
    
    				if ( fog && material.fog ) {
    
    					refreshUniformsFog( m_uniforms, fog );
    
    				}
    
    				if ( material.isMeshBasicMaterial ||
    					material.isMeshLambertMaterial ||
    					material.isMeshPhongMaterial ||
    					material.isMeshStandardMaterial ||
    					material.isMeshNormalMaterial ||
    					material.isMeshDepthMaterial ) {
    
    					refreshUniformsCommon( m_uniforms, material );
    
    				}
    
    				// refresh single material specific uniforms
    
    				if ( material.isLineBasicMaterial ) {
    
    					refreshUniformsLine( m_uniforms, material );
    
    				} else if ( material.isLineDashedMaterial ) {
    
    					refreshUniformsLine( m_uniforms, material );
    					refreshUniformsDash( m_uniforms, material );
    
    				} else if ( material.isPointsMaterial ) {
    
    					refreshUniformsPoints( m_uniforms, material );
    
    				} else if ( material.isMeshLambertMaterial ) {
    
    					refreshUniformsLambert( m_uniforms, material );
    
    				} else if ( material.isMeshToonMaterial ) {
    
    					refreshUniformsToon( m_uniforms, material );
    
    				} else if ( material.isMeshPhongMaterial ) {
    
    					refreshUniformsPhong( m_uniforms, material );
    
    				} else if ( material.isMeshPhysicalMaterial ) {
    
    					refreshUniformsPhysical( m_uniforms, material );
    
    				} else if ( material.isMeshStandardMaterial ) {
    
    					refreshUniformsStandard( m_uniforms, material );
    
    				} else if ( material.isMeshDepthMaterial ) {
    
    					if ( material.displacementMap ) {
    
    						m_uniforms.displacementMap.value = material.displacementMap;
    						m_uniforms.displacementScale.value = material.displacementScale;
    						m_uniforms.displacementBias.value = material.displacementBias;
    
    					}
    
    				} else if ( material.isMeshNormalMaterial ) {
    
    					refreshUniformsNormal( m_uniforms, material );
    
    				}
    
    				// RectAreaLight Texture
    				// TODO (mrdoob): Find a nicer implementation
    
    				if ( m_uniforms.ltcMat !== undefined ) m_uniforms.ltcMat.value = UniformsLib.LTC_MAT_TEXTURE;
    				if ( m_uniforms.ltcMag !== undefined ) m_uniforms.ltcMag.value = UniformsLib.LTC_MAG_TEXTURE;
    
    				WebGLUniforms.upload(
    					_gl, materialProperties.uniformsList, m_uniforms, _this );
    
    			}
    
    
    			// common matrices
    
    			p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix );
    			p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix );
    			p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );
    
    			return program;
    
    		}
    
    		// Uniforms (refresh uniforms objects)
    
    		function refreshUniformsCommon( uniforms, material ) {
    
    			uniforms.opacity.value = material.opacity;
    
    			uniforms.diffuse.value = material.color;
    
    			if ( material.emissive ) {
    
    				uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );
    
    			}
    
    			uniforms.map.value = material.map;
    			uniforms.specularMap.value = material.specularMap;
    			uniforms.alphaMap.value = material.alphaMap;
    
    			if ( material.lightMap ) {
    
    				uniforms.lightMap.value = material.lightMap;
    				uniforms.lightMapIntensity.value = material.lightMapIntensity;
    
    			}
    
    			if ( material.aoMap ) {
    
    				uniforms.aoMap.value = material.aoMap;
    				uniforms.aoMapIntensity.value = material.aoMapIntensity;
    
    			}
    
    			// uv repeat and offset setting priorities
    			// 1. color map
    			// 2. specular map
    			// 3. normal map
    			// 4. bump map
    			// 5. alpha map
    			// 6. emissive map
    
    			var uvScaleMap;
    
    			if ( material.map ) {
    
    				uvScaleMap = material.map;
    
    			} else if ( material.specularMap ) {
    
    				uvScaleMap = material.specularMap;
    
    			} else if ( material.displacementMap ) {
    
    				uvScaleMap = material.displacementMap;
    
    			} else if ( material.normalMap ) {
    
    				uvScaleMap = material.normalMap;
    
    			} else if ( material.bumpMap ) {
    
    				uvScaleMap = material.bumpMap;
    
    			} else if ( material.roughnessMap ) {
    
    				uvScaleMap = material.roughnessMap;
    
    			} else if ( material.metalnessMap ) {
    
    				uvScaleMap = material.metalnessMap;
    
    			} else if ( material.alphaMap ) {
    
    				uvScaleMap = material.alphaMap;
    
    			} else if ( material.emissiveMap ) {
    
    				uvScaleMap = material.emissiveMap;
    
    			}
    
    			if ( uvScaleMap !== undefined ) {
    
    				// backwards compatibility
    				if ( uvScaleMap.isWebGLRenderTarget ) {
    
    					uvScaleMap = uvScaleMap.texture;
    
    				}
    
    				var offset = uvScaleMap.offset;
    				var repeat = uvScaleMap.repeat;
    
    				uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y );
    
    			}
    
    			uniforms.envMap.value = material.envMap;
    
    			// don't flip CubeTexture envMaps, flip everything else:
    			//  WebGLRenderTargetCube will be flipped for backwards compatibility
    			//  WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture
    			// this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future
    			uniforms.flipEnvMap.value = ( ! ( material.envMap && material.envMap.isCubeTexture ) ) ? 1 : - 1;
    
    			uniforms.reflectivity.value = material.reflectivity;
    			uniforms.refractionRatio.value = material.refractionRatio;
    
    		}
    
    		function refreshUniformsLine( uniforms, material ) {
    
    			uniforms.diffuse.value = material.color;
    			uniforms.opacity.value = material.opacity;
    
    		}
    
    		function refreshUniformsDash( uniforms, material ) {
    
    			uniforms.dashSize.value = material.dashSize;
    			uniforms.totalSize.value = material.dashSize + material.gapSize;
    			uniforms.scale.value = material.scale;
    
    		}
    
    		function refreshUniformsPoints( uniforms, material ) {
    
    			uniforms.diffuse.value = material.color;
    			uniforms.opacity.value = material.opacity;
    			uniforms.size.value = material.size * _pixelRatio;
    			uniforms.scale.value = _height * 0.5;
    
    			uniforms.map.value = material.map;
    
    			if ( material.map !== null ) {
    
    				var offset = material.map.offset;
    				var repeat = material.map.repeat;
    
    				uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y );
    
    			}
    
    		}
    
    		function refreshUniformsFog( uniforms, fog ) {
    
    			uniforms.fogColor.value = fog.color;
    
    			if ( fog.isFog ) {
    
    				uniforms.fogNear.value = fog.near;
    				uniforms.fogFar.value = fog.far;
    
    			} else if ( fog.isFogExp2 ) {
    
    				uniforms.fogDensity.value = fog.density;
    
    			}
    
    		}
    
    		function refreshUniformsLambert( uniforms, material ) {
    
    			if ( material.emissiveMap ) {
    
    				uniforms.emissiveMap.value = material.emissiveMap;
    
    			}
    
    		}
    
    		function refreshUniformsPhong( uniforms, material ) {
    
    			uniforms.specular.value = material.specular;
    			uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )
    
    			if ( material.emissiveMap ) {
    
    				uniforms.emissiveMap.value = material.emissiveMap;
    
    			}
    
    			if ( material.bumpMap ) {
    
    				uniforms.bumpMap.value = material.bumpMap;
    				uniforms.bumpScale.value = material.bumpScale;
    
    			}
    
    			if ( material.normalMap ) {
    
    				uniforms.normalMap.value = material.normalMap;
    				uniforms.normalScale.value.copy( material.normalScale );
    
    			}
    
    			if ( material.displacementMap ) {
    
    				uniforms.displacementMap.value = material.displacementMap;
    				uniforms.displacementScale.value = material.displacementScale;
    				uniforms.displacementBias.value = material.displacementBias;
    
    			}
    
    		}
    
    		function refreshUniformsToon( uniforms, material ) {
    
    			refreshUniformsPhong( uniforms, material );
    
    			if ( material.gradientMap ) {
    
    				uniforms.gradientMap.value = material.gradientMap;
    
    			}
    
    		}
    
    		function refreshUniformsStandard( uniforms, material ) {
    
    			uniforms.roughness.value = material.roughness;
    			uniforms.metalness.value = material.metalness;
    
    			if ( material.roughnessMap ) {
    
    				uniforms.roughnessMap.value = material.roughnessMap;
    
    			}
    
    			if ( material.metalnessMap ) {
    
    				uniforms.metalnessMap.value = material.metalnessMap;
    
    			}
    
    			if ( material.emissiveMap ) {
    
    				uniforms.emissiveMap.value = material.emissiveMap;
    
    			}
    
    			if ( material.bumpMap ) {
    
    				uniforms.bumpMap.value = material.bumpMap;
    				uniforms.bumpScale.value = material.bumpScale;
    
    			}
    
    			if ( material.normalMap ) {
    
    				uniforms.normalMap.value = material.normalMap;
    				uniforms.normalScale.value.copy( material.normalScale );
    
    			}
    
    			if ( material.displacementMap ) {
    
    				uniforms.displacementMap.value = material.displacementMap;
    				uniforms.displacementScale.value = material.displacementScale;
    				uniforms.displacementBias.value = material.displacementBias;
    
    			}
    
    			if ( material.envMap ) {
    
    				//uniforms.envMap.value = material.envMap; // part of uniforms common
    				uniforms.envMapIntensity.value = material.envMapIntensity;
    
    			}
    
    		}
    
    		function refreshUniformsPhysical( uniforms, material ) {
    
    			uniforms.clearCoat.value = material.clearCoat;
    			uniforms.clearCoatRoughness.value = material.clearCoatRoughness;
    
    			refreshUniformsStandard( uniforms, material );
    
    		}
    
    		function refreshUniformsNormal( uniforms, material ) {
    
    			if ( material.bumpMap ) {
    
    				uniforms.bumpMap.value = material.bumpMap;
    				uniforms.bumpScale.value = material.bumpScale;
    
    			}
    
    			if ( material.normalMap ) {
    
    				uniforms.normalMap.value = material.normalMap;
    				uniforms.normalScale.value.copy( material.normalScale );
    
    			}
    
    			if ( material.displacementMap ) {
    
    				uniforms.displacementMap.value = material.displacementMap;
    				uniforms.displacementScale.value = material.displacementScale;
    				uniforms.displacementBias.value = material.displacementBias;
    
    			}
    
    		}
    
    		// If uniforms are marked as clean, they don't need to be loaded to the GPU.
    
    		function markUniformsLightsNeedsUpdate( uniforms, value ) {
    
    			uniforms.ambientLightColor.needsUpdate = value;
    
    			uniforms.directionalLights.needsUpdate = value;
    			uniforms.pointLights.needsUpdate = value;
    			uniforms.spotLights.needsUpdate = value;
    			uniforms.rectAreaLights.needsUpdate = value;
    			uniforms.hemisphereLights.needsUpdate = value;
    
    		}
    
    		// Lighting
    
    		function setupShadows( lights ) {
    
    			var lightShadowsLength = 0;
    
    			for ( var i = 0, l = lights.length; i < l; i ++ ) {
    
    				var light = lights[ i ];
    
    				if ( light.castShadow ) {
    
    					_lights.shadows[ lightShadowsLength ] = light;
    					lightShadowsLength ++;
    
    				}
    
    			}
    
    			_lights.shadows.length = lightShadowsLength;
    
    		}
    
    		function setupLights( lights, camera ) {
    
    			var l, ll, light, shadow,
    				r = 0, g = 0, b = 0,
    				color,
    				intensity,
    				distance,
    				shadowMap,
    
    				viewMatrix = camera.matrixWorldInverse,
    
    				directionalLength = 0,
    				pointLength = 0,
    				spotLength = 0,
    				rectAreaLength = 0,
    				hemiLength = 0;
    
    			for ( l = 0, ll = lights.length; l < ll; l ++ ) {
    
    				light = lights[ l ];
    
    				color = light.color;
    				intensity = light.intensity;
    				distance = light.distance;
    
    				shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null;
    
    				if ( light.isAmbientLight ) {
    
    					r += color.r * intensity;
    					g += color.g * intensity;
    					b += color.b * intensity;
    
    				} else if ( light.isDirectionalLight ) {
    
    					var uniforms = lightCache.get( light );
    
    					uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
    					uniforms.direction.setFromMatrixPosition( light.matrixWorld );
    					_vector3.setFromMatrixPosition( light.target.matrixWorld );
    					uniforms.direction.sub( _vector3 );
    					uniforms.direction.transformDirection( viewMatrix );
    
    					uniforms.shadow = light.castShadow;
    
    					if ( light.castShadow ) {
    
    						shadow = light.shadow;
    
    						uniforms.shadowBias = shadow.bias;
    						uniforms.shadowRadius = shadow.radius;
    						uniforms.shadowMapSize = shadow.mapSize;
    
    					}
    
    					_lights.directionalShadowMap[ directionalLength ] = shadowMap;
    					_lights.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;
    					_lights.directional[ directionalLength ] = uniforms;
    
    					directionalLength ++;
    
    				} else if ( light.isSpotLight ) {
    
    					var uniforms = lightCache.get( light );
    
    					uniforms.position.setFromMatrixPosition( light.matrixWorld );
    					uniforms.position.applyMatrix4( viewMatrix );
    
    					uniforms.color.copy( color ).multiplyScalar( intensity );
    					uniforms.distance = distance;
    
    					uniforms.direction.setFromMatrixPosition( light.matrixWorld );
    					_vector3.setFromMatrixPosition( light.target.matrixWorld );
    					uniforms.direction.sub( _vector3 );
    					uniforms.direction.transformDirection( viewMatrix );
    
    					uniforms.coneCos = Math.cos( light.angle );
    					uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) );
    					uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;
    
    					uniforms.shadow = light.castShadow;
    
    					if ( light.castShadow ) {
    
    						shadow = light.shadow;
    
    						uniforms.shadowBias = shadow.bias;
    						uniforms.shadowRadius = shadow.radius;
    						uniforms.shadowMapSize = shadow.mapSize;
    
    					}
    
    					_lights.spotShadowMap[ spotLength ] = shadowMap;
    					_lights.spotShadowMatrix[ spotLength ] = light.shadow.matrix;
    					_lights.spot[ spotLength ] = uniforms;
    
    					spotLength ++;
    
    				} else if ( light.isRectAreaLight ) {
    
    					var uniforms = lightCache.get( light );
    
    					// (a) intensity controls irradiance of entire light
    					uniforms.color
    						.copy( color )
    						.multiplyScalar( intensity / ( light.width * light.height ) );
    
    					// (b) intensity controls the radiance per light area
    					// uniforms.color.copy( color ).multiplyScalar( intensity );
    
    					uniforms.position.setFromMatrixPosition( light.matrixWorld );
    					uniforms.position.applyMatrix4( viewMatrix );
    
    					// extract local rotation of light to derive width/height half vectors
    					_matrix42.identity();
    					_matrix4.copy( light.matrixWorld );
    					_matrix4.premultiply( viewMatrix );
    					_matrix42.extractRotation( _matrix4 );
    
    					uniforms.halfWidth.set( light.width * 0.5,                0.0, 0.0 );
    					uniforms.halfHeight.set(              0.0, light.height * 0.5, 0.0 );
    
    					uniforms.halfWidth.applyMatrix4( _matrix42 );
    					uniforms.halfHeight.applyMatrix4( _matrix42 );
    
    					// TODO (abelnation): RectAreaLight distance?
    					// uniforms.distance = distance;
    
    					_lights.rectArea[ rectAreaLength ] = uniforms;
    
    					rectAreaLength ++;
    
    				} else if ( light.isPointLight ) {
    
    					var uniforms = lightCache.get( light );
    
    					uniforms.position.setFromMatrixPosition( light.matrixWorld );
    					uniforms.position.applyMatrix4( viewMatrix );
    
    					uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
    					uniforms.distance = light.distance;
    					uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;
    
    					uniforms.shadow = light.castShadow;
    
    					if ( light.castShadow ) {
    
    						shadow = light.shadow;
    
    						uniforms.shadowBias = shadow.bias;
    						uniforms.shadowRadius = shadow.radius;
    						uniforms.shadowMapSize = shadow.mapSize;
    
    					}
    
    					_lights.pointShadowMap[ pointLength ] = shadowMap;
    					_lights.pointShadowMatrix[ pointLength ] = light.shadow.matrix;
    					_lights.point[ pointLength ] = uniforms;
    
    					pointLength ++;
    
    				} else if ( light.isHemisphereLight ) {
    
    					var uniforms = lightCache.get( light );
    
    					uniforms.direction.setFromMatrixPosition( light.matrixWorld );
    					uniforms.direction.transformDirection( viewMatrix );
    					uniforms.direction.normalize();
    
    					uniforms.skyColor.copy( light.color ).multiplyScalar( intensity );
    					uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );
    
    					_lights.hemi[ hemiLength ] = uniforms;
    
    					hemiLength ++;
    
    				}
    
    			}
    
    			_lights.ambient[ 0 ] = r;
    			_lights.ambient[ 1 ] = g;
    			_lights.ambient[ 2 ] = b;
    
    			_lights.directional.length = directionalLength;
    			_lights.spot.length = spotLength;
    			_lights.rectArea.length = rectAreaLength;
    			_lights.point.length = pointLength;
    			_lights.hemi.length = hemiLength;
    
    			// TODO (sam-g-steel) why aren't we using join
    			_lights.hash = directionalLength + ',' + pointLength + ',' + spotLength + ',' + rectAreaLength + ',' + hemiLength + ',' + _lights.shadows.length;
    
    		}
    
    		// GL state setting
    
    		this.setFaceCulling = function ( cullFace, frontFaceDirection ) {
    
    			state.setCullFace( cullFace );
    			state.setFlipSided( frontFaceDirection === FrontFaceDirectionCW );
    
    		};
    
    		// Textures
    
    		function allocTextureUnit() {
    
    			var textureUnit = _usedTextureUnits;
    
    			if ( textureUnit >= capabilities.maxTextures ) {
    
    				console.warn( 'WebGLRenderer: trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures );
    
    			}
    
    			_usedTextureUnits += 1;
    
    			return textureUnit;
    
    		}
    
    		this.allocTextureUnit = allocTextureUnit;
    
    		// this.setTexture2D = setTexture2D;
    		this.setTexture2D = ( function () {
    
    			var warned = false;
    
    			// backwards compatibility: peel texture.texture
    			return function setTexture2D( texture, slot ) {
    
    				if ( texture && texture.isWebGLRenderTarget ) {
    
    					if ( ! warned ) {
    
    						console.warn( "THREE.WebGLRenderer.setTexture2D: don't use render targets as textures. Use their .texture property instead." );
    						warned = true;
    
    					}
    
    					texture = texture.texture;
    
    				}
    
    				textures.setTexture2D( texture, slot );
    
    			};
    
    		}() );
    
    		this.setTexture = ( function () {
    
    			var warned = false;
    
    			return function setTexture( texture, slot ) {
    
    				if ( ! warned ) {
    
    					console.warn( "THREE.WebGLRenderer: .setTexture is deprecated, use setTexture2D instead." );
    					warned = true;
    
    				}
    
    				textures.setTexture2D( texture, slot );
    
    			};
    
    		}() );
    
    		this.setTextureCube = ( function () {
    
    			var warned = false;
    
    			return function setTextureCube( texture, slot ) {
    
    				// backwards compatibility: peel texture.texture
    				if ( texture && texture.isWebGLRenderTargetCube ) {
    
    					if ( ! warned ) {
    
    						console.warn( "THREE.WebGLRenderer.setTextureCube: don't use cube render targets as textures. Use their .texture property instead." );
    						warned = true;
    
    					}
    
    					texture = texture.texture;
    
    				}
    
    				// currently relying on the fact that WebGLRenderTargetCube.texture is a Texture and NOT a CubeTexture
    				// TODO: unify these code paths
    				if ( ( texture && texture.isCubeTexture ) ||
    					( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {
    
    					// CompressedTexture can have Array in image :/
    
    					// this function alone should take care of cube textures
    					textures.setTextureCube( texture, slot );
    
    				} else {
    
    					// assumed: texture property of THREE.WebGLRenderTargetCube
    
    					textures.setTextureCubeDynamic( texture, slot );
    
    				}
    
    			};
    
    		}() );
    
    		this.getRenderTarget = function () {
    
    			return _currentRenderTarget;
    
    		};
    
    		this.setRenderTarget = function ( renderTarget ) {
    
    			_currentRenderTarget = renderTarget;
    
    			if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {
    
    				textures.setupRenderTarget( renderTarget );
    
    			}
    
    			var isCube = ( renderTarget && renderTarget.isWebGLRenderTargetCube );
    			var framebuffer;
    
    			if ( renderTarget ) {
    
    				var renderTargetProperties = properties.get( renderTarget );
    
    				if ( isCube ) {
    
    					framebuffer = renderTargetProperties.__webglFramebuffer[ renderTarget.activeCubeFace ];
    
    				} else {
    
    					framebuffer = renderTargetProperties.__webglFramebuffer;
    
    				}
    
    				_currentScissor.copy( renderTarget.scissor );
    				_currentScissorTest = renderTarget.scissorTest;
    
    				_currentViewport.copy( renderTarget.viewport );
    
    			} else {
    
    				framebuffer = null;
    
    				_currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio );
    				_currentScissorTest = _scissorTest;
    
    				_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio );
    
    			}
    
    			if ( _currentFramebuffer !== framebuffer ) {
    
    				_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
    				_currentFramebuffer = framebuffer;
    
    			}
    
    			state.scissor( _currentScissor );
    			state.setScissorTest( _currentScissorTest );
    
    			state.viewport( _currentViewport );
    
    			if ( isCube ) {
    
    				var textureProperties = properties.get( renderTarget.texture );
    				_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel );
    
    			}
    
    		};
    
    		this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) {
    
    			if ( ( renderTarget && renderTarget.isWebGLRenderTarget ) === false ) {
    
    				console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
    				return;
    
    			}
    
    			var framebuffer = properties.get( renderTarget ).__webglFramebuffer;
    
    			if ( framebuffer ) {
    
    				var restore = false;
    
    				if ( framebuffer !== _currentFramebuffer ) {
    
    					_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
    
    					restore = true;
    
    				}
    
    				try {
    
    					var texture = renderTarget.texture;
    					var textureFormat = texture.format;
    					var textureType = texture.type;
    
    					if ( textureFormat !== RGBAFormat && paramThreeToGL( textureFormat ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) {
    
    						console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
    						return;
    
    					}
    
    					if ( textureType !== UnsignedByteType && paramThreeToGL( textureType ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) && // IE11, Edge and Chrome Mac < 52 (#9513)
    						! ( textureType === FloatType && ( extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox
    						! ( textureType === HalfFloatType && extensions.get( 'EXT_color_buffer_half_float' ) ) ) {
    
    						console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
    						return;
    
    					}
    
    					if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) {
    
    						// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
    
    						if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {
    
    							_gl.readPixels( x, y, width, height, paramThreeToGL( textureFormat ), paramThreeToGL( textureType ), buffer );
    
    						}
    
    					} else {
    
    						console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );
    
    					}
    
    				} finally {
    
    					if ( restore ) {
    
    						_gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer );
    
    					}
    
    				}
    
    			}
    
    		};
    
    		// Map three.js constants to WebGL constants
    
    		function paramThreeToGL( p ) {
    
    			var extension;
    
    			if ( p === RepeatWrapping ) return _gl.REPEAT;
    			if ( p === ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE;
    			if ( p === MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT;
    
    			if ( p === NearestFilter ) return _gl.NEAREST;
    			if ( p === NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST;
    			if ( p === NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR;
    
    			if ( p === LinearFilter ) return _gl.LINEAR;
    			if ( p === LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST;
    			if ( p === LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR;
    
    			if ( p === UnsignedByteType ) return _gl.UNSIGNED_BYTE;
    			if ( p === UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4;
    			if ( p === UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1;
    			if ( p === UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5;
    
    			if ( p === ByteType ) return _gl.BYTE;
    			if ( p === ShortType ) return _gl.SHORT;
    			if ( p === UnsignedShortType ) return _gl.UNSIGNED_SHORT;
    			if ( p === IntType ) return _gl.INT;
    			if ( p === UnsignedIntType ) return _gl.UNSIGNED_INT;
    			if ( p === FloatType ) return _gl.FLOAT;
    
    			if ( p === HalfFloatType ) {
    
    				extension = extensions.get( 'OES_texture_half_float' );
    
    				if ( extension !== null ) return extension.HALF_FLOAT_OES;
    
    			}
    
    			if ( p === AlphaFormat ) return _gl.ALPHA;
    			if ( p === RGBFormat ) return _gl.RGB;
    			if ( p === RGBAFormat ) return _gl.RGBA;
    			if ( p === LuminanceFormat ) return _gl.LUMINANCE;
    			if ( p === LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA;
    			if ( p === DepthFormat ) return _gl.DEPTH_COMPONENT;
    			if ( p === DepthStencilFormat ) return _gl.DEPTH_STENCIL;
    
    			if ( p === AddEquation ) return _gl.FUNC_ADD;
    			if ( p === SubtractEquation ) return _gl.FUNC_SUBTRACT;
    			if ( p === ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT;
    
    			if ( p === ZeroFactor ) return _gl.ZERO;
    			if ( p === OneFactor ) return _gl.ONE;
    			if ( p === SrcColorFactor ) return _gl.SRC_COLOR;
    			if ( p === OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR;
    			if ( p === SrcAlphaFactor ) return _gl.SRC_ALPHA;
    			if ( p === OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA;
    			if ( p === DstAlphaFactor ) return _gl.DST_ALPHA;
    			if ( p === OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA;
    
    			if ( p === DstColorFactor ) return _gl.DST_COLOR;
    			if ( p === OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR;
    			if ( p === SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE;
    
    			if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format ||
    				p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) {
    
    				extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );
    
    				if ( extension !== null ) {
    
    					if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
    					if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
    					if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
    					if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
    
    				}
    
    			}
    
    			if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format ||
    				p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) {
    
    				extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );
    
    				if ( extension !== null ) {
    
    					if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
    					if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
    					if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
    					if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
    
    				}
    
    			}
    
    			if ( p === RGB_ETC1_Format ) {
    
    				extension = extensions.get( 'WEBGL_compressed_texture_etc1' );
    
    				if ( extension !== null ) return extension.COMPRESSED_RGB_ETC1_WEBGL;
    
    			}
    
    			if ( p === MinEquation || p === MaxEquation ) {
    
    				extension = extensions.get( 'EXT_blend_minmax' );
    
    				if ( extension !== null ) {
    
    					if ( p === MinEquation ) return extension.MIN_EXT;
    					if ( p === MaxEquation ) return extension.MAX_EXT;
    
    				}
    
    			}
    
    			if ( p === UnsignedInt248Type ) {
    
    				extension = extensions.get( 'WEBGL_depth_texture' );
    
    				if ( extension !== null ) return extension.UNSIGNED_INT_24_8_WEBGL;
    
    			}
    
    			return 0;
    
    		}
    
    	}
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function FogExp2 ( color, density ) {
    
    		this.name = '';
    
    		this.color = new Color( color );
    		this.density = ( density !== undefined ) ? density : 0.00025;
    
    	}
    
    	FogExp2.prototype.isFogExp2 = true;
    
    	FogExp2.prototype.clone = function () {
    
    		return new FogExp2( this.color.getHex(), this.density );
    
    	};
    
    	FogExp2.prototype.toJSON = function ( meta ) {
    
    		return {
    			type: 'FogExp2',
    			color: this.color.getHex(),
    			density: this.density
    		};
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function Fog ( color, near, far ) {
    
    		this.name = '';
    
    		this.color = new Color( color );
    
    		this.near = ( near !== undefined ) ? near : 1;
    		this.far = ( far !== undefined ) ? far : 1000;
    
    	}
    
    	Fog.prototype.isFog = true;
    
    	Fog.prototype.clone = function () {
    
    		return new Fog( this.color.getHex(), this.near, this.far );
    
    	};
    
    	Fog.prototype.toJSON = function ( meta ) {
    
    		return {
    			type: 'Fog',
    			color: this.color.getHex(),
    			near: this.near,
    			far: this.far
    		};
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function Scene () {
    
    		Object3D.call( this );
    
    		this.type = 'Scene';
    
    		this.background = null;
    		this.fog = null;
    		this.overrideMaterial = null;
    
    		this.autoUpdate = true; // checked by the renderer
    
    	}
    
    	Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Scene,
    
    		copy: function ( source, recursive ) {
    
    			Object3D.prototype.copy.call( this, source, recursive );
    
    			if ( source.background !== null ) this.background = source.background.clone();
    			if ( source.fog !== null ) this.fog = source.fog.clone();
    			if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();
    
    			this.autoUpdate = source.autoUpdate;
    			this.matrixAutoUpdate = source.matrixAutoUpdate;
    
    			return this;
    
    		},
    
    		toJSON: function ( meta ) {
    
    			var data = Object3D.prototype.toJSON.call( this, meta );
    
    			if ( this.background !== null ) data.object.background = this.background.toJSON( meta );
    			if ( this.fog !== null ) data.object.fog = this.fog.toJSON();
    
    			return data;
    
    		}
    
    	} );
    
    	/**
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function LensFlare( texture, size, distance, blending, color ) {
    
    		Object3D.call( this );
    
    		this.lensFlares = [];
    
    		this.positionScreen = new Vector3();
    		this.customUpdateCallback = undefined;
    
    		if ( texture !== undefined ) {
    
    			this.add( texture, size, distance, blending, color );
    
    		}
    
    	}
    
    	LensFlare.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: LensFlare,
    
    		isLensFlare: true,
    
    		copy: function ( source ) {
    
    			Object3D.prototype.copy.call( this, source );
    
    			this.positionScreen.copy( source.positionScreen );
    			this.customUpdateCallback = source.customUpdateCallback;
    
    			for ( var i = 0, l = source.lensFlares.length; i < l; i ++ ) {
    
    				this.lensFlares.push( source.lensFlares[ i ] );
    
    			}
    
    			return this;
    
    		},
    
    		add: function ( texture, size, distance, blending, color, opacity ) {
    
    			if ( size === undefined ) size = - 1;
    			if ( distance === undefined ) distance = 0;
    			if ( opacity === undefined ) opacity = 1;
    			if ( color === undefined ) color = new Color( 0xffffff );
    			if ( blending === undefined ) blending = NormalBlending;
    
    			distance = Math.min( distance, Math.max( 0, distance ) );
    
    			this.lensFlares.push( {
    				texture: texture,	// THREE.Texture
    				size: size, 		// size in pixels (-1 = use texture.width)
    				distance: distance, 	// distance (0-1) from light source (0=at light source)
    				x: 0, y: 0, z: 0,	// screen position (-1 => 1) z = 0 is in front z = 1 is back
    				scale: 1, 		// scale
    				rotation: 0, 		// rotation
    				opacity: opacity,	// opacity
    				color: color,		// color
    				blending: blending	// blending
    			} );
    
    		},
    
    		/*
    		 * Update lens flares update positions on all flares based on the screen position
    		 * Set myLensFlare.customUpdateCallback to alter the flares in your project specific way.
    		 */
    
    		updateLensFlares: function () {
    
    			var f, fl = this.lensFlares.length;
    			var flare;
    			var vecX = - this.positionScreen.x * 2;
    			var vecY = - this.positionScreen.y * 2;
    
    			for ( f = 0; f < fl; f ++ ) {
    
    				flare = this.lensFlares[ f ];
    
    				flare.x = this.positionScreen.x + vecX * flare.distance;
    				flare.y = this.positionScreen.y + vecY * flare.distance;
    
    				flare.wantedRotation = flare.x * Math.PI * 0.25;
    				flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25;
    
    			}
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 *
    	 * parameters = {
    	 *  color: <hex>,
    	 *  opacity: <float>,
    	 *  map: new THREE.Texture( <Image> ),
    	 *
    	 *	uvOffset: new THREE.Vector2(),
    	 *	uvScale: new THREE.Vector2()
    	 * }
    	 */
    
    	function SpriteMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.type = 'SpriteMaterial';
    
    		this.color = new Color( 0xffffff );
    		this.map = null;
    
    		this.rotation = 0;
    
    		this.fog = false;
    		this.lights = false;
    
    		this.setValues( parameters );
    
    	}
    
    	SpriteMaterial.prototype = Object.create( Material.prototype );
    	SpriteMaterial.prototype.constructor = SpriteMaterial;
    	SpriteMaterial.prototype.isSpriteMaterial = true;
    
    	SpriteMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.color.copy( source.color );
    		this.map = source.map;
    
    		this.rotation = source.rotation;
    
    		return this;
    
    	};
    
    	/**
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function Sprite( material ) {
    
    		Object3D.call( this );
    
    		this.type = 'Sprite';
    
    		this.material = ( material !== undefined ) ? material : new SpriteMaterial();
    
    	}
    
    	Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Sprite,
    
    		isSprite: true,
    
    		raycast: ( function () {
    
    			var intersectPoint = new Vector3();
    			var worldPosition = new Vector3();
    			var worldScale = new Vector3();
    
    			return function raycast( raycaster, intersects ) {
    
    				worldPosition.setFromMatrixPosition( this.matrixWorld );
    				raycaster.ray.closestPointToPoint( worldPosition, intersectPoint );
    
    				worldScale.setFromMatrixScale( this.matrixWorld );
    				var guessSizeSq = worldScale.x * worldScale.y / 4;
    
    				if ( worldPosition.distanceToSquared( intersectPoint ) > guessSizeSq ) return;
    
    				var distance = raycaster.ray.origin.distanceTo( intersectPoint );
    
    				if ( distance < raycaster.near || distance > raycaster.far ) return;
    
    				intersects.push( {
    
    					distance: distance,
    					point: intersectPoint.clone(),
    					face: null,
    					object: this
    
    				} );
    
    			};
    
    		}() ),
    
    		clone: function () {
    
    			return new this.constructor( this.material ).copy( this );
    
    		}
    
    	} );
    
    	/**
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function LOD() {
    
    		Object3D.call( this );
    
    		this.type = 'LOD';
    
    		Object.defineProperties( this, {
    			levels: {
    				enumerable: true,
    				value: []
    			}
    		} );
    
    	}
    
    	LOD.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: LOD,
    
    		copy: function ( source ) {
    
    			Object3D.prototype.copy.call( this, source, false );
    
    			var levels = source.levels;
    
    			for ( var i = 0, l = levels.length; i < l; i ++ ) {
    
    				var level = levels[ i ];
    
    				this.addLevel( level.object.clone(), level.distance );
    
    			}
    
    			return this;
    
    		},
    
    		addLevel: function ( object, distance ) {
    
    			if ( distance === undefined ) distance = 0;
    
    			distance = Math.abs( distance );
    
    			var levels = this.levels;
    
    			for ( var l = 0; l < levels.length; l ++ ) {
    
    				if ( distance < levels[ l ].distance ) {
    
    					break;
    
    				}
    
    			}
    
    			levels.splice( l, 0, { distance: distance, object: object } );
    
    			this.add( object );
    
    		},
    
    		getObjectForDistance: function ( distance ) {
    
    			var levels = this.levels;
    
    			for ( var i = 1, l = levels.length; i < l; i ++ ) {
    
    				if ( distance < levels[ i ].distance ) {
    
    					break;
    
    				}
    
    			}
    
    			return levels[ i - 1 ].object;
    
    		},
    
    		raycast: ( function () {
    
    			var matrixPosition = new Vector3();
    
    			return function raycast( raycaster, intersects ) {
    
    				matrixPosition.setFromMatrixPosition( this.matrixWorld );
    
    				var distance = raycaster.ray.origin.distanceTo( matrixPosition );
    
    				this.getObjectForDistance( distance ).raycast( raycaster, intersects );
    
    			};
    
    		}() ),
    
    		update: function () {
    
    			var v1 = new Vector3();
    			var v2 = new Vector3();
    
    			return function update( camera ) {
    
    				var levels = this.levels;
    
    				if ( levels.length > 1 ) {
    
    					v1.setFromMatrixPosition( camera.matrixWorld );
    					v2.setFromMatrixPosition( this.matrixWorld );
    
    					var distance = v1.distanceTo( v2 );
    
    					levels[ 0 ].object.visible = true;
    
    					for ( var i = 1, l = levels.length; i < l; i ++ ) {
    
    						if ( distance >= levels[ i ].distance ) {
    
    							levels[ i - 1 ].object.visible = false;
    							levels[ i ].object.visible = true;
    
    						} else {
    
    							break;
    
    						}
    
    					}
    
    					for ( ; i < l; i ++ ) {
    
    						levels[ i ].object.visible = false;
    
    					}
    
    				}
    
    			};
    
    		}(),
    
    		toJSON: function ( meta ) {
    
    			var data = Object3D.prototype.toJSON.call( this, meta );
    
    			data.object.levels = [];
    
    			var levels = this.levels;
    
    			for ( var i = 0, l = levels.length; i < l; i ++ ) {
    
    				var level = levels[ i ];
    
    				data.object.levels.push( {
    					object: level.object.uuid,
    					distance: level.distance
    				} );
    
    			}
    
    			return data;
    
    		}
    
    	} );
    
    	/**
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author michael guerrero / http://realitymeltdown.com
    	 * @author ikerr / http://verold.com
    	 */
    
    	function Skeleton( bones, boneInverses ) {
    
    		// copy the bone array
    
    		bones = bones || [];
    
    		this.bones = bones.slice( 0 );
    		this.boneMatrices = new Float32Array( this.bones.length * 16 );
    
    		// use the supplied bone inverses or calculate the inverses
    
    		if ( boneInverses === undefined ) {
    
    			this.calculateInverses();
    
    		} else {
    
    			if ( this.bones.length === boneInverses.length ) {
    
    				this.boneInverses = boneInverses.slice( 0 );
    
    			} else {
    
    				console.warn( 'THREE.Skeleton boneInverses is the wrong length.' );
    
    				this.boneInverses = [];
    
    				for ( var i = 0, il = this.bones.length; i < il; i ++ ) {
    
    					this.boneInverses.push( new Matrix4() );
    
    				}
    
    			}
    
    		}
    
    	}
    
    	Object.assign( Skeleton.prototype, {
    
    		calculateInverses: function () {
    
    			this.boneInverses = [];
    
    			for ( var i = 0, il = this.bones.length; i < il; i ++ ) {
    
    				var inverse = new Matrix4();
    
    				if ( this.bones[ i ] ) {
    
    					inverse.getInverse( this.bones[ i ].matrixWorld );
    
    				}
    
    				this.boneInverses.push( inverse );
    
    			}
    
    		},
    
    		pose: function () {
    
    			var bone, i, il;
    
    			// recover the bind-time world matrices
    
    			for ( i = 0, il = this.bones.length; i < il; i ++ ) {
    
    				bone = this.bones[ i ];
    
    				if ( bone ) {
    
    					bone.matrixWorld.getInverse( this.boneInverses[ i ] );
    
    				}
    
    			}
    
    			// compute the local matrices, positions, rotations and scales
    
    			for ( i = 0, il = this.bones.length; i < il; i ++ ) {
    
    				bone = this.bones[ i ];
    
    				if ( bone ) {
    
    					if ( bone.parent && bone.parent.isBone ) {
    
    						bone.matrix.getInverse( bone.parent.matrixWorld );
    						bone.matrix.multiply( bone.matrixWorld );
    
    					} else {
    
    						bone.matrix.copy( bone.matrixWorld );
    
    					}
    
    					bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );
    
    				}
    
    			}
    
    		},
    
    		update: ( function () {
    
    			var offsetMatrix = new Matrix4();
    			var identityMatrix = new Matrix4();
    
    			return function update() {
    
    				var bones = this.bones;
    				var boneInverses = this.boneInverses;
    				var boneMatrices = this.boneMatrices;
    				var boneTexture = this.boneTexture;
    
    				// flatten bone matrices to array
    
    				for ( var i = 0, il = bones.length; i < il; i ++ ) {
    
    					// compute the offset between the current and the original transform
    
    					var matrix = bones[ i ] ? bones[ i ].matrixWorld : identityMatrix;
    
    					offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] );
    					offsetMatrix.toArray( boneMatrices, i * 16 );
    
    				}
    
    				if ( boneTexture !== undefined ) {
    
    					boneTexture.needsUpdate = true;
    
    				}
    
    			};
    
    		} )(),
    
    		clone: function () {
    
    			return new Skeleton( this.bones, this.boneInverses );
    
    		}
    
    	} );
    
    	/**
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author ikerr / http://verold.com
    	 */
    
    	function Bone() {
    
    		Object3D.call( this );
    
    		this.type = 'Bone';
    
    	}
    
    	Bone.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Bone,
    
    		isBone: true
    
    	} );
    
    	/**
    	 * @author mikael emtinger / http://gomo.se/
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author ikerr / http://verold.com
    	 */
    
    	function SkinnedMesh( geometry, material ) {
    
    		Mesh.call( this, geometry, material );
    
    		this.type = 'SkinnedMesh';
    
    		this.bindMode = 'attached';
    		this.bindMatrix = new Matrix4();
    		this.bindMatrixInverse = new Matrix4();
    
    		var bones = this.initBones();
    		var skeleton = new Skeleton( bones );
    
    		this.bind( skeleton, this.matrixWorld );
    
    		this.normalizeSkinWeights();
    
    	}
    
    	SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {
    
    		constructor: SkinnedMesh,
    
    		isSkinnedMesh: true,
    
    		initBones: function () {
    
    			var bones = [], bone, gbone;
    			var i, il;
    
    			if ( this.geometry && this.geometry.bones !== undefined ) {
    
    				// first, create array of 'Bone' objects from geometry data
    
    				for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) {
    
    					gbone = this.geometry.bones[ i ];
    
    					// create new 'Bone' object
    
    					bone = new Bone();
    					bones.push( bone );
    
    					// apply values
    
    					bone.name = gbone.name;
    					bone.position.fromArray( gbone.pos );
    					bone.quaternion.fromArray( gbone.rotq );
    					if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl );
    
    				}
    
    				// second, create bone hierarchy
    
    				for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) {
    
    					gbone = this.geometry.bones[ i ];
    
    					if ( ( gbone.parent !== - 1 ) && ( gbone.parent !== null ) && ( bones[ gbone.parent ] !== undefined ) ) {
    
    						// subsequent bones in the hierarchy
    
    						bones[ gbone.parent ].add( bones[ i ] );
    
    					} else {
    
    						// topmost bone, immediate child of the skinned mesh
    
    						this.add( bones[ i ] );
    
    					}
    
    				}
    
    			}
    
    			// now the bones are part of the scene graph and children of the skinned mesh.
    			// let's update the corresponding matrices
    
    			this.updateMatrixWorld( true );
    
    			return bones;
    
    		},
    
    		bind: function ( skeleton, bindMatrix ) {
    
    			this.skeleton = skeleton;
    
    			if ( bindMatrix === undefined ) {
    
    				this.updateMatrixWorld( true );
    
    				this.skeleton.calculateInverses();
    
    				bindMatrix = this.matrixWorld;
    
    			}
    
    			this.bindMatrix.copy( bindMatrix );
    			this.bindMatrixInverse.getInverse( bindMatrix );
    
    		},
    
    		pose: function () {
    
    			this.skeleton.pose();
    
    		},
    
    		normalizeSkinWeights: function () {
    
    			var scale, i;
    
    			if ( this.geometry && this.geometry.isGeometry ) {
    
    				for ( i = 0; i < this.geometry.skinWeights.length; i ++ ) {
    
    					var sw = this.geometry.skinWeights[ i ];
    
    					scale = 1.0 / sw.lengthManhattan();
    
    					if ( scale !== Infinity ) {
    
    						sw.multiplyScalar( scale );
    
    					} else {
    
    						sw.set( 1, 0, 0, 0 ); // do something reasonable
    
    					}
    
    				}
    
    			} else if ( this.geometry && this.geometry.isBufferGeometry ) {
    
    				var vec = new Vector4();
    
    				var skinWeight = this.geometry.attributes.skinWeight;
    
    				for ( i = 0; i < skinWeight.count; i ++ ) {
    
    					vec.x = skinWeight.getX( i );
    					vec.y = skinWeight.getY( i );
    					vec.z = skinWeight.getZ( i );
    					vec.w = skinWeight.getW( i );
    
    					scale = 1.0 / vec.lengthManhattan();
    
    					if ( scale !== Infinity ) {
    
    						vec.multiplyScalar( scale );
    
    					} else {
    
    						vec.set( 1, 0, 0, 0 ); // do something reasonable
    
    					}
    
    					skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w );
    
    				}
    
    			}
    
    		},
    
    		updateMatrixWorld: function ( force ) {
    
    			Mesh.prototype.updateMatrixWorld.call( this, force );
    
    			if ( this.bindMode === 'attached' ) {
    
    				this.bindMatrixInverse.getInverse( this.matrixWorld );
    
    			} else if ( this.bindMode === 'detached' ) {
    
    				this.bindMatrixInverse.getInverse( this.bindMatrix );
    
    			} else {
    
    				console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode );
    
    			}
    
    		},
    
    		clone: function () {
    
    			return new this.constructor( this.geometry, this.material ).copy( this );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 *
    	 * parameters = {
    	 *  color: <hex>,
    	 *  opacity: <float>,
    	 *
    	 *  linewidth: <float>,
    	 *  linecap: "round",
    	 *  linejoin: "round"
    	 * }
    	 */
    
    	function LineBasicMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.type = 'LineBasicMaterial';
    
    		this.color = new Color( 0xffffff );
    
    		this.linewidth = 1;
    		this.linecap = 'round';
    		this.linejoin = 'round';
    
    		this.lights = false;
    
    		this.setValues( parameters );
    
    	}
    
    	LineBasicMaterial.prototype = Object.create( Material.prototype );
    	LineBasicMaterial.prototype.constructor = LineBasicMaterial;
    
    	LineBasicMaterial.prototype.isLineBasicMaterial = true;
    
    	LineBasicMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.color.copy( source.color );
    
    		this.linewidth = source.linewidth;
    		this.linecap = source.linecap;
    		this.linejoin = source.linejoin;
    
    		return this;
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function Line( geometry, material, mode ) {
    
    		if ( mode === 1 ) {
    
    			console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' );
    			return new LineSegments( geometry, material );
    
    		}
    
    		Object3D.call( this );
    
    		this.type = 'Line';
    
    		this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
    		this.material = material !== undefined ? material : new LineBasicMaterial( { color: Math.random() * 0xffffff } );
    
    	}
    
    	Line.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Line,
    
    		isLine: true,
    
    		raycast: ( function () {
    
    			var inverseMatrix = new Matrix4();
    			var ray = new Ray();
    			var sphere = new Sphere();
    
    			return function raycast( raycaster, intersects ) {
    
    				var precision = raycaster.linePrecision;
    				var precisionSq = precision * precision;
    
    				var geometry = this.geometry;
    				var matrixWorld = this.matrixWorld;
    
    				// Checking boundingSphere distance to ray
    
    				if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
    
    				sphere.copy( geometry.boundingSphere );
    				sphere.applyMatrix4( matrixWorld );
    
    				if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
    
    				//
    
    				inverseMatrix.getInverse( matrixWorld );
    				ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
    
    				var vStart = new Vector3();
    				var vEnd = new Vector3();
    				var interSegment = new Vector3();
    				var interRay = new Vector3();
    				var step = (this && this.isLineSegments) ? 2 : 1;
    
    				if ( geometry.isBufferGeometry ) {
    
    					var index = geometry.index;
    					var attributes = geometry.attributes;
    					var positions = attributes.position.array;
    
    					if ( index !== null ) {
    
    						var indices = index.array;
    
    						for ( var i = 0, l = indices.length - 1; i < l; i += step ) {
    
    							var a = indices[ i ];
    							var b = indices[ i + 1 ];
    
    							vStart.fromArray( positions, a * 3 );
    							vEnd.fromArray( positions, b * 3 );
    
    							var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
    
    							if ( distSq > precisionSq ) continue;
    
    							interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
    
    							var distance = raycaster.ray.origin.distanceTo( interRay );
    
    							if ( distance < raycaster.near || distance > raycaster.far ) continue;
    
    							intersects.push( {
    
    								distance: distance,
    								// What do we want? intersection point on the ray or on the segment??
    								// point: raycaster.ray.at( distance ),
    								point: interSegment.clone().applyMatrix4( this.matrixWorld ),
    								index: i,
    								face: null,
    								faceIndex: null,
    								object: this
    
    							} );
    
    						}
    
    					} else {
    
    						for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {
    
    							vStart.fromArray( positions, 3 * i );
    							vEnd.fromArray( positions, 3 * i + 3 );
    
    							var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );
    
    							if ( distSq > precisionSq ) continue;
    
    							interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
    
    							var distance = raycaster.ray.origin.distanceTo( interRay );
    
    							if ( distance < raycaster.near || distance > raycaster.far ) continue;
    
    							intersects.push( {
    
    								distance: distance,
    								// What do we want? intersection point on the ray or on the segment??
    								// point: raycaster.ray.at( distance ),
    								point: interSegment.clone().applyMatrix4( this.matrixWorld ),
    								index: i,
    								face: null,
    								faceIndex: null,
    								object: this
    
    							} );
    
    						}
    
    					}
    
    				} else if ( geometry.isGeometry ) {
    
    					var vertices = geometry.vertices;
    					var nbVertices = vertices.length;
    
    					for ( var i = 0; i < nbVertices - 1; i += step ) {
    
    						var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );
    
    						if ( distSq > precisionSq ) continue;
    
    						interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation
    
    						var distance = raycaster.ray.origin.distanceTo( interRay );
    
    						if ( distance < raycaster.near || distance > raycaster.far ) continue;
    
    						intersects.push( {
    
    							distance: distance,
    							// What do we want? intersection point on the ray or on the segment??
    							// point: raycaster.ray.at( distance ),
    							point: interSegment.clone().applyMatrix4( this.matrixWorld ),
    							index: i,
    							face: null,
    							faceIndex: null,
    							object: this
    
    						} );
    
    					}
    
    				}
    
    			};
    
    		}() ),
    
    		clone: function () {
    
    			return new this.constructor( this.geometry, this.material ).copy( this );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function LineSegments( geometry, material ) {
    
    		Line.call( this, geometry, material );
    
    		this.type = 'LineSegments';
    
    	}
    
    	LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {
    
    		constructor: LineSegments,
    
    		isLineSegments: true
    
    	} );
    
    	/**
    	 * @author mgreter / http://github.com/mgreter
    	 */
    
    	function LineLoop( geometry, material ) {
    
    		Line.call( this, geometry, material );
    
    		this.type = 'LineLoop';
    
    	}
    
    	LineLoop.prototype = Object.assign( Object.create( Line.prototype ), {
    
    		constructor: LineLoop,
    
    		isLineLoop: true,
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 *
    	 * parameters = {
    	 *  color: <hex>,
    	 *  opacity: <float>,
    	 *  map: new THREE.Texture( <Image> ),
    	 *
    	 *  size: <float>,
    	 *  sizeAttenuation: <bool>
    	 * }
    	 */
    
    	function PointsMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.type = 'PointsMaterial';
    
    		this.color = new Color( 0xffffff );
    
    		this.map = null;
    
    		this.size = 1;
    		this.sizeAttenuation = true;
    
    		this.lights = false;
    
    		this.setValues( parameters );
    
    	}
    
    	PointsMaterial.prototype = Object.create( Material.prototype );
    	PointsMaterial.prototype.constructor = PointsMaterial;
    
    	PointsMaterial.prototype.isPointsMaterial = true;
    
    	PointsMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.color.copy( source.color );
    
    		this.map = source.map;
    
    		this.size = source.size;
    		this.sizeAttenuation = source.sizeAttenuation;
    
    		return this;
    
    	};
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function Points( geometry, material ) {
    
    		Object3D.call( this );
    
    		this.type = 'Points';
    
    		this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
    		this.material = material !== undefined ? material : new PointsMaterial( { color: Math.random() * 0xffffff } );
    
    	}
    
    	Points.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Points,
    
    		isPoints: true,
    
    		raycast: ( function () {
    
    			var inverseMatrix = new Matrix4();
    			var ray = new Ray();
    			var sphere = new Sphere();
    
    			return function raycast( raycaster, intersects ) {
    
    				var object = this;
    				var geometry = this.geometry;
    				var matrixWorld = this.matrixWorld;
    				var threshold = raycaster.params.Points.threshold;
    
    				// Checking boundingSphere distance to ray
    
    				if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
    
    				sphere.copy( geometry.boundingSphere );
    				sphere.applyMatrix4( matrixWorld );
    				sphere.radius += threshold;
    
    				if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;
    
    				//
    
    				inverseMatrix.getInverse( matrixWorld );
    				ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
    
    				var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
    				var localThresholdSq = localThreshold * localThreshold;
    				var position = new Vector3();
    
    				function testPoint( point, index ) {
    
    					var rayPointDistanceSq = ray.distanceSqToPoint( point );
    
    					if ( rayPointDistanceSq < localThresholdSq ) {
    
    						var intersectPoint = ray.closestPointToPoint( point );
    						intersectPoint.applyMatrix4( matrixWorld );
    
    						var distance = raycaster.ray.origin.distanceTo( intersectPoint );
    
    						if ( distance < raycaster.near || distance > raycaster.far ) return;
    
    						intersects.push( {
    
    							distance: distance,
    							distanceToRay: Math.sqrt( rayPointDistanceSq ),
    							point: intersectPoint.clone(),
    							index: index,
    							face: null,
    							object: object
    
    						} );
    
    					}
    
    				}
    
    				if ( geometry.isBufferGeometry ) {
    
    					var index = geometry.index;
    					var attributes = geometry.attributes;
    					var positions = attributes.position.array;
    
    					if ( index !== null ) {
    
    						var indices = index.array;
    
    						for ( var i = 0, il = indices.length; i < il; i ++ ) {
    
    							var a = indices[ i ];
    
    							position.fromArray( positions, a * 3 );
    
    							testPoint( position, a );
    
    						}
    
    					} else {
    
    						for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {
    
    							position.fromArray( positions, i * 3 );
    
    							testPoint( position, i );
    
    						}
    
    					}
    
    				} else {
    
    					var vertices = geometry.vertices;
    
    					for ( var i = 0, l = vertices.length; i < l; i ++ ) {
    
    						testPoint( vertices[ i ], i );
    
    					}
    
    				}
    
    			};
    
    		}() ),
    
    		clone: function () {
    
    			return new this.constructor( this.geometry, this.material ).copy( this );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function Group() {
    
    		Object3D.call( this );
    
    		this.type = 'Group';
    
    	}
    
    	Group.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Group
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
    
    		Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
    
    		this.generateMipmaps = false;
    
    		var scope = this;
    
    		function update() {
    
    			requestAnimationFrame( update );
    
    			if ( video.readyState >= video.HAVE_CURRENT_DATA ) {
    
    				scope.needsUpdate = true;
    
    			}
    
    		}
    
    		update();
    
    	}
    
    	VideoTexture.prototype = Object.create( Texture.prototype );
    	VideoTexture.prototype.constructor = VideoTexture;
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {
    
    		Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
    
    		this.image = { width: width, height: height };
    		this.mipmaps = mipmaps;
    
    		// no flipping for cube textures
    		// (also flipping doesn't work for compressed textures )
    
    		this.flipY = false;
    
    		// can't generate mipmaps for compressed textures
    		// mips must be embedded in DDS files
    
    		this.generateMipmaps = false;
    
    	}
    
    	CompressedTexture.prototype = Object.create( Texture.prototype );
    	CompressedTexture.prototype.constructor = CompressedTexture;
    
    	CompressedTexture.prototype.isCompressedTexture = true;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
    
    		Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
    
    		this.needsUpdate = true;
    
    	}
    
    	CanvasTexture.prototype = Object.create( Texture.prototype );
    	CanvasTexture.prototype.constructor = CanvasTexture;
    
    	/**
    	 * @author Matt DesLauriers / @mattdesl
    	 * @author atix / arthursilber.de
    	 */
    
    	function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) {
    
    		format = format !== undefined ? format : DepthFormat;
    
    		if ( format !== DepthFormat && format !== DepthStencilFormat ) {
    
    			throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' )
    
    		}
    
    		if ( type === undefined && format === DepthFormat ) type = UnsignedShortType;
    		if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type;
    
    		Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
    
    		this.image = { width: width, height: height };
    
    		this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
    		this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
    
    		this.flipY = false;
    		this.generateMipmaps	= false;
    
    	}
    
    	DepthTexture.prototype = Object.create( Texture.prototype );
    	DepthTexture.prototype.constructor = DepthTexture;
    	DepthTexture.prototype.isDepthTexture = true;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	function WireframeGeometry( geometry ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'WireframeGeometry';
    
    		// buffer
    
    		var vertices = [];
    
    		// helper variables
    
    		var i, j, l, o, ol;
    		var edge = [ 0, 0 ], edges = {}, e, edge1, edge2;
    		var key, keys = [ 'a', 'b', 'c' ];
    		var vertex;
    
    		// different logic for Geometry and BufferGeometry
    
    		if ( geometry && geometry.isGeometry ) {
    
    			// create a data structure that contains all edges without duplicates
    
    			var faces = geometry.faces;
    
    			for ( i = 0, l = faces.length; i < l; i ++ ) {
    
    				var face = faces[ i ];
    
    				for ( j = 0; j < 3; j ++ ) {
    
    					edge1 = face[ keys[ j ] ];
    					edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
    					edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
    					edge[ 1 ] = Math.max( edge1, edge2 );
    
    					key = edge[ 0 ] + ',' + edge[ 1 ];
    
    					if ( edges[ key ] === undefined ) {
    
    						edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };
    
    					}
    
    				}
    
    			}
    
    			// generate vertices
    
    			for ( key in edges ) {
    
    				e = edges[ key ];
    
    				vertex = geometry.vertices[ e.index1 ];
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    				vertex = geometry.vertices[ e.index2 ];
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    			}
    
    		} else if ( geometry && geometry.isBufferGeometry ) {
    
    			var position, indices, groups;
    			var group, start, count;
    			var index1, index2;
    
    			vertex = new Vector3();
    
    			if ( geometry.index !== null ) {
    
    				// indexed BufferGeometry
    
    				position = geometry.attributes.position;
    				indices = geometry.index;
    				groups = geometry.groups;
    
    				if ( groups.length === 0 ) {
    
    					groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];
    
    				}
    
    				// create a data structure that contains all eges without duplicates
    
    				for ( o = 0, ol = groups.length; o < ol; ++ o ) {
    
    					group = groups[ o ];
    
    					start = group.start;
    					count = group.count;
    
    					for ( i = start, l = ( start + count ); i < l; i += 3 ) {
    
    						for ( j = 0; j < 3; j ++ ) {
    
    							edge1 = indices.getX( i + j );
    							edge2 = indices.getX( i + ( j + 1 ) % 3 );
    							edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
    							edge[ 1 ] = Math.max( edge1, edge2 );
    
    							key = edge[ 0 ] + ',' + edge[ 1 ];
    
    							if ( edges[ key ] === undefined ) {
    
    								edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };
    
    							}
    
    						}
    
    					}
    
    				}
    
    				// generate vertices
    
    				for ( key in edges ) {
    
    					e = edges[ key ];
    
    					vertex.fromBufferAttribute( position, e.index1 );
    					vertices.push( vertex.x, vertex.y, vertex.z );
    
    					vertex.fromBufferAttribute( position, e.index2 );
    					vertices.push( vertex.x, vertex.y, vertex.z );
    
    				}
    
    			} else {
    
    				// non-indexed BufferGeometry
    
    				position = geometry.attributes.position;
    
    				for ( i = 0, l = ( position.count / 3 ); i < l; i ++ ) {
    
    					for ( j = 0; j < 3; j ++ ) {
    
    						// three edges per triangle, an edge is represented as (index1, index2)
    						// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
    
    						index1 = 3 * i + j;
    						vertex.fromBufferAttribute( position, index1 );
    						vertices.push( vertex.x, vertex.y, vertex.z );
    
    						index2 = 3 * i + ( ( j + 1 ) % 3 );
    						vertex.fromBufferAttribute( position, index2 );
    						vertices.push( vertex.x, vertex.y, vertex.z );
    
    					}
    
    				}
    
    			}
    
    		}
    
    		// build geometry
    
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    
    	}
    
    	WireframeGeometry.prototype = Object.create( BufferGeometry.prototype );
    	WireframeGeometry.prototype.constructor = WireframeGeometry;
    
    	/**
    	 * @author zz85 / https://github.com/zz85
    	 * @author Mugen87 / https://github.com/Mugen87
    	 *
    	 * Parametric Surfaces Geometry
    	 * based on the brilliant article by @prideout http://prideout.net/blog/?p=44
    	 */
    
    	// ParametricGeometry
    
    	function ParametricGeometry( func, slices, stacks ) {
    
    		Geometry.call( this );
    
    		this.type = 'ParametricGeometry';
    
    		this.parameters = {
    			func: func,
    			slices: slices,
    			stacks: stacks
    		};
    
    		this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) );
    		this.mergeVertices();
    
    	}
    
    	ParametricGeometry.prototype = Object.create( Geometry.prototype );
    	ParametricGeometry.prototype.constructor = ParametricGeometry;
    
    	// ParametricBufferGeometry
    
    	function ParametricBufferGeometry( func, slices, stacks ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'ParametricBufferGeometry';
    
    		this.parameters = {
    			func: func,
    			slices: slices,
    			stacks: stacks
    		};
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		var EPS = 0.00001;
    
    		var normal = new Vector3();
    
    		var p0 = new Vector3(), p1 = new Vector3();
    		var pu = new Vector3(), pv = new Vector3();
    
    		var i, j;
    
    		// generate vertices, normals and uvs
    
    		var sliceCount = slices + 1;
    
    		for ( i = 0; i <= stacks; i ++ ) {
    
    			var v = i / stacks;
    
    			for ( j = 0; j <= slices; j ++ ) {
    
    				var u = j / slices;
    
    				// vertex
    
    				p0 = func( u, v, p0 );
    				vertices.push( p0.x, p0.y, p0.z );
    
    				// normal
    
    				// approximate tangent vectors via finite differences
    
    				if ( u - EPS >= 0 ) {
    
    					p1 = func( u - EPS, v, p1 );
    					pu.subVectors( p0, p1 );
    
    				} else {
    
    					p1 = func( u + EPS, v, p1 );
    					pu.subVectors( p1, p0 );
    
    				}
    
    				if ( v - EPS >= 0 ) {
    
    					p1 = func( u, v - EPS, p1 );
    					pv.subVectors( p0, p1 );
    
    				} else {
    
    					p1 = func( u, v + EPS, p1 );
    					pv.subVectors( p1, p0 );
    
    				}
    
    				// cross product of tangent vectors returns surface normal
    
    				normal.crossVectors( pu, pv ).normalize();
    				normals.push( normal.x, normal.y, normal.z );
    
    				// uv
    
    				uvs.push( u, v );
    
    			}
    
    		}
    
    		// generate indices
    
    		for ( i = 0; i < stacks; i ++ ) {
    
    			for ( j = 0; j < slices; j ++ ) {
    
    				var a = i * sliceCount + j;
    				var b = i * sliceCount + j + 1;
    				var c = ( i + 1 ) * sliceCount + j + 1;
    				var d = ( i + 1 ) * sliceCount + j;
    
    				// faces one and two
    
    				indices.push( a, b, d );
    				indices.push( b, c, d );
    
    			}
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    	}
    
    	ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry;
    
    	/**
    	 * @author clockworkgeek / https://github.com/clockworkgeek
    	 * @author timothypratley / https://github.com/timothypratley
    	 * @author WestLangley / http://github.com/WestLangley
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// PolyhedronGeometry
    
    	function PolyhedronGeometry( vertices, indices, radius, detail ) {
    
    		Geometry.call( this );
    
    		this.type = 'PolyhedronGeometry';
    
    		this.parameters = {
    			vertices: vertices,
    			indices: indices,
    			radius: radius,
    			detail: detail
    		};
    
    		this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) );
    		this.mergeVertices();
    
    	}
    
    	PolyhedronGeometry.prototype = Object.create( Geometry.prototype );
    	PolyhedronGeometry.prototype.constructor = PolyhedronGeometry;
    
    	// PolyhedronBufferGeometry
    
    	function PolyhedronBufferGeometry( vertices, indices, radius, detail ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'PolyhedronBufferGeometry';
    
    		this.parameters = {
    			vertices: vertices,
    			indices: indices,
    			radius: radius,
    			detail: detail
    		};
    
    		radius = radius || 1;
    		detail = detail || 0;
    
    		// default buffer data
    
    		var vertexBuffer = [];
    		var uvBuffer = [];
    
    		// the subdivision creates the vertex buffer data
    
    		subdivide( detail );
    
    		// all vertices should lie on a conceptual sphere with a given radius
    
    		appplyRadius( radius );
    
    		// finally, create the uv data
    
    		generateUVs();
    
    		// build non-indexed geometry
    
    		this.addAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );
    		this.normalizeNormals();
    
    		// helper functions
    
    		function subdivide( detail ) {
    
    			var a = new Vector3();
    			var b = new Vector3();
    			var c = new Vector3();
    
    			// iterate over all faces and apply a subdivison with the given detail value
    
    			for ( var i = 0; i < indices.length; i += 3 ) {
    
    				// get the vertices of the face
    
    				getVertexByIndex( indices[ i + 0 ], a );
    				getVertexByIndex( indices[ i + 1 ], b );
    				getVertexByIndex( indices[ i + 2 ], c );
    
    				// perform subdivision
    
    				subdivideFace( a, b, c, detail );
    
    			}
    
    		}
    
    		function subdivideFace( a, b, c, detail ) {
    
    			var cols = Math.pow( 2, detail );
    
    			// we use this multidimensional array as a data structure for creating the subdivision
    
    			var v = [];
    
    			var i, j;
    
    			// construct all of the vertices for this subdivision
    
    			for ( i = 0; i <= cols; i ++ ) {
    
    				v[ i ] = [];
    
    				var aj = a.clone().lerp( c, i / cols );
    				var bj = b.clone().lerp( c, i / cols );
    
    				var rows = cols - i;
    
    				for ( j = 0; j <= rows; j ++ ) {
    
    					if ( j === 0 && i === cols ) {
    
    						v[ i ][ j ] = aj;
    
    					} else {
    
    						v[ i ][ j ] = aj.clone().lerp( bj, j / rows );
    
    					}
    
    				}
    
    			}
    
    			// construct all of the faces
    
    			for ( i = 0; i < cols; i ++ ) {
    
    				for ( j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {
    
    					var k = Math.floor( j / 2 );
    
    					if ( j % 2 === 0 ) {
    
    						pushVertex( v[ i ][ k + 1 ] );
    						pushVertex( v[ i + 1 ][ k ] );
    						pushVertex( v[ i ][ k ] );
    
    					} else {
    
    						pushVertex( v[ i ][ k + 1 ] );
    						pushVertex( v[ i + 1 ][ k + 1 ] );
    						pushVertex( v[ i + 1 ][ k ] );
    
    					}
    
    				}
    
    			}
    
    		}
    
    		function appplyRadius( radius ) {
    
    			var vertex = new Vector3();
    
    			// iterate over the entire buffer and apply the radius to each vertex
    
    			for ( var i = 0; i < vertexBuffer.length; i += 3 ) {
    
    				vertex.x = vertexBuffer[ i + 0 ];
    				vertex.y = vertexBuffer[ i + 1 ];
    				vertex.z = vertexBuffer[ i + 2 ];
    
    				vertex.normalize().multiplyScalar( radius );
    
    				vertexBuffer[ i + 0 ] = vertex.x;
    				vertexBuffer[ i + 1 ] = vertex.y;
    				vertexBuffer[ i + 2 ] = vertex.z;
    
    			}
    
    		}
    
    		function generateUVs() {
    
    			var vertex = new Vector3();
    
    			for ( var i = 0; i < vertexBuffer.length; i += 3 ) {
    
    				vertex.x = vertexBuffer[ i + 0 ];
    				vertex.y = vertexBuffer[ i + 1 ];
    				vertex.z = vertexBuffer[ i + 2 ];
    
    				var u = azimuth( vertex ) / 2 / Math.PI + 0.5;
    				var v = inclination( vertex ) / Math.PI + 0.5;
    				uvBuffer.push( u, 1 - v );
    
    			}
    
    			correctUVs();
    
    			correctSeam();
    
    		}
    
    		function correctSeam() {
    
    			// handle case when face straddles the seam, see #3269
    
    			for ( var i = 0; i < uvBuffer.length; i += 6 ) {
    
    				// uv data of a single face
    
    				var x0 = uvBuffer[ i + 0 ];
    				var x1 = uvBuffer[ i + 2 ];
    				var x2 = uvBuffer[ i + 4 ];
    
    				var max = Math.max( x0, x1, x2 );
    				var min = Math.min( x0, x1, x2 );
    
    				// 0.9 is somewhat arbitrary
    
    				if ( max > 0.9 && min < 0.1 ) {
    
    					if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1;
    					if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1;
    					if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1;
    
    				}
    
    			}
    
    		}
    
    		function pushVertex( vertex ) {
    
    			vertexBuffer.push( vertex.x, vertex.y, vertex.z );
    
    		}
    
    		function getVertexByIndex( index, vertex ) {
    
    			var stride = index * 3;
    
    			vertex.x = vertices[ stride + 0 ];
    			vertex.y = vertices[ stride + 1 ];
    			vertex.z = vertices[ stride + 2 ];
    
    		}
    
    		function correctUVs() {
    
    			var a = new Vector3();
    			var b = new Vector3();
    			var c = new Vector3();
    
    			var centroid = new Vector3();
    
    			var uvA = new Vector2();
    			var uvB = new Vector2();
    			var uvC = new Vector2();
    
    			for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {
    
    				a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] );
    				b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] );
    				c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );
    
    				uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] );
    				uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] );
    				uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );
    
    				centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );
    
    				var azi = azimuth( centroid );
    
    				correctUV( uvA, j + 0, a, azi );
    				correctUV( uvB, j + 2, b, azi );
    				correctUV( uvC, j + 4, c, azi );
    
    			}
    
    		}
    
    		function correctUV( uv, stride, vector, azimuth ) {
    
    			if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {
    
    				uvBuffer[ stride ] = uv.x - 1;
    
    			}
    
    			if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {
    
    				uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;
    
    			}
    
    		}
    
    		// Angle around the Y axis, counter-clockwise when looking from above.
    
    		function azimuth( vector ) {
    
    			return Math.atan2( vector.z, - vector.x );
    
    		}
    
    
    		// Angle above the XZ plane.
    
    		function inclination( vector ) {
    
    			return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );
    
    		}
    
    	}
    
    	PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry;
    
    	/**
    	 * @author timothypratley / https://github.com/timothypratley
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// TetrahedronGeometry
    
    	function TetrahedronGeometry( radius, detail ) {
    
    		Geometry.call( this );
    
    		this.type = 'TetrahedronGeometry';
    
    		this.parameters = {
    			radius: radius,
    			detail: detail
    		};
    
    		this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) );
    		this.mergeVertices();
    
    	}
    
    	TetrahedronGeometry.prototype = Object.create( Geometry.prototype );
    	TetrahedronGeometry.prototype.constructor = TetrahedronGeometry;
    
    	// TetrahedronBufferGeometry
    
    	function TetrahedronBufferGeometry( radius, detail ) {
    
    		var vertices = [
    			1,  1,  1,   - 1, - 1,  1,   - 1,  1, - 1,    1, - 1, - 1
    		];
    
    		var indices = [
    			2,  1,  0,    0,  3,  2,    1,  3,  0,    2,  3,  1
    		];
    
    		PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
    
    		this.type = 'TetrahedronBufferGeometry';
    
    		this.parameters = {
    			radius: radius,
    			detail: detail
    		};
    
    	}
    
    	TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
    	TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry;
    
    	/**
    	 * @author timothypratley / https://github.com/timothypratley
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// OctahedronGeometry
    
    	function OctahedronGeometry( radius, detail ) {
    
    		Geometry.call( this );
    
    		this.type = 'OctahedronGeometry';
    
    		this.parameters = {
    			radius: radius,
    			detail: detail
    		};
    
    		this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) );
    		this.mergeVertices();
    
    	}
    
    	OctahedronGeometry.prototype = Object.create( Geometry.prototype );
    	OctahedronGeometry.prototype.constructor = OctahedronGeometry;
    
    	// OctahedronBufferGeometry
    
    	function OctahedronBufferGeometry( radius, detail ) {
    
    		var vertices = [
    			1, 0, 0,   - 1, 0, 0,    0, 1, 0,    0, - 1, 0,    0, 0, 1,    0, 0, - 1
    		];
    
    		var indices = [
    			0, 2, 4,    0, 4, 3,    0, 3, 5,    0, 5, 2,    1, 2, 5,    1, 5, 3,    1, 3, 4,    1, 4, 2
    		];
    
    		PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
    
    		this.type = 'OctahedronBufferGeometry';
    
    		this.parameters = {
    			radius: radius,
    			detail: detail
    		};
    
    	}
    
    	OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
    	OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry;
    
    	/**
    	 * @author timothypratley / https://github.com/timothypratley
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// IcosahedronGeometry
    
    	function IcosahedronGeometry( radius, detail ) {
    
    	 	Geometry.call( this );
    
    		this.type = 'IcosahedronGeometry';
    
    		this.parameters = {
    			radius: radius,
    			detail: detail
    		};
    
    		this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) );
    		this.mergeVertices();
    
    	}
    
    	IcosahedronGeometry.prototype = Object.create( Geometry.prototype );
    	IcosahedronGeometry.prototype.constructor = IcosahedronGeometry;
    
    	// IcosahedronBufferGeometry
    
    	function IcosahedronBufferGeometry( radius, detail ) {
    
    		var t = ( 1 + Math.sqrt( 5 ) ) / 2;
    
    		var vertices = [
    			- 1,  t,  0,    1,  t,  0,   - 1, - t,  0,    1, - t,  0,
    			 0, - 1,  t,    0,  1,  t,    0, - 1, - t,    0,  1, - t,
    			 t,  0, - 1,    t,  0,  1,   - t,  0, - 1,   - t,  0,  1
    		];
    
    		var indices = [
    			 0, 11,  5,    0,  5,  1,    0,  1,  7,    0,  7, 10,    0, 10, 11,
    			 1,  5,  9,    5, 11,  4,   11, 10,  2,   10,  7,  6,    7,  1,  8,
    			 3,  9,  4,    3,  4,  2,    3,  2,  6,    3,  6,  8,    3,  8,  9,
    			 4,  9,  5,    2,  4, 11,    6,  2, 10,    8,  6,  7,    9,  8,  1
    		];
    
    		PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
    
    		this.type = 'IcosahedronBufferGeometry';
    
    		this.parameters = {
    			radius: radius,
    			detail: detail
    		};
    
    	}
    
    	IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
    	IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry;
    
    	/**
    	 * @author Abe Pazos / https://hamoid.com
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// DodecahedronGeometry
    
    	function DodecahedronGeometry( radius, detail ) {
    
    		Geometry.call( this );
    
    		this.type = 'DodecahedronGeometry';
    
    		this.parameters = {
    			radius: radius,
    			detail: detail
    		};
    
    		this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) );
    		this.mergeVertices();
    
    	}
    
    	DodecahedronGeometry.prototype = Object.create( Geometry.prototype );
    	DodecahedronGeometry.prototype.constructor = DodecahedronGeometry;
    
    	// DodecahedronBufferGeometry
    
    	function DodecahedronBufferGeometry( radius, detail ) {
    
    		var t = ( 1 + Math.sqrt( 5 ) ) / 2;
    		var r = 1 / t;
    
    		var vertices = [
    
    			// (±1, ±1, ±1)
    			- 1, - 1, - 1,    - 1, - 1,  1,
    			- 1,  1, - 1,    - 1,  1,  1,
    			  1, - 1, - 1,     1, - 1,  1,
    			  1,  1, - 1,     1,  1,  1,
    
    			// (0, ±1/φ, ±φ)
    			 0, - r, - t,     0, - r,  t,
    			 0,  r, - t,     0,  r,  t,
    
    			// (±1/φ, ±φ, 0)
    			- r, - t,  0,    - r,  t,  0,
    			 r, - t,  0,     r,  t,  0,
    
    			// (±φ, 0, ±1/φ)
    			- t,  0, - r,     t,  0, - r,
    			- t,  0,  r,     t,  0,  r
    		];
    
    		var indices = [
    			 3, 11,  7,      3,  7, 15,      3, 15, 13,
    			 7, 19, 17,      7, 17,  6,      7,  6, 15,
    			17,  4,  8,     17,  8, 10,     17, 10,  6,
    			 8,  0, 16,      8, 16,  2,      8,  2, 10,
    			 0, 12,  1,      0,  1, 18,      0, 18, 16,
    			 6, 10,  2,      6,  2, 13,      6, 13, 15,
    			 2, 16, 18,      2, 18,  3,      2,  3, 13,
    			18,  1,  9,     18,  9, 11,     18, 11,  3,
    			 4, 14, 12,      4, 12,  0,      4,  0,  8,
    			11,  9,  5,     11,  5, 19,     11, 19,  7,
    			19,  5, 14,     19, 14,  4,     19,  4, 17,
    			 1, 12, 14,      1, 14,  5,      1,  5,  9
    		];
    
    		PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );
    
    		this.type = 'DodecahedronBufferGeometry';
    
    		this.parameters = {
    			radius: radius,
    			detail: detail
    		};
    
    	}
    
    	DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
    	DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry;
    
    	/**
    	 * @author oosmoxiecode / https://github.com/oosmoxiecode
    	 * @author WestLangley / https://github.com/WestLangley
    	 * @author zz85 / https://github.com/zz85
    	 * @author miningold / https://github.com/miningold
    	 * @author jonobr1 / https://github.com/jonobr1
    	 * @author Mugen87 / https://github.com/Mugen87
    	 *
    	 */
    
    	// TubeGeometry
    
    	function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) {
    
    		Geometry.call( this );
    
    		this.type = 'TubeGeometry';
    
    		this.parameters = {
    			path: path,
    			tubularSegments: tubularSegments,
    			radius: radius,
    			radialSegments: radialSegments,
    			closed: closed
    		};
    
    		if ( taper !== undefined ) console.warn( 'THREE.TubeGeometry: taper has been removed.' );
    
    		var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed );
    
    		// expose internals
    
    		this.tangents = bufferGeometry.tangents;
    		this.normals = bufferGeometry.normals;
    		this.binormals = bufferGeometry.binormals;
    
    		// create geometry
    
    		this.fromBufferGeometry( bufferGeometry );
    		this.mergeVertices();
    
    	}
    
    	TubeGeometry.prototype = Object.create( Geometry.prototype );
    	TubeGeometry.prototype.constructor = TubeGeometry;
    
    	// TubeBufferGeometry
    
    	function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'TubeBufferGeometry';
    
    		this.parameters = {
    			path: path,
    			tubularSegments: tubularSegments,
    			radius: radius,
    			radialSegments: radialSegments,
    			closed: closed
    		};
    
    		tubularSegments = tubularSegments || 64;
    		radius = radius || 1;
    		radialSegments = radialSegments || 8;
    		closed = closed || false;
    
    		var frames = path.computeFrenetFrames( tubularSegments, closed );
    
    		// expose internals
    
    		this.tangents = frames.tangents;
    		this.normals = frames.normals;
    		this.binormals = frames.binormals;
    
    		// helper variables
    
    		var vertex = new Vector3();
    		var normal = new Vector3();
    		var uv = new Vector2();
    
    		var i, j;
    
    		// buffer
    
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    		var indices = [];
    
    		// create buffer data
    
    		generateBufferData();
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    		// functions
    
    		function generateBufferData() {
    
    			for ( i = 0; i < tubularSegments; i ++ ) {
    
    				generateSegment( i );
    
    			}
    
    			// if the geometry is not closed, generate the last row of vertices and normals
    			// at the regular position on the given path
    			//
    			// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
    
    			generateSegment( ( closed === false ) ? tubularSegments : 0 );
    
    			// uvs are generated in a separate function.
    			// this makes it easy compute correct values for closed geometries
    
    			generateUVs();
    
    			// finally create faces
    
    			generateIndices();
    
    		}
    
    		function generateSegment( i ) {
    
    			// we use getPointAt to sample evenly distributed points from the given path
    
    			var P = path.getPointAt( i / tubularSegments );
    
    			// retrieve corresponding normal and binormal
    
    			var N = frames.normals[ i ];
    			var B = frames.binormals[ i ];
    
    			// generate normals and vertices for the current segment
    
    			for ( j = 0; j <= radialSegments; j ++ ) {
    
    				var v = j / radialSegments * Math.PI * 2;
    
    				var sin =   Math.sin( v );
    				var cos = - Math.cos( v );
    
    				// normal
    
    				normal.x = ( cos * N.x + sin * B.x );
    				normal.y = ( cos * N.y + sin * B.y );
    				normal.z = ( cos * N.z + sin * B.z );
    				normal.normalize();
    
    				normals.push( normal.x, normal.y, normal.z );
    
    				// vertex
    
    				vertex.x = P.x + radius * normal.x;
    				vertex.y = P.y + radius * normal.y;
    				vertex.z = P.z + radius * normal.z;
    
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    			}
    
    		}
    
    		function generateIndices() {
    
    			for ( j = 1; j <= tubularSegments; j ++ ) {
    
    				for ( i = 1; i <= radialSegments; i ++ ) {
    
    					var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
    					var b = ( radialSegments + 1 ) * j + ( i - 1 );
    					var c = ( radialSegments + 1 ) * j + i;
    					var d = ( radialSegments + 1 ) * ( j - 1 ) + i;
    
    					// faces
    
    					indices.push( a, b, d );
    					indices.push( b, c, d );
    
    				}
    
    			}
    
    		}
    
    		function generateUVs() {
    
    			for ( i = 0; i <= tubularSegments; i ++ ) {
    
    				for ( j = 0; j <= radialSegments; j ++ ) {
    
    					uv.x = i / tubularSegments;
    					uv.y = j / radialSegments;
    
    					uvs.push( uv.x, uv.y );
    
    				}
    
    			}
    
    		}
    
    	}
    
    	TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	TubeBufferGeometry.prototype.constructor = TubeBufferGeometry;
    
    	/**
    	 * @author oosmoxiecode
    	 * @author Mugen87 / https://github.com/Mugen87
    	 *
    	 * based on http://www.blackpawn.com/texts/pqtorus/
    	 */
    
    	// TorusKnotGeometry
    
    	function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {
    
    		Geometry.call( this );
    
    		this.type = 'TorusKnotGeometry';
    
    		this.parameters = {
    			radius: radius,
    			tube: tube,
    			tubularSegments: tubularSegments,
    			radialSegments: radialSegments,
    			p: p,
    			q: q
    		};
    
    		if ( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' );
    
    		this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
    		this.mergeVertices();
    
    	}
    
    	TorusKnotGeometry.prototype = Object.create( Geometry.prototype );
    	TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;
    
    	// TorusKnotBufferGeometry
    
    	function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'TorusKnotBufferGeometry';
    
    		this.parameters = {
    			radius: radius,
    			tube: tube,
    			tubularSegments: tubularSegments,
    			radialSegments: radialSegments,
    			p: p,
    			q: q
    		};
    
    		radius = radius || 100;
    		tube = tube || 40;
    		tubularSegments = Math.floor( tubularSegments ) || 64;
    		radialSegments = Math.floor( radialSegments ) || 8;
    		p = p || 2;
    		q = q || 3;
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		// helper variables
    
    		var i, j;
    
    		var vertex = new Vector3();
    		var normal = new Vector3();
    
    		var P1 = new Vector3();
    		var P2 = new Vector3();
    
    		var B = new Vector3();
    		var T = new Vector3();
    		var N = new Vector3();
    
    		// generate vertices, normals and uvs
    
    		for ( i = 0; i <= tubularSegments; ++ i ) {
    
    			// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
    
    			var u = i / tubularSegments * p * Math.PI * 2;
    
    			// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
    			// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
    
    			calculatePositionOnCurve( u, p, q, radius, P1 );
    			calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );
    
    			// calculate orthonormal basis
    
    			T.subVectors( P2, P1 );
    			N.addVectors( P2, P1 );
    			B.crossVectors( T, N );
    			N.crossVectors( B, T );
    
    			// normalize B, N. T can be ignored, we don't use it
    
    			B.normalize();
    			N.normalize();
    
    			for ( j = 0; j <= radialSegments; ++ j ) {
    
    				// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
    				// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
    
    				var v = j / radialSegments * Math.PI * 2;
    				var cx = - tube * Math.cos( v );
    				var cy = tube * Math.sin( v );
    
    				// now calculate the final vertex position.
    				// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
    
    				vertex.x = P1.x + ( cx * N.x + cy * B.x );
    				vertex.y = P1.y + ( cx * N.y + cy * B.y );
    				vertex.z = P1.z + ( cx * N.z + cy * B.z );
    
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    				// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
    
    				normal.subVectors( vertex, P1 ).normalize();
    
    				normals.push( normal.x, normal.y, normal.z );
    
    				// uv
    
    				uvs.push( i / tubularSegments );
    				uvs.push( j / radialSegments );
    
    			}
    
    		}
    
    		// generate indices
    
    		for ( j = 1; j <= tubularSegments; j ++ ) {
    
    			for ( i = 1; i <= radialSegments; i ++ ) {
    
    				// indices
    
    				var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
    				var b = ( radialSegments + 1 ) * j + ( i - 1 );
    				var c = ( radialSegments + 1 ) * j + i;
    				var d = ( radialSegments + 1 ) * ( j - 1 ) + i;
    
    				// faces
    
    				indices.push( a, b, d );
    				indices.push( b, c, d );
    
    			}
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    		// this function calculates the current position on the torus curve
    
    		function calculatePositionOnCurve( u, p, q, radius, position ) {
    
    			var cu = Math.cos( u );
    			var su = Math.sin( u );
    			var quOverP = q / p * u;
    			var cs = Math.cos( quOverP );
    
    			position.x = radius * ( 2 + cs ) * 0.5 * cu;
    			position.y = radius * ( 2 + cs ) * su * 0.5;
    			position.z = radius * Math.sin( quOverP ) * 0.5;
    
    		}
    
    	}
    
    	TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry;
    
    	/**
    	 * @author oosmoxiecode
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// TorusGeometry
    
    	function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) {
    
    		Geometry.call( this );
    
    		this.type = 'TorusGeometry';
    
    		this.parameters = {
    			radius: radius,
    			tube: tube,
    			radialSegments: radialSegments,
    			tubularSegments: tubularSegments,
    			arc: arc
    		};
    
    		this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) );
    		this.mergeVertices();
    
    	}
    
    	TorusGeometry.prototype = Object.create( Geometry.prototype );
    	TorusGeometry.prototype.constructor = TorusGeometry;
    
    	// TorusBufferGeometry
    
    	function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'TorusBufferGeometry';
    
    		this.parameters = {
    			radius: radius,
    			tube: tube,
    			radialSegments: radialSegments,
    			tubularSegments: tubularSegments,
    			arc: arc
    		};
    
    		radius = radius || 100;
    		tube = tube || 40;
    		radialSegments = Math.floor( radialSegments ) || 8;
    		tubularSegments = Math.floor( tubularSegments ) || 6;
    		arc = arc || Math.PI * 2;
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		// helper variables
    
    		var center = new Vector3();
    		var vertex = new Vector3();
    		var normal = new Vector3();
    
    		var j, i;
    
    		// generate vertices, normals and uvs
    
    		for ( j = 0; j <= radialSegments; j ++ ) {
    
    			for ( i = 0; i <= tubularSegments; i ++ ) {
    
    				var u = i / tubularSegments * arc;
    				var v = j / radialSegments * Math.PI * 2;
    
    				// vertex
    
    				vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
    				vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
    				vertex.z = tube * Math.sin( v );
    
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    				// normal
    
    				center.x = radius * Math.cos( u );
    				center.y = radius * Math.sin( u );
    				normal.subVectors( vertex, center ).normalize();
    
    				normals.push( normal.x, normal.y, normal.z );
    
    				// uv
    
    				uvs.push( i / tubularSegments );
    				uvs.push( j / radialSegments );
    
    			}
    
    		}
    
    		// generate indices
    
    		for ( j = 1; j <= radialSegments; j ++ ) {
    
    			for ( i = 1; i <= tubularSegments; i ++ ) {
    
    				// indices
    
    				var a = ( tubularSegments + 1 ) * j + i - 1;
    				var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
    				var c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
    				var d = ( tubularSegments + 1 ) * j + i;
    
    				// faces
    
    				indices.push( a, b, d );
    				indices.push( b, c, d );
    
    			}
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    	}
    
    	TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	TorusBufferGeometry.prototype.constructor = TorusBufferGeometry;
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 */
    
    	var ShapeUtils = {
    
    		// calculate area of the contour polygon
    
    		area: function ( contour ) {
    
    			var n = contour.length;
    			var a = 0.0;
    
    			for ( var p = n - 1, q = 0; q < n; p = q ++ ) {
    
    				a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;
    
    			}
    
    			return a * 0.5;
    
    		},
    
    		triangulate: ( function () {
    
    			/**
    			 * This code is a quick port of code written in C++ which was submitted to
    			 * flipcode.com by John W. Ratcliff  // July 22, 2000
    			 * See original code and more information here:
    			 * http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml
    			 *
    			 * ported to actionscript by Zevan Rosser
    			 * www.actionsnippet.com
    			 *
    			 * ported to javascript by Joshua Koo
    			 * http://www.lab4games.net/zz85/blog
    			 *
    			 */
    
    			function snip( contour, u, v, w, n, verts ) {
    
    				var p;
    				var ax, ay, bx, by;
    				var cx, cy, px, py;
    
    				ax = contour[ verts[ u ] ].x;
    				ay = contour[ verts[ u ] ].y;
    
    				bx = contour[ verts[ v ] ].x;
    				by = contour[ verts[ v ] ].y;
    
    				cx = contour[ verts[ w ] ].x;
    				cy = contour[ verts[ w ] ].y;
    
    				if ( ( bx - ax ) * ( cy - ay ) - ( by - ay ) * ( cx - ax ) <= 0 ) return false;
    
    				var aX, aY, bX, bY, cX, cY;
    				var apx, apy, bpx, bpy, cpx, cpy;
    				var cCROSSap, bCROSScp, aCROSSbp;
    
    				aX = cx - bx;  aY = cy - by;
    				bX = ax - cx;  bY = ay - cy;
    				cX = bx - ax;  cY = by - ay;
    
    				for ( p = 0; p < n; p ++ ) {
    
    					px = contour[ verts[ p ] ].x;
    					py = contour[ verts[ p ] ].y;
    
    					if ( ( ( px === ax ) && ( py === ay ) ) ||
    						 ( ( px === bx ) && ( py === by ) ) ||
    						 ( ( px === cx ) && ( py === cy ) ) )	continue;
    
    					apx = px - ax;  apy = py - ay;
    					bpx = px - bx;  bpy = py - by;
    					cpx = px - cx;  cpy = py - cy;
    
    					// see if p is inside triangle abc
    
    					aCROSSbp = aX * bpy - aY * bpx;
    					cCROSSap = cX * apy - cY * apx;
    					bCROSScp = bX * cpy - bY * cpx;
    
    					if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false;
    
    				}
    
    				return true;
    
    			}
    
    			// takes in an contour array and returns
    
    			return function triangulate( contour, indices ) {
    
    				var n = contour.length;
    
    				if ( n < 3 ) return null;
    
    				var result = [],
    					verts = [],
    					vertIndices = [];
    
    				/* we want a counter-clockwise polygon in verts */
    
    				var u, v, w;
    
    				if ( ShapeUtils.area( contour ) > 0.0 ) {
    
    					for ( v = 0; v < n; v ++ ) verts[ v ] = v;
    
    				} else {
    
    					for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v;
    
    				}
    
    				var nv = n;
    
    				/*  remove nv - 2 vertices, creating 1 triangle every time */
    
    				var count = 2 * nv;   /* error detection */
    
    				for ( v = nv - 1; nv > 2; ) {
    
    					/* if we loop, it is probably a non-simple polygon */
    
    					if ( ( count -- ) <= 0 ) {
    
    						//** Triangulate: ERROR - probable bad polygon!
    
    						//throw ( "Warning, unable to triangulate polygon!" );
    						//return null;
    						// Sometimes warning is fine, especially polygons are triangulated in reverse.
    						console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' );
    
    						if ( indices ) return vertIndices;
    						return result;
    
    					}
    
    					/* three consecutive vertices in current polygon, <u,v,w> */
    
    					u = v; 	 	if ( nv <= u ) u = 0;     /* previous */
    					v = u + 1;  if ( nv <= v ) v = 0;     /* new v    */
    					w = v + 1;  if ( nv <= w ) w = 0;     /* next     */
    
    					if ( snip( contour, u, v, w, nv, verts ) ) {
    
    						var a, b, c, s, t;
    
    						/* true names of the vertices */
    
    						a = verts[ u ];
    						b = verts[ v ];
    						c = verts[ w ];
    
    						/* output Triangle */
    
    						result.push( [ contour[ a ],
    							contour[ b ],
    							contour[ c ] ] );
    
    
    						vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] );
    
    						/* remove v from the remaining polygon */
    
    						for ( s = v, t = v + 1; t < nv; s ++, t ++ ) {
    
    							verts[ s ] = verts[ t ];
    
    						}
    
    						nv --;
    
    						/* reset error detection counter */
    
    						count = 2 * nv;
    
    					}
    
    				}
    
    				if ( indices ) return vertIndices;
    				return result;
    
    			}
    
    		} )(),
    
    		triangulateShape: function ( contour, holes ) {
    
    			function removeDupEndPts(points) {
    
    				var l = points.length;
    
    				if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {
    
    					points.pop();
    
    				}
    
    			}
    
    			removeDupEndPts( contour );
    			holes.forEach( removeDupEndPts );
    
    			function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) {
    
    				// inOtherPt needs to be collinear to the inSegment
    				if ( inSegPt1.x !== inSegPt2.x ) {
    
    					if ( inSegPt1.x < inSegPt2.x ) {
    
    						return	( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) );
    
    					} else {
    
    						return	( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) );
    
    					}
    
    				} else {
    
    					if ( inSegPt1.y < inSegPt2.y ) {
    
    						return	( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) );
    
    					} else {
    
    						return	( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) );
    
    					}
    
    				}
    
    			}
    
    			function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) {
    
    				var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x,   seg1dy = inSeg1Pt2.y - inSeg1Pt1.y;
    				var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x,   seg2dy = inSeg2Pt2.y - inSeg2Pt1.y;
    
    				var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x;
    				var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y;
    
    				var limit		= seg1dy * seg2dx - seg1dx * seg2dy;
    				var perpSeg1	= seg1dy * seg1seg2dx - seg1dx * seg1seg2dy;
    
    				if ( Math.abs( limit ) > Number.EPSILON ) {
    
    					// not parallel
    
    					var perpSeg2;
    					if ( limit > 0 ) {
    
    						if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) 		return [];
    						perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
    						if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) 		return [];
    
    					} else {
    
    						if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) 		return [];
    						perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
    						if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) 		return [];
    
    					}
    
    					// i.e. to reduce rounding errors
    					// intersection at endpoint of segment#1?
    					if ( perpSeg2 === 0 ) {
    
    						if ( ( inExcludeAdjacentSegs ) &&
    							 ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) )		return [];
    						return [ inSeg1Pt1 ];
    
    					}
    					if ( perpSeg2 === limit ) {
    
    						if ( ( inExcludeAdjacentSegs ) &&
    							 ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) )		return [];
    						return [ inSeg1Pt2 ];
    
    					}
    					// intersection at endpoint of segment#2?
    					if ( perpSeg1 === 0 )		return [ inSeg2Pt1 ];
    					if ( perpSeg1 === limit )	return [ inSeg2Pt2 ];
    
    					// return real intersection point
    					var factorSeg1 = perpSeg2 / limit;
    					return	[ { x: inSeg1Pt1.x + factorSeg1 * seg1dx,
    								y: inSeg1Pt1.y + factorSeg1 * seg1dy } ];
    
    				} else {
    
    					// parallel or collinear
    					if ( ( perpSeg1 !== 0 ) ||
    						 ( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) 			return [];
    
    					// they are collinear or degenerate
    					var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) );	// segment1 is just a point?
    					var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) );	// segment2 is just a point?
    					// both segments are points
    					if ( seg1Pt && seg2Pt ) {
    
    						if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) ||
    							 ( inSeg1Pt1.y !== inSeg2Pt1.y ) )		return [];	// they are distinct  points
    						return [ inSeg1Pt1 ];                 						// they are the same point
    
    					}
    					// segment#1  is a single point
    					if ( seg1Pt ) {
    
    						if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) )		return [];		// but not in segment#2
    						return [ inSeg1Pt1 ];
    
    					}
    					// segment#2  is a single point
    					if ( seg2Pt ) {
    
    						if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) )		return [];		// but not in segment#1
    						return [ inSeg2Pt1 ];
    
    					}
    
    					// they are collinear segments, which might overlap
    					var seg1min, seg1max, seg1minVal, seg1maxVal;
    					var seg2min, seg2max, seg2minVal, seg2maxVal;
    					if ( seg1dx !== 0 ) {
    
    						// the segments are NOT on a vertical line
    						if ( inSeg1Pt1.x < inSeg1Pt2.x ) {
    
    							seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x;
    							seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x;
    
    						} else {
    
    							seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x;
    							seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x;
    
    						}
    						if ( inSeg2Pt1.x < inSeg2Pt2.x ) {
    
    							seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x;
    							seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x;
    
    						} else {
    
    							seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x;
    							seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x;
    
    						}
    
    					} else {
    
    						// the segments are on a vertical line
    						if ( inSeg1Pt1.y < inSeg1Pt2.y ) {
    
    							seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y;
    							seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y;
    
    						} else {
    
    							seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y;
    							seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y;
    
    						}
    						if ( inSeg2Pt1.y < inSeg2Pt2.y ) {
    
    							seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y;
    							seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y;
    
    						} else {
    
    							seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y;
    							seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y;
    
    						}
    
    					}
    					if ( seg1minVal <= seg2minVal ) {
    
    						if ( seg1maxVal <  seg2minVal )	return [];
    						if ( seg1maxVal === seg2minVal )	{
    
    							if ( inExcludeAdjacentSegs )		return [];
    							return [ seg2min ];
    
    						}
    						if ( seg1maxVal <= seg2maxVal )	return [ seg2min, seg1max ];
    						return	[ seg2min, seg2max ];
    
    					} else {
    
    						if ( seg1minVal >  seg2maxVal )	return [];
    						if ( seg1minVal === seg2maxVal )	{
    
    							if ( inExcludeAdjacentSegs )		return [];
    							return [ seg1min ];
    
    						}
    						if ( seg1maxVal <= seg2maxVal )	return [ seg1min, seg1max ];
    						return	[ seg1min, seg2max ];
    
    					}
    
    				}
    
    			}
    
    			function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) {
    
    				// The order of legs is important
    
    				// translation of all points, so that Vertex is at (0,0)
    				var legFromPtX	= inLegFromPt.x - inVertex.x,  legFromPtY	= inLegFromPt.y - inVertex.y;
    				var legToPtX	= inLegToPt.x	- inVertex.x,  legToPtY		= inLegToPt.y	- inVertex.y;
    				var otherPtX	= inOtherPt.x	- inVertex.x,  otherPtY		= inOtherPt.y	- inVertex.y;
    
    				// main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg.
    				var from2toAngle	= legFromPtX * legToPtY - legFromPtY * legToPtX;
    				var from2otherAngle	= legFromPtX * otherPtY - legFromPtY * otherPtX;
    
    				if ( Math.abs( from2toAngle ) > Number.EPSILON ) {
    
    					// angle != 180 deg.
    
    					var other2toAngle		= otherPtX * legToPtY - otherPtY * legToPtX;
    					// console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle );
    
    					if ( from2toAngle > 0 ) {
    
    						// main angle < 180 deg.
    						return	( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) );
    
    					} else {
    
    						// main angle > 180 deg.
    						return	( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) );
    
    					}
    
    				} else {
    
    					// angle == 180 deg.
    					// console.log( "from2to: 180 deg., from2other: " + from2otherAngle  );
    					return	( from2otherAngle > 0 );
    
    				}
    
    			}
    
    
    			function removeHoles( contour, holes ) {
    
    				var shape = contour.concat(); // work on this shape
    				var hole;
    
    				function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) {
    
    					// Check if hole point lies within angle around shape point
    					var lastShapeIdx = shape.length - 1;
    
    					var prevShapeIdx = inShapeIdx - 1;
    					if ( prevShapeIdx < 0 )			prevShapeIdx = lastShapeIdx;
    
    					var nextShapeIdx = inShapeIdx + 1;
    					if ( nextShapeIdx > lastShapeIdx )	nextShapeIdx = 0;
    
    					var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] );
    					if ( ! insideAngle ) {
    
    						// console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y );
    						return	false;
    
    					}
    
    					// Check if shape point lies within angle around hole point
    					var lastHoleIdx = hole.length - 1;
    
    					var prevHoleIdx = inHoleIdx - 1;
    					if ( prevHoleIdx < 0 )			prevHoleIdx = lastHoleIdx;
    
    					var nextHoleIdx = inHoleIdx + 1;
    					if ( nextHoleIdx > lastHoleIdx )	nextHoleIdx = 0;
    
    					insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] );
    					if ( ! insideAngle ) {
    
    						// console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y );
    						return	false;
    
    					}
    
    					return	true;
    
    				}
    
    				function intersectsShapeEdge( inShapePt, inHolePt ) {
    
    					// checks for intersections with shape edges
    					var sIdx, nextIdx, intersection;
    					for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) {
    
    						nextIdx = sIdx + 1; nextIdx %= shape.length;
    						intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true );
    						if ( intersection.length > 0 )		return	true;
    
    					}
    
    					return	false;
    
    				}
    
    				var indepHoles = [];
    
    				function intersectsHoleEdge( inShapePt, inHolePt ) {
    
    					// checks for intersections with hole edges
    					var ihIdx, chkHole,
    						hIdx, nextIdx, intersection;
    					for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) {
    
    						chkHole = holes[ indepHoles[ ihIdx ]];
    						for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) {
    
    							nextIdx = hIdx + 1; nextIdx %= chkHole.length;
    							intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true );
    							if ( intersection.length > 0 )		return	true;
    
    						}
    
    					}
    					return	false;
    
    				}
    
    				var holeIndex, shapeIndex,
    					shapePt, holePt,
    					holeIdx, cutKey, failedCuts = [],
    					tmpShape1, tmpShape2,
    					tmpHole1, tmpHole2;
    
    				for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
    
    					indepHoles.push( h );
    
    				}
    
    				var minShapeIndex = 0;
    				var counter = indepHoles.length * 2;
    				while ( indepHoles.length > 0 ) {
    
    					counter --;
    					if ( counter < 0 ) {
    
    						console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" );
    						break;
    
    					}
    
    					// search for shape-vertex and hole-vertex,
    					// which can be connected without intersections
    					for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) {
    
    						shapePt = shape[ shapeIndex ];
    						holeIndex	= - 1;
    
    						// search for hole which can be reached without intersections
    						for ( var h = 0; h < indepHoles.length; h ++ ) {
    
    							holeIdx = indepHoles[ h ];
    
    							// prevent multiple checks
    							cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx;
    							if ( failedCuts[ cutKey ] !== undefined )			continue;
    
    							hole = holes[ holeIdx ];
    							for ( var h2 = 0; h2 < hole.length; h2 ++ ) {
    
    								holePt = hole[ h2 ];
    								if ( ! isCutLineInsideAngles( shapeIndex, h2 ) )		continue;
    								if ( intersectsShapeEdge( shapePt, holePt ) )		continue;
    								if ( intersectsHoleEdge( shapePt, holePt ) )		continue;
    
    								holeIndex = h2;
    								indepHoles.splice( h, 1 );
    
    								tmpShape1 = shape.slice( 0, shapeIndex + 1 );
    								tmpShape2 = shape.slice( shapeIndex );
    								tmpHole1 = hole.slice( holeIndex );
    								tmpHole2 = hole.slice( 0, holeIndex + 1 );
    
    								shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 );
    
    								minShapeIndex = shapeIndex;
    
    								// Debug only, to show the selected cuts
    								// glob_CutLines.push( [ shapePt, holePt ] );
    
    								break;
    
    							}
    							if ( holeIndex >= 0 )	break;		// hole-vertex found
    
    							failedCuts[ cutKey ] = true;			// remember failure
    
    						}
    						if ( holeIndex >= 0 )	break;		// hole-vertex found
    
    					}
    
    				}
    
    				return shape; 			/* shape with no holes */
    
    			}
    
    
    			var i, il, f, face,
    				key, index,
    				allPointsMap = {};
    
    			// To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first.
    
    			var allpoints = contour.concat();
    
    			for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
    
    				Array.prototype.push.apply( allpoints, holes[ h ] );
    
    			}
    
    			//console.log( "allpoints",allpoints, allpoints.length );
    
    			// prepare all points map
    
    			for ( i = 0, il = allpoints.length; i < il; i ++ ) {
    
    				key = allpoints[ i ].x + ":" + allpoints[ i ].y;
    
    				if ( allPointsMap[ key ] !== undefined ) {
    
    					console.warn( "THREE.ShapeUtils: Duplicate point", key, i );
    
    				}
    
    				allPointsMap[ key ] = i;
    
    			}
    
    			// remove holes by cutting paths to holes and adding them to the shape
    			var shapeWithoutHoles = removeHoles( contour, holes );
    
    			var triangles = ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape
    			//console.log( "triangles",triangles, triangles.length );
    
    			// check all face vertices against all points map
    
    			for ( i = 0, il = triangles.length; i < il; i ++ ) {
    
    				face = triangles[ i ];
    
    				for ( f = 0; f < 3; f ++ ) {
    
    					key = face[ f ].x + ":" + face[ f ].y;
    
    					index = allPointsMap[ key ];
    
    					if ( index !== undefined ) {
    
    						face[ f ] = index;
    
    					}
    
    				}
    
    			}
    
    			return triangles.concat();
    
    		},
    
    		isClockWise: function ( pts ) {
    
    			return ShapeUtils.area( pts ) < 0;
    
    		}
    
    	};
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 *
    	 * Creates extruded geometry from a path shape.
    	 *
    	 * parameters = {
    	 *
    	 *  curveSegments: <int>, // number of points on the curves
    	 *  steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
    	 *  amount: <int>, // Depth to extrude the shape
    	 *
    	 *  bevelEnabled: <bool>, // turn on bevel
    	 *  bevelThickness: <float>, // how deep into the original shape bevel goes
    	 *  bevelSize: <float>, // how far from shape outline is bevel
    	 *  bevelSegments: <int>, // number of bevel layers
    	 *
    	 *  extrudePath: <THREE.Curve> // curve to extrude shape along
    	 *  frames: <Object> // containing arrays of tangents, normals, binormals
    	 *
    	 *  UVGenerator: <Object> // object that provides UV generator functions
    	 *
    	 * }
    	 */
    
    	// ExtrudeGeometry
    
    	function ExtrudeGeometry( shapes, options ) {
    
    		Geometry.call( this );
    
    		this.type = 'ExtrudeGeometry';
    
    		this.parameters = {
    			shapes: shapes,
    			options: options
    		};
    
    		this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) );
    		this.mergeVertices();
    
    	}
    
    	ExtrudeGeometry.prototype = Object.create( Geometry.prototype );
    	ExtrudeGeometry.prototype.constructor = ExtrudeGeometry;
    
    	// ExtrudeBufferGeometry
    
    	function ExtrudeBufferGeometry( shapes, options ) {
    
    		if ( typeof ( shapes ) === "undefined" ) {
    
    			shapes = [];
    			return;
    
    		}
    
    		BufferGeometry.call( this );
    
    		this.type = 'ExtrudeBufferGeometry';
    
    		shapes = Array.isArray( shapes ) ? shapes : [ shapes ];
    
    		this.addShapeList( shapes, options );
    
    		this.computeVertexNormals();
    
    		// can't really use automatic vertex normals
    		// as then front and back sides get smoothed too
    		// should do separate smoothing just for sides
    
    		//this.computeVertexNormals();
    
    		//console.log( "took", ( Date.now() - startTime ) );
    
    	}
    
    	ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry;
    
    	ExtrudeBufferGeometry.prototype.getArrays = function () {
    
    		var positionAttribute = this.getAttribute( "position" );
    		var verticesArray = positionAttribute ? Array.prototype.slice.call( positionAttribute.array ) : [];
    
    		var uvAttribute = this.getAttribute( "uv" );
    		var uvArray = uvAttribute ? Array.prototype.slice.call( uvAttribute.array ) : [];
    
    		var IndexAttribute = this.index;
    		var indicesArray = IndexAttribute ? Array.prototype.slice.call( IndexAttribute.array ) : [];
    
    		return {
    			position: verticesArray,
    			uv: uvArray,
    			index: indicesArray
    		};
    
    	};
    
    	ExtrudeBufferGeometry.prototype.addShapeList = function ( shapes, options ) {
    
    		var sl = shapes.length;
    		options.arrays = this.getArrays();
    
    		for ( var s = 0; s < sl; s ++ ) {
    
    			var shape = shapes[ s ];
    			this.addShape( shape, options );
    
    		}
    
    		this.setIndex( options.arrays.index );
    		this.addAttribute( 'position', new Float32BufferAttribute( options.arrays.position, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( options.arrays.uv, 2 ) );
    
    	};
    
    	ExtrudeBufferGeometry.prototype.addShape = function ( shape, options ) {
    
    		var arrays = options.arrays ? options.arrays : this.getArrays();
    		var verticesArray = arrays.position;
    		var indicesArray = arrays.index;
    		var uvArray = arrays.uv;
    
    		var placeholder = [];
    
    
    		var amount = options.amount !== undefined ? options.amount : 100;
    
    		var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10
    		var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8
    		var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
    
    		var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false
    
    		var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
    
    		var steps = options.steps !== undefined ? options.steps : 1;
    
    		var extrudePath = options.extrudePath;
    		var extrudePts, extrudeByPath = false;
    
    		// Use default WorldUVGenerator if no UV generators are specified.
    		var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : ExtrudeGeometry.WorldUVGenerator;
    
    		var splineTube, binormal, normal, position2;
    		if ( extrudePath ) {
    
    			extrudePts = extrudePath.getSpacedPoints( steps );
    
    			extrudeByPath = true;
    			bevelEnabled = false; // bevels not supported for path extrusion
    
    			// SETUP TNB variables
    
    			// TODO1 - have a .isClosed in spline?
    
    			splineTube = options.frames !== undefined ? options.frames : extrudePath.computeFrenetFrames( steps, false );
    
    			// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
    
    			binormal = new Vector3();
    			normal = new Vector3();
    			position2 = new Vector3();
    
    		}
    
    		// Safeguards if bevels are not enabled
    
    		if ( ! bevelEnabled ) {
    
    			bevelSegments = 0;
    			bevelThickness = 0;
    			bevelSize = 0;
    
    		}
    
    		// Variables initialization
    
    		var ahole, h, hl; // looping of holes
    		var scope = this;
    
    		var shapePoints = shape.extractPoints( curveSegments );
    
    		var vertices = shapePoints.shape;
    		var holes = shapePoints.holes;
    
    		var reverse = ! ShapeUtils.isClockWise( vertices );
    
    		if ( reverse ) {
    
    			vertices = vertices.reverse();
    
    			// Maybe we should also check if holes are in the opposite direction, just to be safe ...
    
    			for ( h = 0, hl = holes.length; h < hl; h ++ ) {
    
    				ahole = holes[ h ];
    
    				if ( ShapeUtils.isClockWise( ahole ) ) {
    
    					holes[ h ] = ahole.reverse();
    
    				}
    
    			}
    
    			reverse = false; // If vertices are in order now, we shouldn't need to worry about them again (hopefully)!
    
    		}
    
    
    		var faces = ShapeUtils.triangulateShape( vertices, holes );
    
    		/* Vertices */
    
    		var contour = vertices; // vertices has all points but contour has only points of circumference
    
    		for ( h = 0, hl = holes.length; h < hl; h ++ ) {
    
    			ahole = holes[ h ];
    
    			vertices = vertices.concat( ahole );
    
    		}
    
    
    		function scalePt2( pt, vec, size ) {
    
    			if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" );
    
    			return vec.clone().multiplyScalar( size ).add( pt );
    
    		}
    
    		var b, bs, t, z,
    			vert, vlen = vertices.length,
    			face, flen = faces.length;
    
    
    		// Find directions for point movement
    
    
    		function getBevelVec( inPt, inPrev, inNext ) {
    
    			// computes for inPt the corresponding point inPt' on a new contour
    			//   shifted by 1 unit (length of normalized vector) to the left
    			// if we walk along contour clockwise, this new contour is outside the old one
    			//
    			// inPt' is the intersection of the two lines parallel to the two
    			//  adjacent edges of inPt at a distance of 1 unit on the left side.
    
    			var v_trans_x, v_trans_y, shrink_by = 1; // resulting translation vector for inPt
    
    			// good reading for geometry algorithms (here: line-line intersection)
    			// http://geomalgorithms.com/a05-_intersect-1.html
    
    			var v_prev_x = inPt.x - inPrev.x,
    				v_prev_y = inPt.y - inPrev.y;
    			var v_next_x = inNext.x - inPt.x,
    				v_next_y = inNext.y - inPt.y;
    
    			var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );
    
    			// check for collinear edges
    			var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );
    
    			if ( Math.abs( collinear0 ) > Number.EPSILON ) {
    
    				// not collinear
    
    				// length of vectors for normalizing
    
    				var v_prev_len = Math.sqrt( v_prev_lensq );
    				var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );
    
    				// shift adjacent points by unit vectors to the left
    
    				var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
    				var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );
    
    				var ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
    				var ptNextShift_y = ( inNext.y + v_next_x / v_next_len );
    
    				// scaling factor for v_prev to intersection point
    
    				var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
    						( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
    					( v_prev_x * v_next_y - v_prev_y * v_next_x );
    
    				// vector from inPt to intersection point
    
    				v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
    				v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );
    
    				// Don't normalize!, otherwise sharp corners become ugly
    				//  but prevent crazy spikes
    				var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
    				if ( v_trans_lensq <= 2 ) {
    
    					return new Vector2( v_trans_x, v_trans_y );
    
    				} else {
    
    					shrink_by = Math.sqrt( v_trans_lensq / 2 );
    
    				}
    
    			} else {
    
    				// handle special case of collinear edges
    
    				var direction_eq = false; // assumes: opposite
    				if ( v_prev_x > Number.EPSILON ) {
    
    					if ( v_next_x > Number.EPSILON ) {
    
    						direction_eq = true;
    
    					}
    
    				} else {
    
    					if ( v_prev_x < - Number.EPSILON ) {
    
    						if ( v_next_x < - Number.EPSILON ) {
    
    							direction_eq = true;
    
    						}
    
    					} else {
    
    						if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {
    
    							direction_eq = true;
    
    						}
    
    					}
    
    				}
    
    				if ( direction_eq ) {
    
    					// console.log("Warning: lines are a straight sequence");
    					v_trans_x = - v_prev_y;
    					v_trans_y = v_prev_x;
    					shrink_by = Math.sqrt( v_prev_lensq );
    
    				} else {
    
    					// console.log("Warning: lines are a straight spike");
    					v_trans_x = v_prev_x;
    					v_trans_y = v_prev_y;
    					shrink_by = Math.sqrt( v_prev_lensq / 2 );
    
    				}
    
    			}
    
    			return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );
    
    		}
    
    
    		var contourMovements = [];
    
    		for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
    
    			if ( j === il ) j = 0;
    			if ( k === il ) k = 0;
    
    			//  (j)---(i)---(k)
    			// console.log('i,j,k', i, j , k)
    
    			contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );
    
    		}
    
    		var holesMovements = [],
    			oneHoleMovements, verticesMovements = contourMovements.concat();
    
    		for ( h = 0, hl = holes.length; h < hl; h ++ ) {
    
    			ahole = holes[ h ];
    
    			oneHoleMovements = [];
    
    			for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
    
    				if ( j === il ) j = 0;
    				if ( k === il ) k = 0;
    
    				//  (j)---(i)---(k)
    				oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );
    
    			}
    
    			holesMovements.push( oneHoleMovements );
    			verticesMovements = verticesMovements.concat( oneHoleMovements );
    
    		}
    
    
    		// Loop bevelSegments, 1 for the front, 1 for the back
    
    		for ( b = 0; b < bevelSegments; b ++ ) {
    
    			//for ( b = bevelSegments; b > 0; b -- ) {
    
    			t = b / bevelSegments;
    			z = bevelThickness * Math.cos( t * Math.PI / 2 );
    			bs = bevelSize * Math.sin( t * Math.PI / 2 );
    
    			// contract shape
    
    			for ( i = 0, il = contour.length; i < il; i ++ ) {
    
    				vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
    
    				v( vert.x, vert.y, - z );
    
    			}
    
    			// expand holes
    
    			for ( h = 0, hl = holes.length; h < hl; h ++ ) {
    
    				ahole = holes[ h ];
    				oneHoleMovements = holesMovements[ h ];
    
    				for ( i = 0, il = ahole.length; i < il; i ++ ) {
    
    					vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
    
    					v( vert.x, vert.y, - z );
    
    				}
    
    			}
    
    		}
    
    		bs = bevelSize;
    
    		// Back facing vertices
    
    		for ( i = 0; i < vlen; i ++ ) {
    
    			vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
    
    			if ( ! extrudeByPath ) {
    
    				v( vert.x, vert.y, 0 );
    
    			} else {
    
    				// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
    
    				normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
    				binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );
    
    				position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );
    
    				v( position2.x, position2.y, position2.z );
    
    			}
    
    		}
    
    		// Add stepped vertices...
    		// Including front facing vertices
    
    		var s;
    
    		for ( s = 1; s <= steps; s ++ ) {
    
    			for ( i = 0; i < vlen; i ++ ) {
    
    				vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
    
    				if ( ! extrudeByPath ) {
    
    					v( vert.x, vert.y, amount / steps * s );
    
    				} else {
    
    					// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
    
    					normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
    					binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );
    
    					position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );
    
    					v( position2.x, position2.y, position2.z );
    
    				}
    
    			}
    
    		}
    
    
    		// Add bevel segments planes
    
    		//for ( b = 1; b <= bevelSegments; b ++ ) {
    		for ( b = bevelSegments - 1; b >= 0; b -- ) {
    
    			t = b / bevelSegments;
    			z = bevelThickness * Math.cos( t * Math.PI / 2 );
    			bs = bevelSize * Math.sin( t * Math.PI / 2 );
    
    			// contract shape
    
    			for ( i = 0, il = contour.length; i < il; i ++ ) {
    
    				vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
    				v( vert.x, vert.y, amount + z );
    
    			}
    
    			// expand holes
    
    			for ( h = 0, hl = holes.length; h < hl; h ++ ) {
    
    				ahole = holes[ h ];
    				oneHoleMovements = holesMovements[ h ];
    
    				for ( i = 0, il = ahole.length; i < il; i ++ ) {
    
    					vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
    
    					if ( ! extrudeByPath ) {
    
    						v( vert.x, vert.y, amount + z );
    
    					} else {
    
    						v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );
    
    					}
    
    				}
    
    			}
    
    		}
    
    		/* Faces */
    
    		// Top and bottom faces
    
    		buildLidFaces();
    
    		// Sides faces
    
    		buildSideFaces();
    
    
    		/////  Internal functions
    
    		function buildLidFaces() {
    
    			var start = verticesArray.length/3;
    
    			if ( bevelEnabled ) {
    
    				var layer = 0; // steps + 1
    				var offset = vlen * layer;
    
    				// Bottom faces
    
    				for ( i = 0; i < flen; i ++ ) {
    
    					face = faces[ i ];
    					f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );
    
    				}
    
    				layer = steps + bevelSegments * 2;
    				offset = vlen * layer;
    
    				// Top faces
    
    				for ( i = 0; i < flen; i ++ ) {
    
    					face = faces[ i ];
    					f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );
    
    				}
    
    			} else {
    
    				// Bottom faces
    
    				for ( i = 0; i < flen; i ++ ) {
    
    					face = faces[ i ];
    					f3( face[ 2 ], face[ 1 ], face[ 0 ] );
    
    				}
    
    				// Top faces
    
    				for ( i = 0; i < flen; i ++ ) {
    
    					face = faces[ i ];
    					f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );
    
    				}
    
    			}
    
    			scope.addGroup( start, verticesArray.length/3 -start, options.material !== undefined ? options.material : 0);
    
    		}
    
    		// Create faces for the z-sides of the shape
    
    		function buildSideFaces() {
    
    			var start = verticesArray.length/3;
    			var layeroffset = 0;
    			sidewalls( contour, layeroffset );
    			layeroffset += contour.length;
    
    			for ( h = 0, hl = holes.length; h < hl; h ++ ) {
    
    				ahole = holes[ h ];
    				sidewalls( ahole, layeroffset );
    
    				//, true
    				layeroffset += ahole.length;
    
    			}
    
    
    			scope.addGroup( start, verticesArray.length/3 -start, options.extrudeMaterial !== undefined ? options.extrudeMaterial : 1);
    
    
    		}
    
    		function sidewalls( contour, layeroffset ) {
    
    			var j, k;
    			i = contour.length;
    
    			while ( -- i >= 0 ) {
    
    				j = i;
    				k = i - 1;
    				if ( k < 0 ) k = contour.length - 1;
    
    				//console.log('b', i,j, i-1, k,vertices.length);
    
    				var s = 0,
    					sl = steps + bevelSegments * 2;
    
    				for ( s = 0; s < sl; s ++ ) {
    
    					var slen1 = vlen * s;
    					var slen2 = vlen * ( s + 1 );
    
    					var a = layeroffset + j + slen1,
    						b = layeroffset + k + slen1,
    						c = layeroffset + k + slen2,
    						d = layeroffset + j + slen2;
    
    					f4( a, b, c, d, contour, s, sl, j, k );
    
    				}
    
    			}
    
    		}
    
    		function v( x, y, z ) {
    
    			placeholder.push( x );
    			placeholder.push( y );
    			placeholder.push( z );
    
    		}
    
    
    		function f3( a, b, c ) {
    
    			addVertex( a );
    			addVertex( b );
    			addVertex( c );
    
    			var nextIndex = verticesArray.length / 3;
    			var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
    
    			addUV( uvs[ 0 ] );
    			addUV( uvs[ 1 ] );
    			addUV( uvs[ 2 ] );
    
    		}
    
    		function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) {
    
    			addVertex( a );
    			addVertex( b );
    			addVertex( d );
    
    			addVertex( b );
    			addVertex( c );
    			addVertex( d );
    
    
    			var nextIndex = verticesArray.length / 3;
    			var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
    
    			addUV( uvs[ 0 ] );
    			addUV( uvs[ 1 ] );
    			addUV( uvs[ 3 ] );
    
    			addUV( uvs[ 1 ] );
    			addUV( uvs[ 2 ] );
    			addUV( uvs[ 3 ] );
    
    		}
    
    		function addVertex( index ) {
    
    			indicesArray.push( verticesArray.length / 3 );
    			verticesArray.push( placeholder[ index * 3 + 0 ] );
    			verticesArray.push( placeholder[ index * 3 + 1 ] );
    			verticesArray.push( placeholder[ index * 3 + 2 ] );
    
    		}
    
    
    		function addUV( vector2 ) {
    
    			uvArray.push( vector2.x );
    			uvArray.push( vector2.y );
    
    		}
    
    		if ( ! options.arrays ) {
    
    			this.setIndex( indicesArray );
    			this.addAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) );
    			this.addAttribute( 'uv', new Float32BufferAttribute( options.arrays.uv, 2 ) );
    
    		}
    
    	};
    
    	ExtrudeGeometry.WorldUVGenerator = {
    
    		generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {
    
    			var a_x = vertices[ indexA * 3 ];
    			var a_y = vertices[ indexA * 3 + 1 ];
    			var b_x = vertices[ indexB * 3 ];
    			var b_y = vertices[ indexB * 3 + 1 ];
    			var c_x = vertices[ indexC * 3 ];
    			var c_y = vertices[ indexC * 3 + 1 ];
    
    			return [
    				new Vector2( a_x, a_y ),
    				new Vector2( b_x, b_y ),
    				new Vector2( c_x, c_y )
    			];
    
    		},
    
    		generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {
    
    			var a_x = vertices[ indexA * 3 ];
    			var a_y = vertices[ indexA * 3 + 1 ];
    			var a_z = vertices[ indexA * 3 + 2 ];
    			var b_x = vertices[ indexB * 3 ];
    			var b_y = vertices[ indexB * 3 + 1 ];
    			var b_z = vertices[ indexB * 3 + 2 ];
    			var c_x = vertices[ indexC * 3 ];
    			var c_y = vertices[ indexC * 3 + 1 ];
    			var c_z = vertices[ indexC * 3 + 2 ];
    			var d_x = vertices[ indexD * 3 ];
    			var d_y = vertices[ indexD * 3 + 1 ];
    			var d_z = vertices[ indexD * 3 + 2 ];
    
    			if ( Math.abs( a_y - b_y ) < 0.01 ) {
    
    				return [
    					new Vector2( a_x, 1 - a_z ),
    					new Vector2( b_x, 1 - b_z ),
    					new Vector2( c_x, 1 - c_z ),
    					new Vector2( d_x, 1 - d_z )
    				];
    
    			} else {
    
    				return [
    					new Vector2( a_y, 1 - a_z ),
    					new Vector2( b_y, 1 - b_z ),
    					new Vector2( c_y, 1 - c_z ),
    					new Vector2( d_y, 1 - d_z )
    				];
    
    			}
    
    		}
    	};
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 * @author alteredq / http://alteredqualia.com/
    	 *
    	 * Text = 3D Text
    	 *
    	 * parameters = {
    	 *  font: <THREE.Font>, // font
    	 *
    	 *  size: <float>, // size of the text
    	 *  height: <float>, // thickness to extrude text
    	 *  curveSegments: <int>, // number of points on the curves
    	 *
    	 *  bevelEnabled: <bool>, // turn on bevel
    	 *  bevelThickness: <float>, // how deep into text bevel goes
    	 *  bevelSize: <float> // how far from text outline is bevel
    	 * }
    	 */
    
    	// TextGeometry
    
    	function TextGeometry(  text, parameters ) {
    
    		Geometry.call( this );
    
    		this.type = 'TextGeometry';
    
    		this.parameters = {
    			text: text,
    			parameters: parameters
    		};
    
    		this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) );
    		this.mergeVertices();
    
    	}
    
    	TextGeometry.prototype = Object.create( Geometry.prototype );
    	TextGeometry.prototype.constructor = TextGeometry;
    
    	// TextBufferGeometry
    
    	function TextBufferGeometry( text, parameters ) {
    
    		parameters = parameters || {};
    
    		var font = parameters.font;
    
    		if ( ( font && font.isFont ) === false ) {
    
    			console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' );
    			return new Geometry();
    
    		}
    
    		var shapes = font.generateShapes( text, parameters.size, parameters.curveSegments );
    
    		// translate parameters to ExtrudeGeometry API
    
    		parameters.amount = parameters.height !== undefined ? parameters.height : 50;
    
    		// defaults
    
    		if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10;
    		if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8;
    		if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;
    
    		ExtrudeBufferGeometry.call( this, shapes, parameters );
    
    		this.type = 'TextBufferGeometry';
    
    	}
    
    	TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype );
    	TextBufferGeometry.prototype.constructor = TextBufferGeometry;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author benaadams / https://twitter.com/ben_a_adams
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// SphereGeometry
    
    	function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
    
    		Geometry.call( this );
    
    		this.type = 'SphereGeometry';
    
    		this.parameters = {
    			radius: radius,
    			widthSegments: widthSegments,
    			heightSegments: heightSegments,
    			phiStart: phiStart,
    			phiLength: phiLength,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    		this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) );
    		this.mergeVertices();
    
    	}
    
    	SphereGeometry.prototype = Object.create( Geometry.prototype );
    	SphereGeometry.prototype.constructor = SphereGeometry;
    
    	// SphereBufferGeometry
    
    	function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'SphereBufferGeometry';
    
    		this.parameters = {
    			radius: radius,
    			widthSegments: widthSegments,
    			heightSegments: heightSegments,
    			phiStart: phiStart,
    			phiLength: phiLength,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    		radius = radius || 50;
    
    		widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 );
    		heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );
    
    		phiStart = phiStart !== undefined ? phiStart : 0;
    		phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;
    
    		thetaStart = thetaStart !== undefined ? thetaStart : 0;
    		thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;
    
    		var thetaEnd = thetaStart + thetaLength;
    
    		var ix, iy;
    
    		var index = 0;
    		var grid = [];
    
    		var vertex = new Vector3();
    		var normal = new Vector3();
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		// generate vertices, normals and uvs
    
    		for ( iy = 0; iy <= heightSegments; iy ++ ) {
    
    			var verticesRow = [];
    
    			var v = iy / heightSegments;
    
    			for ( ix = 0; ix <= widthSegments; ix ++ ) {
    
    				var u = ix / widthSegments;
    
    				// vertex
    
    				vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
    				vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
    				vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
    
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    				// normal
    
    				normal.set( vertex.x, vertex.y, vertex.z ).normalize();
    				normals.push( normal.x, normal.y, normal.z );
    
    				// uv
    
    				uvs.push( u, 1 - v );
    
    				verticesRow.push( index ++ );
    
    			}
    
    			grid.push( verticesRow );
    
    		}
    
    		// indices
    
    		for ( iy = 0; iy < heightSegments; iy ++ ) {
    
    			for ( ix = 0; ix < widthSegments; ix ++ ) {
    
    				var a = grid[ iy ][ ix + 1 ];
    				var b = grid[ iy ][ ix ];
    				var c = grid[ iy + 1 ][ ix ];
    				var d = grid[ iy + 1 ][ ix + 1 ];
    
    				if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d );
    				if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d );
    
    			}
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    	}
    
    	SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	SphereBufferGeometry.prototype.constructor = SphereBufferGeometry;
    
    	/**
    	 * @author Kaleb Murphy
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// RingGeometry
    
    	function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
    
    		Geometry.call( this );
    
    		this.type = 'RingGeometry';
    
    		this.parameters = {
    			innerRadius: innerRadius,
    			outerRadius: outerRadius,
    			thetaSegments: thetaSegments,
    			phiSegments: phiSegments,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    		this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) );
    		this.mergeVertices();
    
    	}
    
    	RingGeometry.prototype = Object.create( Geometry.prototype );
    	RingGeometry.prototype.constructor = RingGeometry;
    
    	// RingBufferGeometry
    
    	function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'RingBufferGeometry';
    
    		this.parameters = {
    			innerRadius: innerRadius,
    			outerRadius: outerRadius,
    			thetaSegments: thetaSegments,
    			phiSegments: phiSegments,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    		innerRadius = innerRadius || 20;
    		outerRadius = outerRadius || 50;
    
    		thetaStart = thetaStart !== undefined ? thetaStart : 0;
    		thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
    
    		thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8;
    		phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		// some helper variables
    
    		var segment;
    		var radius = innerRadius;
    		var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
    		var vertex = new Vector3();
    		var uv = new Vector2();
    		var j, i;
    
    		// generate vertices, normals and uvs
    
    		for ( j = 0; j <= phiSegments; j ++ ) {
    
    			for ( i = 0; i <= thetaSegments; i ++ ) {
    
    				// values are generate from the inside of the ring to the outside
    
    				segment = thetaStart + i / thetaSegments * thetaLength;
    
    				// vertex
    
    				vertex.x = radius * Math.cos( segment );
    				vertex.y = radius * Math.sin( segment );
    
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    				// normal
    
    				normals.push( 0, 0, 1 );
    
    				// uv
    
    				uv.x = ( vertex.x / outerRadius + 1 ) / 2;
    				uv.y = ( vertex.y / outerRadius + 1 ) / 2;
    
    				uvs.push( uv.x, uv.y );
    
    			}
    
    			// increase the radius for next row of vertices
    
    			radius += radiusStep;
    
    		}
    
    		// indices
    
    		for ( j = 0; j < phiSegments; j ++ ) {
    
    			var thetaSegmentLevel = j * ( thetaSegments + 1 );
    
    			for ( i = 0; i < thetaSegments; i ++ ) {
    
    				segment = i + thetaSegmentLevel;
    
    				var a = segment;
    				var b = segment + thetaSegments + 1;
    				var c = segment + thetaSegments + 2;
    				var d = segment + 1;
    
    				// faces
    
    				indices.push( a, b, d );
    				indices.push( b, c, d );
    
    			}
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    	}
    
    	RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	RingBufferGeometry.prototype.constructor = RingBufferGeometry;
    
    	/**
    	 * @author astrodud / http://astrodud.isgreat.org/
    	 * @author zz85 / https://github.com/zz85
    	 * @author bhouston / http://clara.io
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// LatheGeometry
    
    	function LatheGeometry( points, segments, phiStart, phiLength ) {
    
    		Geometry.call( this );
    
    		this.type = 'LatheGeometry';
    
    		this.parameters = {
    			points: points,
    			segments: segments,
    			phiStart: phiStart,
    			phiLength: phiLength
    		};
    
    		this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) );
    		this.mergeVertices();
    
    	}
    
    	LatheGeometry.prototype = Object.create( Geometry.prototype );
    	LatheGeometry.prototype.constructor = LatheGeometry;
    
    	// LatheBufferGeometry
    
    	function LatheBufferGeometry( points, segments, phiStart, phiLength ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'LatheBufferGeometry';
    
    		this.parameters = {
    			points: points,
    			segments: segments,
    			phiStart: phiStart,
    			phiLength: phiLength
    		};
    
    		segments = Math.floor( segments ) || 12;
    		phiStart = phiStart || 0;
    		phiLength = phiLength || Math.PI * 2;
    
    		// clamp phiLength so it's in range of [ 0, 2PI ]
    
    		phiLength = _Math.clamp( phiLength, 0, Math.PI * 2 );
    
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var uvs = [];
    
    		// helper variables
    
    		var base;
    		var inverseSegments = 1.0 / segments;
    		var vertex = new Vector3();
    		var uv = new Vector2();
    		var i, j;
    
    		// generate vertices and uvs
    
    		for ( i = 0; i <= segments; i ++ ) {
    
    			var phi = phiStart + i * inverseSegments * phiLength;
    
    			var sin = Math.sin( phi );
    			var cos = Math.cos( phi );
    
    			for ( j = 0; j <= ( points.length - 1 ); j ++ ) {
    
    				// vertex
    
    				vertex.x = points[ j ].x * sin;
    				vertex.y = points[ j ].y;
    				vertex.z = points[ j ].x * cos;
    
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    				// uv
    
    				uv.x = i / segments;
    				uv.y = j / ( points.length - 1 );
    
    				uvs.push( uv.x, uv.y );
    
    
    			}
    
    		}
    
    		// indices
    
    		for ( i = 0; i < segments; i ++ ) {
    
    			for ( j = 0; j < ( points.length - 1 ); j ++ ) {
    
    				base = j + i * points.length;
    
    				var a = base;
    				var b = base + points.length;
    				var c = base + points.length + 1;
    				var d = base + 1;
    
    				// faces
    
    				indices.push( a, b, d );
    				indices.push( b, c, d );
    
    			}
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    		// generate normals
    
    		this.computeVertexNormals();
    
    		// if the geometry is closed, we need to average the normals along the seam.
    		// because the corresponding vertices are identical (but still have different UVs).
    
    		if ( phiLength === Math.PI * 2 ) {
    
    			var normals = this.attributes.normal.array;
    			var n1 = new Vector3();
    			var n2 = new Vector3();
    			var n = new Vector3();
    
    			// this is the buffer offset for the last line of vertices
    
    			base = segments * points.length * 3;
    
    			for ( i = 0, j = 0; i < points.length; i ++, j += 3 ) {
    
    				// select the normal of the vertex in the first line
    
    				n1.x = normals[ j + 0 ];
    				n1.y = normals[ j + 1 ];
    				n1.z = normals[ j + 2 ];
    
    				// select the normal of the vertex in the last line
    
    				n2.x = normals[ base + j + 0 ];
    				n2.y = normals[ base + j + 1 ];
    				n2.z = normals[ base + j + 2 ];
    
    				// average normals
    
    				n.addVectors( n1, n2 ).normalize();
    
    				// assign the new values to both normals
    
    				normals[ j + 0 ] = normals[ base + j + 0 ] = n.x;
    				normals[ j + 1 ] = normals[ base + j + 1 ] = n.y;
    				normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;
    
    			}
    
    		}
    
    	}
    
    	LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	LatheBufferGeometry.prototype.constructor = LatheBufferGeometry;
    
    	/**
    	 * @author jonobr1 / http://jonobr1.com
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// ShapeGeometry
    
    	function ShapeGeometry( shapes, curveSegments ) {
    
    		Geometry.call( this );
    
    		this.type = 'ShapeGeometry';
    
    		if ( typeof curveSegments === 'object' ) {
    
    			console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' );
    
    			curveSegments = curveSegments.curveSegments;
    
    		}
    
    		this.parameters = {
    			shapes: shapes,
    			curveSegments: curveSegments
    		};
    
    		this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) );
    		this.mergeVertices();
    
    	}
    
    	ShapeGeometry.prototype = Object.create( Geometry.prototype );
    	ShapeGeometry.prototype.constructor = ShapeGeometry;
    
    	// ShapeBufferGeometry
    
    	function ShapeBufferGeometry( shapes, curveSegments ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'ShapeBufferGeometry';
    
    		this.parameters = {
    			shapes: shapes,
    			curveSegments: curveSegments
    		};
    
    		curveSegments = curveSegments || 12;
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		// helper variables
    
    		var groupStart = 0;
    		var groupCount = 0;
    
    		// allow single and array values for "shapes" parameter
    
    		if ( Array.isArray( shapes ) === false ) {
    
    			addShape( shapes );
    
    		} else {
    
    			for ( var i = 0; i < shapes.length; i ++ ) {
    
    				addShape( shapes[ i ] );
    
    				this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support
    
    				groupStart += groupCount;
    				groupCount = 0;
    
    			}
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    
    		// helper functions
    
    		function addShape( shape ) {
    
    			var i, l, shapeHole;
    
    			var indexOffset = vertices.length / 3;
    			var points = shape.extractPoints( curveSegments );
    
    			var shapeVertices = points.shape;
    			var shapeHoles = points.holes;
    
    			// check direction of vertices
    
    			if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {
    
    				shapeVertices = shapeVertices.reverse();
    
    				// also check if holes are in the opposite direction
    
    				for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {
    
    					shapeHole = shapeHoles[ i ];
    
    					if ( ShapeUtils.isClockWise( shapeHole ) === true ) {
    
    						shapeHoles[ i ] = shapeHole.reverse();
    
    					}
    
    				}
    
    			}
    
    			var faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );
    
    			// join vertices of inner and outer paths to a single array
    
    			for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {
    
    				shapeHole = shapeHoles[ i ];
    				shapeVertices = shapeVertices.concat( shapeHole );
    
    			}
    
    			// vertices, normals, uvs
    
    			for ( i = 0, l = shapeVertices.length; i < l; i ++ ) {
    
    				var vertex = shapeVertices[ i ];
    
    				vertices.push( vertex.x, vertex.y, 0 );
    				normals.push( 0, 0, 1 );
    				uvs.push( vertex.x, vertex.y ); // world uvs
    
    			}
    
    			// incides
    
    			for ( i = 0, l = faces.length; i < l; i ++ ) {
    
    				var face = faces[ i ];
    
    				var a = face[ 0 ] + indexOffset;
    				var b = face[ 1 ] + indexOffset;
    				var c = face[ 2 ] + indexOffset;
    
    				indices.push( a, b, c );
    				groupCount += 3;
    
    			}
    
    		}
    
    	}
    
    	ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry;
    
    	/**
    	 * @author WestLangley / http://github.com/WestLangley
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	function EdgesGeometry( geometry, thresholdAngle ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'EdgesGeometry';
    
    		this.parameters = {
    			thresholdAngle: thresholdAngle
    		};
    
    		thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;
    
    		// buffer
    
    		var vertices = [];
    
    		// helper variables
    
    		var thresholdDot = Math.cos( _Math.DEG2RAD * thresholdAngle );
    		var edge = [ 0, 0 ], edges = {}, edge1, edge2;
    		var key, keys = [ 'a', 'b', 'c' ];
    
    		// prepare source geometry
    
    		var geometry2;
    
    		if ( geometry.isBufferGeometry ) {
    
    			geometry2 = new Geometry();
    			geometry2.fromBufferGeometry( geometry );
    
    		} else {
    
    			geometry2 = geometry.clone();
    
    		}
    
    		geometry2.mergeVertices();
    		geometry2.computeFaceNormals();
    
    		var sourceVertices = geometry2.vertices;
    		var faces = geometry2.faces;
    
    		// now create a data structure where each entry represents an edge with its adjoining faces
    
    		for ( var i = 0, l = faces.length; i < l; i ++ ) {
    
    			var face = faces[ i ];
    
    			for ( var j = 0; j < 3; j ++ ) {
    
    				edge1 = face[ keys[ j ] ];
    				edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
    				edge[ 0 ] = Math.min( edge1, edge2 );
    				edge[ 1 ] = Math.max( edge1, edge2 );
    
    				key = edge[ 0 ] + ',' + edge[ 1 ];
    
    				if ( edges[ key ] === undefined ) {
    
    					edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined };
    
    				} else {
    
    					edges[ key ].face2 = i;
    
    				}
    
    			}
    
    		}
    
    		// generate vertices
    
    		for ( key in edges ) {
    
    			var e = edges[ key ];
    
    			// an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree.
    
    			if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) {
    
    				var vertex = sourceVertices[ e.index1 ];
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    				vertex = sourceVertices[ e.index2 ];
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    			}
    
    		}
    
    		// build geometry
    
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    
    	}
    
    	EdgesGeometry.prototype = Object.create( BufferGeometry.prototype );
    	EdgesGeometry.prototype.constructor = EdgesGeometry;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	// CylinderGeometry
    
    	function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
    
    		Geometry.call( this );
    
    		this.type = 'CylinderGeometry';
    
    		this.parameters = {
    			radiusTop: radiusTop,
    			radiusBottom: radiusBottom,
    			height: height,
    			radialSegments: radialSegments,
    			heightSegments: heightSegments,
    			openEnded: openEnded,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    		this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) );
    		this.mergeVertices();
    
    	}
    
    	CylinderGeometry.prototype = Object.create( Geometry.prototype );
    	CylinderGeometry.prototype.constructor = CylinderGeometry;
    
    	// CylinderBufferGeometry
    
    	function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'CylinderBufferGeometry';
    
    		this.parameters = {
    			radiusTop: radiusTop,
    			radiusBottom: radiusBottom,
    			height: height,
    			radialSegments: radialSegments,
    			heightSegments: heightSegments,
    			openEnded: openEnded,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    		var scope = this;
    
    		radiusTop = radiusTop !== undefined ? radiusTop : 20;
    		radiusBottom = radiusBottom !== undefined ? radiusBottom : 20;
    		height = height !== undefined ? height : 100;
    
    		radialSegments = Math.floor( radialSegments ) || 8;
    		heightSegments = Math.floor( heightSegments ) || 1;
    
    		openEnded = openEnded !== undefined ? openEnded : false;
    		thetaStart = thetaStart !== undefined ? thetaStart : 0.0;
    		thetaLength = thetaLength !== undefined ? thetaLength : 2.0 * Math.PI;
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		// helper variables
    
    		var index = 0;
    		var indexArray = [];
    		var halfHeight = height / 2;
    		var groupStart = 0;
    
    		// generate geometry
    
    		generateTorso();
    
    		if ( openEnded === false ) {
    
    			if ( radiusTop > 0 ) generateCap( true );
    			if ( radiusBottom > 0 ) generateCap( false );
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    		function generateTorso() {
    
    			var x, y;
    			var normal = new Vector3();
    			var vertex = new Vector3();
    
    			var groupCount = 0;
    
    			// this will be used to calculate the normal
    			var slope = ( radiusBottom - radiusTop ) / height;
    
    			// generate vertices, normals and uvs
    
    			for ( y = 0; y <= heightSegments; y ++ ) {
    
    				var indexRow = [];
    
    				var v = y / heightSegments;
    
    				// calculate the radius of the current row
    
    				var radius = v * ( radiusBottom - radiusTop ) + radiusTop;
    
    				for ( x = 0; x <= radialSegments; x ++ ) {
    
    					var u = x / radialSegments;
    
    					var theta = u * thetaLength + thetaStart;
    
    					var sinTheta = Math.sin( theta );
    					var cosTheta = Math.cos( theta );
    
    					// vertex
    
    					vertex.x = radius * sinTheta;
    					vertex.y = - v * height + halfHeight;
    					vertex.z = radius * cosTheta;
    					vertices.push( vertex.x, vertex.y, vertex.z );
    
    					// normal
    
    					normal.set( sinTheta, slope, cosTheta ).normalize();
    					normals.push( normal.x, normal.y, normal.z );
    
    					// uv
    
    					uvs.push( u, 1 - v );
    
    					// save index of vertex in respective row
    
    					indexRow.push( index ++ );
    
    				}
    
    				// now save vertices of the row in our index array
    
    				indexArray.push( indexRow );
    
    			}
    
    			// generate indices
    
    			for ( x = 0; x < radialSegments; x ++ ) {
    
    				for ( y = 0; y < heightSegments; y ++ ) {
    
    					// we use the index array to access the correct indices
    
    					var a = indexArray[ y ][ x ];
    					var b = indexArray[ y + 1 ][ x ];
    					var c = indexArray[ y + 1 ][ x + 1 ];
    					var d = indexArray[ y ][ x + 1 ];
    
    					// faces
    
    					indices.push( a, b, d );
    					indices.push( b, c, d );
    
    					// update group counter
    
    					groupCount += 6;
    
    				}
    
    			}
    
    			// add a group to the geometry. this will ensure multi material support
    
    			scope.addGroup( groupStart, groupCount, 0 );
    
    			// calculate new start value for groups
    
    			groupStart += groupCount;
    
    		}
    
    		function generateCap( top ) {
    
    			var x, centerIndexStart, centerIndexEnd;
    
    			var uv = new Vector2();
    			var vertex = new Vector3();
    
    			var groupCount = 0;
    
    			var radius = ( top === true ) ? radiusTop : radiusBottom;
    			var sign = ( top === true ) ? 1 : - 1;
    
    			// save the index of the first center vertex
    			centerIndexStart = index;
    
    			// first we generate the center vertex data of the cap.
    			// because the geometry needs one set of uvs per face,
    			// we must generate a center vertex per face/segment
    
    			for ( x = 1; x <= radialSegments; x ++ ) {
    
    				// vertex
    
    				vertices.push( 0, halfHeight * sign, 0 );
    
    				// normal
    
    				normals.push( 0, sign, 0 );
    
    				// uv
    
    				uvs.push( 0.5, 0.5 );
    
    				// increase index
    
    				index ++;
    
    			}
    
    			// save the index of the last center vertex
    
    			centerIndexEnd = index;
    
    			// now we generate the surrounding vertices, normals and uvs
    
    			for ( x = 0; x <= radialSegments; x ++ ) {
    
    				var u = x / radialSegments;
    				var theta = u * thetaLength + thetaStart;
    
    				var cosTheta = Math.cos( theta );
    				var sinTheta = Math.sin( theta );
    
    				// vertex
    
    				vertex.x = radius * sinTheta;
    				vertex.y = halfHeight * sign;
    				vertex.z = radius * cosTheta;
    				vertices.push( vertex.x, vertex.y, vertex.z );
    
    				// normal
    
    				normals.push( 0, sign, 0 );
    
    				// uv
    
    				uv.x = ( cosTheta * 0.5 ) + 0.5;
    				uv.y = ( sinTheta * 0.5 * sign ) + 0.5;
    				uvs.push( uv.x, uv.y );
    
    				// increase index
    
    				index ++;
    
    			}
    
    			// generate indices
    
    			for ( x = 0; x < radialSegments; x ++ ) {
    
    				var c = centerIndexStart + x;
    				var i = centerIndexEnd + x;
    
    				if ( top === true ) {
    
    					// face top
    
    					indices.push( i, i + 1, c );
    
    				} else {
    
    					// face bottom
    
    					indices.push( i + 1, i, c );
    
    				}
    
    				groupCount += 3;
    
    			}
    
    			// add a group to the geometry. this will ensure multi material support
    
    			scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );
    
    			// calculate new start value for groups
    
    			groupStart += groupCount;
    
    		}
    
    	}
    
    	CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry;
    
    	/**
    	 * @author abelnation / http://github.com/abelnation
    	 */
    
    	// ConeGeometry
    
    	function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
    
    		CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );
    
    		this.type = 'ConeGeometry';
    
    		this.parameters = {
    			radius: radius,
    			height: height,
    			radialSegments: radialSegments,
    			heightSegments: heightSegments,
    			openEnded: openEnded,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    	}
    
    	ConeGeometry.prototype = Object.create( CylinderGeometry.prototype );
    	ConeGeometry.prototype.constructor = ConeGeometry;
    
    	// ConeBufferGeometry
    
    	function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {
    
    		CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );
    
    		this.type = 'ConeBufferGeometry';
    
    		this.parameters = {
    			radius: radius,
    			height: height,
    			radialSegments: radialSegments,
    			heightSegments: heightSegments,
    			openEnded: openEnded,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    	}
    
    	ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype );
    	ConeBufferGeometry.prototype.constructor = ConeBufferGeometry;
    
    	/**
    	 * @author benaadams / https://twitter.com/ben_a_adams
    	 * @author Mugen87 / https://github.com/Mugen87
    	 * @author hughes
    	 */
    
    	// CircleGeometry
    
    	function CircleGeometry( radius, segments, thetaStart, thetaLength ) {
    
    		Geometry.call( this );
    
    		this.type = 'CircleGeometry';
    
    		this.parameters = {
    			radius: radius,
    			segments: segments,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    		this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) );
    		this.mergeVertices();
    
    	}
    
    	CircleGeometry.prototype = Object.create( Geometry.prototype );
    	CircleGeometry.prototype.constructor = CircleGeometry;
    
    	// CircleBufferGeometry
    
    	function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) {
    
    		BufferGeometry.call( this );
    
    		this.type = 'CircleBufferGeometry';
    
    		this.parameters = {
    			radius: radius,
    			segments: segments,
    			thetaStart: thetaStart,
    			thetaLength: thetaLength
    		};
    
    		radius = radius || 50;
    		segments = segments !== undefined ? Math.max( 3, segments ) : 8;
    
    		thetaStart = thetaStart !== undefined ? thetaStart : 0;
    		thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;
    
    		// buffers
    
    		var indices = [];
    		var vertices = [];
    		var normals = [];
    		var uvs = [];
    
    		// helper variables
    
    		var i, s;
    		var vertex = new Vector3();
    		var uv = new Vector2();
    
    		// center point
    
    		vertices.push( 0, 0, 0 );
    		normals.push( 0, 0, 1 );
    		uvs.push( 0.5, 0.5 );
    
    		for ( s = 0, i = 3; s <= segments; s ++, i += 3 ) {
    
    			var segment = thetaStart + s / segments * thetaLength;
    
    			// vertex
    
    			vertex.x = radius * Math.cos( segment );
    			vertex.y = radius * Math.sin( segment );
    
    			vertices.push( vertex.x, vertex.y, vertex.z );
    
    			// normal
    
    			normals.push( 0, 0, 1 );
    
    			// uvs
    
    			uv.x = ( vertices[ i ] / radius + 1 ) / 2;
    			uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;
    
    			uvs.push( uv.x, uv.y );
    
    		}
    
    		// indices
    
    		for ( i = 1; i <= segments; i ++ ) {
    
    			indices.push( i, i + 1, 0 );
    
    		}
    
    		// build geometry
    
    		this.setIndex( indices );
    		this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
    		this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
    
    	}
    
    	CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
    	CircleBufferGeometry.prototype.constructor = CircleBufferGeometry;
    
    
    
    	var Geometries = Object.freeze({
    		WireframeGeometry: WireframeGeometry,
    		ParametricGeometry: ParametricGeometry,
    		ParametricBufferGeometry: ParametricBufferGeometry,
    		TetrahedronGeometry: TetrahedronGeometry,
    		TetrahedronBufferGeometry: TetrahedronBufferGeometry,
    		OctahedronGeometry: OctahedronGeometry,
    		OctahedronBufferGeometry: OctahedronBufferGeometry,
    		IcosahedronGeometry: IcosahedronGeometry,
    		IcosahedronBufferGeometry: IcosahedronBufferGeometry,
    		DodecahedronGeometry: DodecahedronGeometry,
    		DodecahedronBufferGeometry: DodecahedronBufferGeometry,
    		PolyhedronGeometry: PolyhedronGeometry,
    		PolyhedronBufferGeometry: PolyhedronBufferGeometry,
    		TubeGeometry: TubeGeometry,
    		TubeBufferGeometry: TubeBufferGeometry,
    		TorusKnotGeometry: TorusKnotGeometry,
    		TorusKnotBufferGeometry: TorusKnotBufferGeometry,
    		TorusGeometry: TorusGeometry,
    		TorusBufferGeometry: TorusBufferGeometry,
    		TextGeometry: TextGeometry,
    		TextBufferGeometry: TextBufferGeometry,
    		SphereGeometry: SphereGeometry,
    		SphereBufferGeometry: SphereBufferGeometry,
    		RingGeometry: RingGeometry,
    		RingBufferGeometry: RingBufferGeometry,
    		PlaneGeometry: PlaneGeometry,
    		PlaneBufferGeometry: PlaneBufferGeometry,
    		LatheGeometry: LatheGeometry,
    		LatheBufferGeometry: LatheBufferGeometry,
    		ShapeGeometry: ShapeGeometry,
    		ShapeBufferGeometry: ShapeBufferGeometry,
    		ExtrudeGeometry: ExtrudeGeometry,
    		ExtrudeBufferGeometry: ExtrudeBufferGeometry,
    		EdgesGeometry: EdgesGeometry,
    		ConeGeometry: ConeGeometry,
    		ConeBufferGeometry: ConeBufferGeometry,
    		CylinderGeometry: CylinderGeometry,
    		CylinderBufferGeometry: CylinderBufferGeometry,
    		CircleGeometry: CircleGeometry,
    		CircleBufferGeometry: CircleBufferGeometry,
    		BoxGeometry: BoxGeometry,
    		BoxBufferGeometry: BoxBufferGeometry
    	});
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 *
    	 * parameters = {
    	 *  opacity: <float>
    	 * }
    	 */
    
    	function ShadowMaterial( parameters ) {
    
    		ShaderMaterial.call( this, {
    			uniforms: UniformsUtils.merge( [
    				UniformsLib.lights,
    				{
    					opacity: { value: 1.0 }
    				}
    			] ),
    			vertexShader: ShaderChunk[ 'shadow_vert' ],
    			fragmentShader: ShaderChunk[ 'shadow_frag' ]
    		} );
    
    		this.lights = true;
    		this.transparent = true;
    
    		Object.defineProperties( this, {
    			opacity: {
    				enumerable: true,
    				get: function () {
    					return this.uniforms.opacity.value;
    				},
    				set: function ( value ) {
    					this.uniforms.opacity.value = value;
    				}
    			}
    		} );
    
    		this.setValues( parameters );
    
    	}
    
    	ShadowMaterial.prototype = Object.create( ShaderMaterial.prototype );
    	ShadowMaterial.prototype.constructor = ShadowMaterial;
    
    	ShadowMaterial.prototype.isShadowMaterial = true;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function RawShaderMaterial( parameters ) {
    
    		ShaderMaterial.call( this, parameters );
    
    		this.type = 'RawShaderMaterial';
    
    	}
    
    	RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype );
    	RawShaderMaterial.prototype.constructor = RawShaderMaterial;
    
    	RawShaderMaterial.prototype.isRawShaderMaterial = true;
    
    	/**
    	 * @author WestLangley / http://github.com/WestLangley
    	 *
    	 * parameters = {
    	 *  color: <hex>,
    	 *  roughness: <float>,
    	 *  metalness: <float>,
    	 *  opacity: <float>,
    	 *
    	 *  map: new THREE.Texture( <Image> ),
    	 *
    	 *  lightMap: new THREE.Texture( <Image> ),
    	 *  lightMapIntensity: <float>
    	 *
    	 *  aoMap: new THREE.Texture( <Image> ),
    	 *  aoMapIntensity: <float>
    	 *
    	 *  emissive: <hex>,
    	 *  emissiveIntensity: <float>
    	 *  emissiveMap: new THREE.Texture( <Image> ),
    	 *
    	 *  bumpMap: new THREE.Texture( <Image> ),
    	 *  bumpScale: <float>,
    	 *
    	 *  normalMap: new THREE.Texture( <Image> ),
    	 *  normalScale: <Vector2>,
    	 *
    	 *  displacementMap: new THREE.Texture( <Image> ),
    	 *  displacementScale: <float>,
    	 *  displacementBias: <float>,
    	 *
    	 *  roughnessMap: new THREE.Texture( <Image> ),
    	 *
    	 *  metalnessMap: new THREE.Texture( <Image> ),
    	 *
    	 *  alphaMap: new THREE.Texture( <Image> ),
    	 *
    	 *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
    	 *  envMapIntensity: <float>
    	 *
    	 *  refractionRatio: <float>,
    	 *
    	 *  wireframe: <boolean>,
    	 *  wireframeLinewidth: <float>,
    	 *
    	 *  skinning: <bool>,
    	 *  morphTargets: <bool>,
    	 *  morphNormals: <bool>
    	 * }
    	 */
    
    	function MeshStandardMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.defines = { 'STANDARD': '' };
    
    		this.type = 'MeshStandardMaterial';
    
    		this.color = new Color( 0xffffff ); // diffuse
    		this.roughness = 0.5;
    		this.metalness = 0.5;
    
    		this.map = null;
    
    		this.lightMap = null;
    		this.lightMapIntensity = 1.0;
    
    		this.aoMap = null;
    		this.aoMapIntensity = 1.0;
    
    		this.emissive = new Color( 0x000000 );
    		this.emissiveIntensity = 1.0;
    		this.emissiveMap = null;
    
    		this.bumpMap = null;
    		this.bumpScale = 1;
    
    		this.normalMap = null;
    		this.normalScale = new Vector2( 1, 1 );
    
    		this.displacementMap = null;
    		this.displacementScale = 1;
    		this.displacementBias = 0;
    
    		this.roughnessMap = null;
    
    		this.metalnessMap = null;
    
    		this.alphaMap = null;
    
    		this.envMap = null;
    		this.envMapIntensity = 1.0;
    
    		this.refractionRatio = 0.98;
    
    		this.wireframe = false;
    		this.wireframeLinewidth = 1;
    		this.wireframeLinecap = 'round';
    		this.wireframeLinejoin = 'round';
    
    		this.skinning = false;
    		this.morphTargets = false;
    		this.morphNormals = false;
    
    		this.setValues( parameters );
    
    	}
    
    	MeshStandardMaterial.prototype = Object.create( Material.prototype );
    	MeshStandardMaterial.prototype.constructor = MeshStandardMaterial;
    
    	MeshStandardMaterial.prototype.isMeshStandardMaterial = true;
    
    	MeshStandardMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.defines = { 'STANDARD': '' };
    
    		this.color.copy( source.color );
    		this.roughness = source.roughness;
    		this.metalness = source.metalness;
    
    		this.map = source.map;
    
    		this.lightMap = source.lightMap;
    		this.lightMapIntensity = source.lightMapIntensity;
    
    		this.aoMap = source.aoMap;
    		this.aoMapIntensity = source.aoMapIntensity;
    
    		this.emissive.copy( source.emissive );
    		this.emissiveMap = source.emissiveMap;
    		this.emissiveIntensity = source.emissiveIntensity;
    
    		this.bumpMap = source.bumpMap;
    		this.bumpScale = source.bumpScale;
    
    		this.normalMap = source.normalMap;
    		this.normalScale.copy( source.normalScale );
    
    		this.displacementMap = source.displacementMap;
    		this.displacementScale = source.displacementScale;
    		this.displacementBias = source.displacementBias;
    
    		this.roughnessMap = source.roughnessMap;
    
    		this.metalnessMap = source.metalnessMap;
    
    		this.alphaMap = source.alphaMap;
    
    		this.envMap = source.envMap;
    		this.envMapIntensity = source.envMapIntensity;
    
    		this.refractionRatio = source.refractionRatio;
    
    		this.wireframe = source.wireframe;
    		this.wireframeLinewidth = source.wireframeLinewidth;
    		this.wireframeLinecap = source.wireframeLinecap;
    		this.wireframeLinejoin = source.wireframeLinejoin;
    
    		this.skinning = source.skinning;
    		this.morphTargets = source.morphTargets;
    		this.morphNormals = source.morphNormals;
    
    		return this;
    
    	};
    
    	/**
    	 * @author WestLangley / http://github.com/WestLangley
    	 *
    	 * parameters = {
    	 *  reflectivity: <float>
    	 * }
    	 */
    
    	function MeshPhysicalMaterial( parameters ) {
    
    		MeshStandardMaterial.call( this );
    
    		this.defines = { 'PHYSICAL': '' };
    
    		this.type = 'MeshPhysicalMaterial';
    
    		this.reflectivity = 0.5; // maps to F0 = 0.04
    
    		this.clearCoat = 0.0;
    		this.clearCoatRoughness = 0.0;
    
    		this.setValues( parameters );
    
    	}
    
    	MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
    	MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial;
    
    	MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;
    
    	MeshPhysicalMaterial.prototype.copy = function ( source ) {
    
    		MeshStandardMaterial.prototype.copy.call( this, source );
    
    		this.defines = { 'PHYSICAL': '' };
    
    		this.reflectivity = source.reflectivity;
    
    		this.clearCoat = source.clearCoat;
    		this.clearCoatRoughness = source.clearCoatRoughness;
    
    		return this;
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 *
    	 * parameters = {
    	 *  color: <hex>,
    	 *  specular: <hex>,
    	 *  shininess: <float>,
    	 *  opacity: <float>,
    	 *
    	 *  map: new THREE.Texture( <Image> ),
    	 *
    	 *  lightMap: new THREE.Texture( <Image> ),
    	 *  lightMapIntensity: <float>
    	 *
    	 *  aoMap: new THREE.Texture( <Image> ),
    	 *  aoMapIntensity: <float>
    	 *
    	 *  emissive: <hex>,
    	 *  emissiveIntensity: <float>
    	 *  emissiveMap: new THREE.Texture( <Image> ),
    	 *
    	 *  bumpMap: new THREE.Texture( <Image> ),
    	 *  bumpScale: <float>,
    	 *
    	 *  normalMap: new THREE.Texture( <Image> ),
    	 *  normalScale: <Vector2>,
    	 *
    	 *  displacementMap: new THREE.Texture( <Image> ),
    	 *  displacementScale: <float>,
    	 *  displacementBias: <float>,
    	 *
    	 *  specularMap: new THREE.Texture( <Image> ),
    	 *
    	 *  alphaMap: new THREE.Texture( <Image> ),
    	 *
    	 *  envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
    	 *  combine: THREE.Multiply,
    	 *  reflectivity: <float>,
    	 *  refractionRatio: <float>,
    	 *
    	 *  wireframe: <boolean>,
    	 *  wireframeLinewidth: <float>,
    	 *
    	 *  skinning: <bool>,
    	 *  morphTargets: <bool>,
    	 *  morphNormals: <bool>
    	 * }
    	 */
    
    	function MeshPhongMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.type = 'MeshPhongMaterial';
    
    		this.color = new Color( 0xffffff ); // diffuse
    		this.specular = new Color( 0x111111 );
    		this.shininess = 30;
    
    		this.map = null;
    
    		this.lightMap = null;
    		this.lightMapIntensity = 1.0;
    
    		this.aoMap = null;
    		this.aoMapIntensity = 1.0;
    
    		this.emissive = new Color( 0x000000 );
    		this.emissiveIntensity = 1.0;
    		this.emissiveMap = null;
    
    		this.bumpMap = null;
    		this.bumpScale = 1;
    
    		this.normalMap = null;
    		this.normalScale = new Vector2( 1, 1 );
    
    		this.displacementMap = null;
    		this.displacementScale = 1;
    		this.displacementBias = 0;
    
    		this.specularMap = null;
    
    		this.alphaMap = null;
    
    		this.envMap = null;
    		this.combine = MultiplyOperation;
    		this.reflectivity = 1;
    		this.refractionRatio = 0.98;
    
    		this.wireframe = false;
    		this.wireframeLinewidth = 1;
    		this.wireframeLinecap = 'round';
    		this.wireframeLinejoin = 'round';
    
    		this.skinning = false;
    		this.morphTargets = false;
    		this.morphNormals = false;
    
    		this.setValues( parameters );
    
    	}
    
    	MeshPhongMaterial.prototype = Object.create( Material.prototype );
    	MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;
    
    	MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
    
    	MeshPhongMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.color.copy( source.color );
    		this.specular.copy( source.specular );
    		this.shininess = source.shininess;
    
    		this.map = source.map;
    
    		this.lightMap = source.lightMap;
    		this.lightMapIntensity = source.lightMapIntensity;
    
    		this.aoMap = source.aoMap;
    		this.aoMapIntensity = source.aoMapIntensity;
    
    		this.emissive.copy( source.emissive );
    		this.emissiveMap = source.emissiveMap;
    		this.emissiveIntensity = source.emissiveIntensity;
    
    		this.bumpMap = source.bumpMap;
    		this.bumpScale = source.bumpScale;
    
    		this.normalMap = source.normalMap;
    		this.normalScale.copy( source.normalScale );
    
    		this.displacementMap = source.displacementMap;
    		this.displacementScale = source.displacementScale;
    		this.displacementBias = source.displacementBias;
    
    		this.specularMap = source.specularMap;
    
    		this.alphaMap = source.alphaMap;
    
    		this.envMap = source.envMap;
    		this.combine = source.combine;
    		this.reflectivity = source.reflectivity;
    		this.refractionRatio = source.refractionRatio;
    
    		this.wireframe = source.wireframe;
    		this.wireframeLinewidth = source.wireframeLinewidth;
    		this.wireframeLinecap = source.wireframeLinecap;
    		this.wireframeLinejoin = source.wireframeLinejoin;
    
    		this.skinning = source.skinning;
    		this.morphTargets = source.morphTargets;
    		this.morphNormals = source.morphNormals;
    
    		return this;
    
    	};
    
    	/**
    	 * @author takahirox / http://github.com/takahirox
    	 *
    	 * parameters = {
    	 *  gradientMap: new THREE.Texture( <Image> )
    	 * }
    	 */
    
    	function MeshToonMaterial( parameters ) {
    
    		MeshPhongMaterial.call( this );
    
    		this.defines = { 'TOON': '' };
    
    		this.type = 'MeshToonMaterial';
    
    		this.gradientMap = null;
    
    		this.setValues( parameters );
    
    	}
    
    	MeshToonMaterial.prototype = Object.create( MeshPhongMaterial.prototype );
    	MeshToonMaterial.prototype.constructor = MeshToonMaterial;
    
    	MeshToonMaterial.prototype.isMeshToonMaterial = true;
    
    	MeshToonMaterial.prototype.copy = function ( source ) {
    
    		MeshPhongMaterial.prototype.copy.call( this, source );
    
    		this.gradientMap = source.gradientMap;
    
    		return this;
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	 *
    	 * parameters = {
    	 *  opacity: <float>,
    	 *
    	 *  bumpMap: new THREE.Texture( <Image> ),
    	 *  bumpScale: <float>,
    	 *
    	 *  normalMap: new THREE.Texture( <Image> ),
    	 *  normalScale: <Vector2>,
    	 *
    	 *  displacementMap: new THREE.Texture( <Image> ),
    	 *  displacementScale: <float>,
    	 *  displacementBias: <float>,
    	 *
    	 *  wireframe: <boolean>,
    	 *  wireframeLinewidth: <float>
    	 *
    	 *  skinning: <bool>,
    	 *  morphTargets: <bool>,
    	 *  morphNormals: <bool>
    	 * }
    	 */
    
    	function MeshNormalMaterial( parameters ) {
    
    		Material.call( this, parameters );
    
    		this.type = 'MeshNormalMaterial';
    
    		this.bumpMap = null;
    		this.bumpScale = 1;
    
    		this.normalMap = null;
    		this.normalScale = new Vector2( 1, 1 );
    
    		this.displacementMap = null;
    		this.displacementScale = 1;
    		this.displacementBias = 0;
    
    		this.wireframe = false;
    		this.wireframeLinewidth = 1;
    
    		this.fog = false;
    		this.lights = false;
    
    		this.skinning = false;
    		this.morphTargets = false;
    		this.morphNormals = false;
    
    		this.setValues( parameters );
    
    	}
    
    	MeshNormalMaterial.prototype = Object.create( Material.prototype );
    	MeshNormalMaterial.prototype.constructor = MeshNormalMaterial;
    
    	MeshNormalMaterial.prototype.isMeshNormalMaterial = true;
    
    	MeshNormalMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.bumpMap = source.bumpMap;
    		this.bumpScale = source.bumpScale;
    
    		this.normalMap = source.normalMap;
    		this.normalScale.copy( source.normalScale );
    
    		this.displacementMap = source.displacementMap;
    		this.displacementScale = source.displacementScale;
    		this.displacementBias = source.displacementBias;
    
    		this.wireframe = source.wireframe;
    		this.wireframeLinewidth = source.wireframeLinewidth;
    
    		this.skinning = source.skinning;
    		this.morphTargets = source.morphTargets;
    		this.morphNormals = source.morphNormals;
    
    		return this;
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 *
    	 * parameters = {
    	 *  color: <hex>,
    	 *  opacity: <float>,
    	 *
    	 *  map: new THREE.Texture( <Image> ),
    	 *
    	 *  lightMap: new THREE.Texture( <Image> ),
    	 *  lightMapIntensity: <float>
    	 *
    	 *  aoMap: new THREE.Texture( <Image> ),
    	 *  aoMapIntensity: <float>
    	 *
    	 *  emissive: <hex>,
    	 *  emissiveIntensity: <float>
    	 *  emissiveMap: new THREE.Texture( <Image> ),
    	 *
    	 *  specularMap: new THREE.Texture( <Image> ),
    	 *
    	 *  alphaMap: new THREE.Texture( <Image> ),
    	 *
    	 *  envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ),
    	 *  combine: THREE.Multiply,
    	 *  reflectivity: <float>,
    	 *  refractionRatio: <float>,
    	 *
    	 *  wireframe: <boolean>,
    	 *  wireframeLinewidth: <float>,
    	 *
    	 *  skinning: <bool>,
    	 *  morphTargets: <bool>,
    	 *  morphNormals: <bool>
    	 * }
    	 */
    
    	function MeshLambertMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.type = 'MeshLambertMaterial';
    
    		this.color = new Color( 0xffffff ); // diffuse
    
    		this.map = null;
    
    		this.lightMap = null;
    		this.lightMapIntensity = 1.0;
    
    		this.aoMap = null;
    		this.aoMapIntensity = 1.0;
    
    		this.emissive = new Color( 0x000000 );
    		this.emissiveIntensity = 1.0;
    		this.emissiveMap = null;
    
    		this.specularMap = null;
    
    		this.alphaMap = null;
    
    		this.envMap = null;
    		this.combine = MultiplyOperation;
    		this.reflectivity = 1;
    		this.refractionRatio = 0.98;
    
    		this.wireframe = false;
    		this.wireframeLinewidth = 1;
    		this.wireframeLinecap = 'round';
    		this.wireframeLinejoin = 'round';
    
    		this.skinning = false;
    		this.morphTargets = false;
    		this.morphNormals = false;
    
    		this.setValues( parameters );
    
    	}
    
    	MeshLambertMaterial.prototype = Object.create( Material.prototype );
    	MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;
    
    	MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
    
    	MeshLambertMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.color.copy( source.color );
    
    		this.map = source.map;
    
    		this.lightMap = source.lightMap;
    		this.lightMapIntensity = source.lightMapIntensity;
    
    		this.aoMap = source.aoMap;
    		this.aoMapIntensity = source.aoMapIntensity;
    
    		this.emissive.copy( source.emissive );
    		this.emissiveMap = source.emissiveMap;
    		this.emissiveIntensity = source.emissiveIntensity;
    
    		this.specularMap = source.specularMap;
    
    		this.alphaMap = source.alphaMap;
    
    		this.envMap = source.envMap;
    		this.combine = source.combine;
    		this.reflectivity = source.reflectivity;
    		this.refractionRatio = source.refractionRatio;
    
    		this.wireframe = source.wireframe;
    		this.wireframeLinewidth = source.wireframeLinewidth;
    		this.wireframeLinecap = source.wireframeLinecap;
    		this.wireframeLinejoin = source.wireframeLinejoin;
    
    		this.skinning = source.skinning;
    		this.morphTargets = source.morphTargets;
    		this.morphNormals = source.morphNormals;
    
    		return this;
    
    	};
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 *
    	 * parameters = {
    	 *  color: <hex>,
    	 *  opacity: <float>,
    	 *
    	 *  linewidth: <float>,
    	 *
    	 *  scale: <float>,
    	 *  dashSize: <float>,
    	 *  gapSize: <float>
    	 * }
    	 */
    
    	function LineDashedMaterial( parameters ) {
    
    		Material.call( this );
    
    		this.type = 'LineDashedMaterial';
    
    		this.color = new Color( 0xffffff );
    
    		this.linewidth = 1;
    
    		this.scale = 1;
    		this.dashSize = 3;
    		this.gapSize = 1;
    
    		this.lights = false;
    
    		this.setValues( parameters );
    
    	}
    
    	LineDashedMaterial.prototype = Object.create( Material.prototype );
    	LineDashedMaterial.prototype.constructor = LineDashedMaterial;
    
    	LineDashedMaterial.prototype.isLineDashedMaterial = true;
    
    	LineDashedMaterial.prototype.copy = function ( source ) {
    
    		Material.prototype.copy.call( this, source );
    
    		this.color.copy( source.color );
    
    		this.linewidth = source.linewidth;
    
    		this.scale = source.scale;
    		this.dashSize = source.dashSize;
    		this.gapSize = source.gapSize;
    
    		return this;
    
    	};
    
    
    
    	var Materials = Object.freeze({
    		ShadowMaterial: ShadowMaterial,
    		SpriteMaterial: SpriteMaterial,
    		RawShaderMaterial: RawShaderMaterial,
    		ShaderMaterial: ShaderMaterial,
    		PointsMaterial: PointsMaterial,
    		MeshPhysicalMaterial: MeshPhysicalMaterial,
    		MeshStandardMaterial: MeshStandardMaterial,
    		MeshPhongMaterial: MeshPhongMaterial,
    		MeshToonMaterial: MeshToonMaterial,
    		MeshNormalMaterial: MeshNormalMaterial,
    		MeshLambertMaterial: MeshLambertMaterial,
    		MeshDepthMaterial: MeshDepthMaterial,
    		MeshBasicMaterial: MeshBasicMaterial,
    		LineDashedMaterial: LineDashedMaterial,
    		LineBasicMaterial: LineBasicMaterial,
    		Material: Material
    	});
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	var Cache = {
    
    		enabled: false,
    
    		files: {},
    
    		add: function ( key, file ) {
    
    			if ( this.enabled === false ) return;
    
    			// console.log( 'THREE.Cache', 'Adding key:', key );
    
    			this.files[ key ] = file;
    
    		},
    
    		get: function ( key ) {
    
    			if ( this.enabled === false ) return;
    
    			// console.log( 'THREE.Cache', 'Checking key:', key );
    
    			return this.files[ key ];
    
    		},
    
    		remove: function ( key ) {
    
    			delete this.files[ key ];
    
    		},
    
    		clear: function () {
    
    			this.files = {};
    
    		}
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function LoadingManager( onLoad, onProgress, onError ) {
    
    		var scope = this;
    
    		var isLoading = false, itemsLoaded = 0, itemsTotal = 0;
    
    		this.onStart = undefined;
    		this.onLoad = onLoad;
    		this.onProgress = onProgress;
    		this.onError = onError;
    
    		this.itemStart = function ( url ) {
    
    			itemsTotal ++;
    
    			if ( isLoading === false ) {
    
    				if ( scope.onStart !== undefined ) {
    
    					scope.onStart( url, itemsLoaded, itemsTotal );
    
    				}
    
    			}
    
    			isLoading = true;
    
    		};
    
    		this.itemEnd = function ( url ) {
    
    			itemsLoaded ++;
    
    			if ( scope.onProgress !== undefined ) {
    
    				scope.onProgress( url, itemsLoaded, itemsTotal );
    
    			}
    
    			if ( itemsLoaded === itemsTotal ) {
    
    				isLoading = false;
    
    				if ( scope.onLoad !== undefined ) {
    
    					scope.onLoad();
    
    				}
    
    			}
    
    		};
    
    		this.itemError = function ( url ) {
    
    			if ( scope.onError !== undefined ) {
    
    				scope.onError( url );
    
    			}
    
    		};
    
    	}
    
    	var DefaultLoadingManager = new LoadingManager();
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function FileLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    	}
    
    	Object.assign( FileLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			if ( url === undefined ) url = '';
    
    			if ( this.path !== undefined ) url = this.path + url;
    
    			var scope = this;
    
    			var cached = Cache.get( url );
    
    			if ( cached !== undefined ) {
    
    				scope.manager.itemStart( url );
    
    				setTimeout( function () {
    
    					if ( onLoad ) onLoad( cached );
    
    					scope.manager.itemEnd( url );
    
    				}, 0 );
    
    				return cached;
    
    			}
    
    			// Check for data: URI
    			var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
    			var dataUriRegexResult = url.match( dataUriRegex );
    
    			// Safari can not handle Data URIs through XMLHttpRequest so process manually
    			if ( dataUriRegexResult ) {
    
    				var mimeType = dataUriRegexResult[ 1 ];
    				var isBase64 = !! dataUriRegexResult[ 2 ];
    				var data = dataUriRegexResult[ 3 ];
    
    				data = window.decodeURIComponent( data );
    
    				if ( isBase64 ) data = window.atob( data );
    
    				try {
    
    					var response;
    					var responseType = ( this.responseType || '' ).toLowerCase();
    
    					switch ( responseType ) {
    
    						case 'arraybuffer':
    						case 'blob':
    
    						 	response = new ArrayBuffer( data.length );
    
    							var view = new Uint8Array( response );
    
    							for ( var i = 0; i < data.length; i ++ ) {
    
    								view[ i ] = data.charCodeAt( i );
    
    							}
    
    							if ( responseType === 'blob' ) {
    
    								response = new Blob( [ response ], { type: mimeType } );
    
    							}
    
    							break;
    
    						case 'document':
    
    							var parser = new DOMParser();
    							response = parser.parseFromString( data, mimeType );
    
    							break;
    
    						case 'json':
    
    							response = JSON.parse( data );
    
    							break;
    
    						default: // 'text' or other
    
    							response = data;
    
    							break;
    
    					}
    
    					// Wait for next browser tick
    					window.setTimeout( function () {
    
    						if ( onLoad ) onLoad( response );
    
    						scope.manager.itemEnd( url );
    
    					}, 0 );
    
    				} catch ( error ) {
    
    					// Wait for next browser tick
    					window.setTimeout( function () {
    
    						if ( onError ) onError( error );
    
    						scope.manager.itemEnd( url );
    						scope.manager.itemError( url );
    
    					}, 0 );
    
    				}
    
    			} else {
    
    				var request = new XMLHttpRequest();
    				request.open( 'GET', url, true );
    
    				request.addEventListener( 'load', function ( event ) {
    
    					var response = event.target.response;
    
    					Cache.add( url, response );
    
    					if ( this.status === 200 ) {
    
    						if ( onLoad ) onLoad( response );
    
    						scope.manager.itemEnd( url );
    
    					} else if ( this.status === 0 ) {
    
    						// Some browsers return HTTP Status 0 when using non-http protocol
    						// e.g. 'file://' or 'data://'. Handle as success.
    
    						console.warn( 'THREE.FileLoader: HTTP Status 0 received.' );
    
    						if ( onLoad ) onLoad( response );
    
    						scope.manager.itemEnd( url );
    
    					} else {
    
    						if ( onError ) onError( event );
    
    						scope.manager.itemEnd( url );
    						scope.manager.itemError( url );
    
    					}
    
    				}, false );
    
    				if ( onProgress !== undefined ) {
    
    					request.addEventListener( 'progress', function ( event ) {
    
    						onProgress( event );
    
    					}, false );
    
    				}
    
    				request.addEventListener( 'error', function ( event ) {
    
    					if ( onError ) onError( event );
    
    					scope.manager.itemEnd( url );
    					scope.manager.itemError( url );
    
    				}, false );
    
    				if ( this.responseType !== undefined ) request.responseType = this.responseType;
    				if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;
    
    				if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' );
    
    				for ( var header in this.requestHeader ) {
    
    					request.setRequestHeader( header, this.requestHeader[ header ] );
    
    				}
    
    				request.send( null );
    
    			}
    
    			scope.manager.itemStart( url );
    
    			return request;
    
    		},
    
    		setPath: function ( value ) {
    
    			this.path = value;
    			return this;
    
    		},
    
    		setResponseType: function ( value ) {
    
    			this.responseType = value;
    			return this;
    
    		},
    
    		setWithCredentials: function ( value ) {
    
    			this.withCredentials = value;
    			return this;
    
    		},
    
    		setMimeType: function ( value ) {
    
    			this.mimeType = value;
    			return this;
    
    		},
    
    		setRequestHeader: function ( value ) {
    
    			this.requestHeader = value;
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 *
    	 * Abstract Base class to block based textures loader (dds, pvr, ...)
    	 */
    
    	function CompressedTextureLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    		// override in sub classes
    		this._parser = null;
    
    	}
    
    	Object.assign( CompressedTextureLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			var scope = this;
    
    			var images = [];
    
    			var texture = new CompressedTexture();
    			texture.image = images;
    
    			var loader = new FileLoader( this.manager );
    			loader.setPath( this.path );
    			loader.setResponseType( 'arraybuffer' );
    
    			function loadTexture( i ) {
    
    				loader.load( url[ i ], function ( buffer ) {
    
    					var texDatas = scope._parser( buffer, true );
    
    					images[ i ] = {
    						width: texDatas.width,
    						height: texDatas.height,
    						format: texDatas.format,
    						mipmaps: texDatas.mipmaps
    					};
    
    					loaded += 1;
    
    					if ( loaded === 6 ) {
    
    						if ( texDatas.mipmapCount === 1 )
    							texture.minFilter = LinearFilter;
    
    						texture.format = texDatas.format;
    						texture.needsUpdate = true;
    
    						if ( onLoad ) onLoad( texture );
    
    					}
    
    				}, onProgress, onError );
    
    			}
    
    			if ( Array.isArray( url ) ) {
    
    				var loaded = 0;
    
    				for ( var i = 0, il = url.length; i < il; ++ i ) {
    
    					loadTexture( i );
    
    				}
    
    			} else {
    
    				// compressed cubemap texture stored in a single DDS file
    
    				loader.load( url, function ( buffer ) {
    
    					var texDatas = scope._parser( buffer, true );
    
    					if ( texDatas.isCubemap ) {
    
    						var faces = texDatas.mipmaps.length / texDatas.mipmapCount;
    
    						for ( var f = 0; f < faces; f ++ ) {
    
    							images[ f ] = { mipmaps : [] };
    
    							for ( var i = 0; i < texDatas.mipmapCount; i ++ ) {
    
    								images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
    								images[ f ].format = texDatas.format;
    								images[ f ].width = texDatas.width;
    								images[ f ].height = texDatas.height;
    
    							}
    
    						}
    
    					} else {
    
    						texture.image.width = texDatas.width;
    						texture.image.height = texDatas.height;
    						texture.mipmaps = texDatas.mipmaps;
    
    					}
    
    					if ( texDatas.mipmapCount === 1 ) {
    
    						texture.minFilter = LinearFilter;
    
    					}
    
    					texture.format = texDatas.format;
    					texture.needsUpdate = true;
    
    					if ( onLoad ) onLoad( texture );
    
    				}, onProgress, onError );
    
    			}
    
    			return texture;
    
    		},
    
    		setPath: function ( value ) {
    
    			this.path = value;
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author Nikos M. / https://github.com/foo123/
    	 *
    	 * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
    	 */
    
    	function DataTextureLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    		// override in sub classes
    		this._parser = null;
    
    	}
    
    	Object.assign( DataTextureLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			var scope = this;
    
    			var texture = new DataTexture();
    
    			var loader = new FileLoader( this.manager );
    			loader.setResponseType( 'arraybuffer' );
    
    			loader.load( url, function ( buffer ) {
    
    				var texData = scope._parser( buffer );
    
    				if ( ! texData ) return;
    
    				if ( undefined !== texData.image ) {
    
    					texture.image = texData.image;
    
    				} else if ( undefined !== texData.data ) {
    
    					texture.image.width = texData.width;
    					texture.image.height = texData.height;
    					texture.image.data = texData.data;
    
    				}
    
    				texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : ClampToEdgeWrapping;
    				texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : ClampToEdgeWrapping;
    
    				texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : LinearFilter;
    				texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : LinearMipMapLinearFilter;
    
    				texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1;
    
    				if ( undefined !== texData.format ) {
    
    					texture.format = texData.format;
    
    				}
    				if ( undefined !== texData.type ) {
    
    					texture.type = texData.type;
    
    				}
    
    				if ( undefined !== texData.mipmaps ) {
    
    					texture.mipmaps = texData.mipmaps;
    
    				}
    
    				if ( 1 === texData.mipmapCount ) {
    
    					texture.minFilter = LinearFilter;
    
    				}
    
    				texture.needsUpdate = true;
    
    				if ( onLoad ) onLoad( texture, texData );
    
    			}, onProgress, onError );
    
    
    			return texture;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function ImageLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    	}
    
    	Object.assign( ImageLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			if ( url === undefined ) url = '';
    
    			if ( this.path !== undefined ) url = this.path + url;
    
    			var scope = this;
    
    			var cached = Cache.get( url );
    
    			if ( cached !== undefined ) {
    
    				scope.manager.itemStart( url );
    
    				setTimeout( function () {
    
    					if ( onLoad ) onLoad( cached );
    
    					scope.manager.itemEnd( url );
    
    				}, 0 );
    
    				return cached;
    
    			}
    
    			var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );
    
    			image.addEventListener( 'load', function () {
    
    				Cache.add( url, this );
    
    				if ( onLoad ) onLoad( this );
    
    				scope.manager.itemEnd( url );
    
    			}, false );
    
    			/*
    			image.addEventListener( 'progress', function ( event ) {
    
    				if ( onProgress ) onProgress( event );
    
    			}, false );
    			*/
    
    			image.addEventListener( 'error', function ( event ) {
    
    				if ( onError ) onError( event );
    
    				scope.manager.itemEnd( url );
    				scope.manager.itemError( url );
    
    			}, false );
    
    			if ( url.substr( 0, 5 ) !== 'data:' ) {
    
    				if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;
    
    			}
    
    			scope.manager.itemStart( url );
    
    			image.src = url;
    
    			return image;
    
    		},
    
    		setCrossOrigin: function ( value ) {
    
    			this.crossOrigin = value;
    			return this;
    
    		},
    
    		setPath: function ( value ) {
    
    			this.path = value;
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function CubeTextureLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    	}
    
    	Object.assign( CubeTextureLoader.prototype, {
    
    		load: function ( urls, onLoad, onProgress, onError ) {
    
    			var texture = new CubeTexture();
    
    			var loader = new ImageLoader( this.manager );
    			loader.setCrossOrigin( this.crossOrigin );
    			loader.setPath( this.path );
    
    			var loaded = 0;
    
    			function loadTexture( i ) {
    
    				loader.load( urls[ i ], function ( image ) {
    
    					texture.images[ i ] = image;
    
    					loaded ++;
    
    					if ( loaded === 6 ) {
    
    						texture.needsUpdate = true;
    
    						if ( onLoad ) onLoad( texture );
    
    					}
    
    				}, undefined, onError );
    
    			}
    
    			for ( var i = 0; i < urls.length; ++ i ) {
    
    				loadTexture( i );
    
    			}
    
    			return texture;
    
    		},
    
    		setCrossOrigin: function ( value ) {
    
    			this.crossOrigin = value;
    			return this;
    
    		},
    
    		setPath: function ( value ) {
    
    			this.path = value;
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function TextureLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    	}
    
    	Object.assign( TextureLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			var loader = new ImageLoader( this.manager );
    			loader.setCrossOrigin( this.crossOrigin );
    			loader.setPath( this.path );
    
    			var texture = new Texture();
    			texture.image = loader.load( url, function () {
    
    				// JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
    				var isJPEG = url.search( /\.(jpg|jpeg)$/ ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;
    
    				texture.format = isJPEG ? RGBFormat : RGBAFormat;
    				texture.needsUpdate = true;
    
    				if ( onLoad !== undefined ) {
    
    					onLoad( texture );
    
    				}
    
    			}, onProgress, onError );
    
    			return texture;
    
    		},
    
    		setCrossOrigin: function ( value ) {
    
    			this.crossOrigin = value;
    			return this;
    
    		},
    
    		setPath: function ( value ) {
    
    			this.path = value;
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function Light( color, intensity ) {
    
    		Object3D.call( this );
    
    		this.type = 'Light';
    
    		this.color = new Color( color );
    		this.intensity = intensity !== undefined ? intensity : 1;
    
    		this.receiveShadow = undefined;
    
    	}
    
    	Light.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Light,
    
    		isLight: true,
    
    		copy: function ( source ) {
    
    			Object3D.prototype.copy.call( this, source );
    
    			this.color.copy( source.color );
    			this.intensity = source.intensity;
    
    			return this;
    
    		},
    
    		toJSON: function ( meta ) {
    
    			var data = Object3D.prototype.toJSON.call( this, meta );
    
    			data.object.color = this.color.getHex();
    			data.object.intensity = this.intensity;
    
    			if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();
    
    			if ( this.distance !== undefined ) data.object.distance = this.distance;
    			if ( this.angle !== undefined ) data.object.angle = this.angle;
    			if ( this.decay !== undefined ) data.object.decay = this.decay;
    			if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;
    
    			if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON();
    
    			return data;
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function HemisphereLight( skyColor, groundColor, intensity ) {
    
    		Light.call( this, skyColor, intensity );
    
    		this.type = 'HemisphereLight';
    
    		this.castShadow = undefined;
    
    		this.position.copy( Object3D.DefaultUp );
    		this.updateMatrix();
    
    		this.groundColor = new Color( groundColor );
    
    	}
    
    	HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), {
    
    		constructor: HemisphereLight,
    
    		isHemisphereLight: true,
    
    		copy: function ( source ) {
    
    			Light.prototype.copy.call( this, source );
    
    			this.groundColor.copy( source.groundColor );
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function LightShadow( camera ) {
    
    		this.camera = camera;
    
    		this.bias = 0;
    		this.radius = 1;
    
    		this.mapSize = new Vector2( 512, 512 );
    
    		this.map = null;
    		this.matrix = new Matrix4();
    
    	}
    
    	Object.assign( LightShadow.prototype, {
    
    		copy: function ( source ) {
    
    			this.camera = source.camera.clone();
    
    			this.bias = source.bias;
    			this.radius = source.radius;
    
    			this.mapSize.copy( source.mapSize );
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		toJSON: function () {
    
    			var object = {};
    
    			if ( this.bias !== 0 ) object.bias = this.bias;
    			if ( this.radius !== 1 ) object.radius = this.radius;
    			if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray();
    
    			object.camera = this.camera.toJSON( false ).object;
    			delete object.camera.matrix;
    
    			return object;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function SpotLightShadow() {
    
    		LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) );
    
    	}
    
    	SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {
    
    		constructor: SpotLightShadow,
    
    		isSpotLightShadow: true,
    
    		update: function ( light ) {
    
    			var camera = this.camera;
    
    			var fov = _Math.RAD2DEG * 2 * light.angle;
    			var aspect = this.mapSize.width / this.mapSize.height;
    			var far = light.distance || camera.far;
    
    			if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {
    
    				camera.fov = fov;
    				camera.aspect = aspect;
    				camera.far = far;
    				camera.updateProjectionMatrix();
    
    			}
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function SpotLight( color, intensity, distance, angle, penumbra, decay ) {
    
    		Light.call( this, color, intensity );
    
    		this.type = 'SpotLight';
    
    		this.position.copy( Object3D.DefaultUp );
    		this.updateMatrix();
    
    		this.target = new Object3D();
    
    		Object.defineProperty( this, 'power', {
    			get: function () {
    				// intensity = power per solid angle.
    				// ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
    				return this.intensity * Math.PI;
    			},
    			set: function ( power ) {
    				// intensity = power per solid angle.
    				// ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
    				this.intensity = power / Math.PI;
    			}
    		} );
    
    		this.distance = ( distance !== undefined ) ? distance : 0;
    		this.angle = ( angle !== undefined ) ? angle : Math.PI / 3;
    		this.penumbra = ( penumbra !== undefined ) ? penumbra : 0;
    		this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.
    
    		this.shadow = new SpotLightShadow();
    
    	}
    
    	SpotLight.prototype = Object.assign( Object.create( Light.prototype ), {
    
    		constructor: SpotLight,
    
    		isSpotLight: true,
    
    		copy: function ( source ) {
    
    			Light.prototype.copy.call( this, source );
    
    			this.distance = source.distance;
    			this.angle = source.angle;
    			this.penumbra = source.penumbra;
    			this.decay = source.decay;
    
    			this.target = source.target.clone();
    
    			this.shadow = source.shadow.clone();
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    
    	function PointLight( color, intensity, distance, decay ) {
    
    		Light.call( this, color, intensity );
    
    		this.type = 'PointLight';
    
    		Object.defineProperty( this, 'power', {
    			get: function () {
    				// intensity = power per solid angle.
    				// ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
    				return this.intensity * 4 * Math.PI;
    
    			},
    			set: function ( power ) {
    				// intensity = power per solid angle.
    				// ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
    				this.intensity = power / ( 4 * Math.PI );
    			}
    		} );
    
    		this.distance = ( distance !== undefined ) ? distance : 0;
    		this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.
    
    		this.shadow = new LightShadow( new PerspectiveCamera( 90, 1, 0.5, 500 ) );
    
    	}
    
    	PointLight.prototype = Object.assign( Object.create( Light.prototype ), {
    
    		constructor: PointLight,
    
    		isPointLight: true,
    
    		copy: function ( source ) {
    
    			Light.prototype.copy.call( this, source );
    
    			this.distance = source.distance;
    			this.decay = source.decay;
    
    			this.shadow = source.shadow.clone();
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function DirectionalLightShadow( ) {
    
    		LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );
    
    	}
    
    	DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {
    
    		constructor: DirectionalLightShadow
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function DirectionalLight( color, intensity ) {
    
    		Light.call( this, color, intensity );
    
    		this.type = 'DirectionalLight';
    
    		this.position.copy( Object3D.DefaultUp );
    		this.updateMatrix();
    
    		this.target = new Object3D();
    
    		this.shadow = new DirectionalLightShadow();
    
    	}
    
    	DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), {
    
    		constructor: DirectionalLight,
    
    		isDirectionalLight: true,
    
    		copy: function ( source ) {
    
    			Light.prototype.copy.call( this, source );
    
    			this.target = source.target.clone();
    
    			this.shadow = source.shadow.clone();
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function AmbientLight( color, intensity ) {
    
    		Light.call( this, color, intensity );
    
    		this.type = 'AmbientLight';
    
    		this.castShadow = undefined;
    
    	}
    
    	AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), {
    
    		constructor: AmbientLight,
    
    		isAmbientLight: true
    
    	} );
    
    	/**
    	 * @author abelnation / http://github.com/abelnation
    	 */
    
    	function RectAreaLight( color, intensity, width, height ) {
    
    		Light.call( this, color, intensity );
    
    		this.type = 'RectAreaLight';
    
    		this.position.set( 0, 1, 0 );
    		this.updateMatrix();
    
    		this.width = ( width !== undefined ) ? width : 10;
    		this.height = ( height !== undefined ) ? height : 10;
    
    		// TODO (abelnation): distance/decay
    
    		// TODO (abelnation): update method for RectAreaLight to update transform to lookat target
    
    		// TODO (abelnation): shadows
    
    	}
    
    	// TODO (abelnation): RectAreaLight update when light shape is changed
    	RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), {
    
    		constructor: RectAreaLight,
    
    		isRectAreaLight: true,
    
    		copy: function ( source ) {
    
    			Light.prototype.copy.call( this, source );
    
    			this.width = source.width;
    			this.height = source.height;
    
    			return this;
    
    		},
    
    		toJSON: function ( meta ) {
    
    			var data = Light.prototype.toJSON.call( this, meta );
    
    			data.object.width = this.width;
    			data.object.height = this.height;
    
    			return data;
    
    		}
    
    	} );
    
    	/**
    	 * @author tschw
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 */
    
    	var AnimationUtils = {
    
    		// same as Array.prototype.slice, but also works on typed arrays
    		arraySlice: function ( array, from, to ) {
    
    			if ( AnimationUtils.isTypedArray( array ) ) {
    
    				// in ios9 array.subarray(from, undefined) will return empty array
    				// but array.subarray(from) or array.subarray(from, len) is correct
    				return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );
    
    			}
    
    			return array.slice( from, to );
    
    		},
    
    		// converts an array to a specific type
    		convertArray: function ( array, type, forceClone ) {
    
    			if ( ! array || // let 'undefined' and 'null' pass
    					! forceClone && array.constructor === type ) return array;
    
    			if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {
    
    				return new type( array ); // create typed array
    
    			}
    
    			return Array.prototype.slice.call( array ); // create Array
    
    		},
    
    		isTypedArray: function ( object ) {
    
    			return ArrayBuffer.isView( object ) &&
    					! ( object instanceof DataView );
    
    		},
    
    		// returns an array by which times and values can be sorted
    		getKeyframeOrder: function ( times ) {
    
    			function compareTime( i, j ) {
    
    				return times[ i ] - times[ j ];
    
    			}
    
    			var n = times.length;
    			var result = new Array( n );
    			for ( var i = 0; i !== n; ++ i ) result[ i ] = i;
    
    			result.sort( compareTime );
    
    			return result;
    
    		},
    
    		// uses the array previously returned by 'getKeyframeOrder' to sort data
    		sortedArray: function ( values, stride, order ) {
    
    			var nValues = values.length;
    			var result = new values.constructor( nValues );
    
    			for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {
    
    				var srcOffset = order[ i ] * stride;
    
    				for ( var j = 0; j !== stride; ++ j ) {
    
    					result[ dstOffset ++ ] = values[ srcOffset + j ];
    
    				}
    
    			}
    
    			return result;
    
    		},
    
    		// function for parsing AOS keyframe formats
    		flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {
    
    			var i = 1, key = jsonKeys[ 0 ];
    
    			while ( key !== undefined && key[ valuePropertyName ] === undefined ) {
    
    				key = jsonKeys[ i ++ ];
    
    			}
    
    			if ( key === undefined ) return; // no data
    
    			var value = key[ valuePropertyName ];
    			if ( value === undefined ) return; // no data
    
    			if ( Array.isArray( value ) ) {
    
    				do {
    
    					value = key[ valuePropertyName ];
    
    					if ( value !== undefined ) {
    
    						times.push( key.time );
    						values.push.apply( values, value ); // push all elements
    
    					}
    
    					key = jsonKeys[ i ++ ];
    
    				} while ( key !== undefined );
    
    			} else if ( value.toArray !== undefined ) {
    
    				// ...assume THREE.Math-ish
    
    				do {
    
    					value = key[ valuePropertyName ];
    
    					if ( value !== undefined ) {
    
    						times.push( key.time );
    						value.toArray( values, values.length );
    
    					}
    
    					key = jsonKeys[ i ++ ];
    
    				} while ( key !== undefined );
    
    			} else {
    
    				// otherwise push as-is
    
    				do {
    
    					value = key[ valuePropertyName ];
    
    					if ( value !== undefined ) {
    
    						times.push( key.time );
    						values.push( value );
    
    					}
    
    					key = jsonKeys[ i ++ ];
    
    				} while ( key !== undefined );
    
    			}
    
    		}
    
    	};
    
    	/**
    	 * Abstract base class of interpolants over parametric samples.
    	 *
    	 * The parameter domain is one dimensional, typically the time or a path
    	 * along a curve defined by the data.
    	 *
    	 * The sample values can have any dimensionality and derived classes may
    	 * apply special interpretations to the data.
    	 *
    	 * This class provides the interval seek in a Template Method, deferring
    	 * the actual interpolation to derived classes.
    	 *
    	 * Time complexity is O(1) for linear access crossing at most two points
    	 * and O(log N) for random access, where N is the number of positions.
    	 *
    	 * References:
    	 *
    	 * 		http://www.oodesign.com/template-method-pattern.html
    	 *
    	 * @author tschw
    	 */
    
    	function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
    
    		this.parameterPositions = parameterPositions;
    		this._cachedIndex = 0;
    
    		this.resultBuffer = resultBuffer !== undefined ?
    				resultBuffer : new sampleValues.constructor( sampleSize );
    		this.sampleValues = sampleValues;
    		this.valueSize = sampleSize;
    
    	}
    
    	Object.assign( Interpolant.prototype, {
    
    		evaluate: function( t ) {
    
    			var pp = this.parameterPositions,
    				i1 = this._cachedIndex,
    
    				t1 = pp[   i1   ],
    				t0 = pp[ i1 - 1 ];
    
    			validate_interval: {
    
    				seek: {
    
    					var right;
    
    					linear_scan: {
    						//- See http://jsperf.com/comparison-to-undefined/3
    						//- slower code:
    						//-
    						//- 				if ( t >= t1 || t1 === undefined ) {
    						forward_scan: if ( ! ( t < t1 ) ) {
    
    							for ( var giveUpAt = i1 + 2; ;) {
    
    								if ( t1 === undefined ) {
    
    									if ( t < t0 ) break forward_scan;
    
    									// after end
    
    									i1 = pp.length;
    									this._cachedIndex = i1;
    									return this.afterEnd_( i1 - 1, t, t0 );
    
    								}
    
    								if ( i1 === giveUpAt ) break; // this loop
    
    								t0 = t1;
    								t1 = pp[ ++ i1 ];
    
    								if ( t < t1 ) {
    
    									// we have arrived at the sought interval
    									break seek;
    
    								}
    
    							}
    
    							// prepare binary search on the right side of the index
    							right = pp.length;
    							break linear_scan;
    
    						}
    
    						//- slower code:
    						//-					if ( t < t0 || t0 === undefined ) {
    						if ( ! ( t >= t0 ) ) {
    
    							// looping?
    
    							var t1global = pp[ 1 ];
    
    							if ( t < t1global ) {
    
    								i1 = 2; // + 1, using the scan for the details
    								t0 = t1global;
    
    							}
    
    							// linear reverse scan
    
    							for ( var giveUpAt = i1 - 2; ;) {
    
    								if ( t0 === undefined ) {
    
    									// before start
    
    									this._cachedIndex = 0;
    									return this.beforeStart_( 0, t, t1 );
    
    								}
    
    								if ( i1 === giveUpAt ) break; // this loop
    
    								t1 = t0;
    								t0 = pp[ -- i1 - 1 ];
    
    								if ( t >= t0 ) {
    
    									// we have arrived at the sought interval
    									break seek;
    
    								}
    
    							}
    
    							// prepare binary search on the left side of the index
    							right = i1;
    							i1 = 0;
    							break linear_scan;
    
    						}
    
    						// the interval is valid
    
    						break validate_interval;
    
    					} // linear scan
    
    					// binary search
    
    					while ( i1 < right ) {
    
    						var mid = ( i1 + right ) >>> 1;
    
    						if ( t < pp[ mid ] ) {
    
    							right = mid;
    
    						} else {
    
    							i1 = mid + 1;
    
    						}
    
    					}
    
    					t1 = pp[   i1   ];
    					t0 = pp[ i1 - 1 ];
    
    					// check boundary cases, again
    
    					if ( t0 === undefined ) {
    
    						this._cachedIndex = 0;
    						return this.beforeStart_( 0, t, t1 );
    
    					}
    
    					if ( t1 === undefined ) {
    
    						i1 = pp.length;
    						this._cachedIndex = i1;
    						return this.afterEnd_( i1 - 1, t0, t );
    
    					}
    
    				} // seek
    
    				this._cachedIndex = i1;
    
    				this.intervalChanged_( i1, t0, t1 );
    
    			} // validate_interval
    
    			return this.interpolate_( i1, t0, t, t1 );
    
    		},
    
    		settings: null, // optional, subclass-specific settings structure
    		// Note: The indirection allows central control of many interpolants.
    
    		// --- Protected interface
    
    		DefaultSettings_: {},
    
    		getSettings_: function() {
    
    			return this.settings || this.DefaultSettings_;
    
    		},
    
    		copySampleValue_: function( index ) {
    
    			// copies a sample value to the result buffer
    
    			var result = this.resultBuffer,
    				values = this.sampleValues,
    				stride = this.valueSize,
    				offset = index * stride;
    
    			for ( var i = 0; i !== stride; ++ i ) {
    
    				result[ i ] = values[ offset + i ];
    
    			}
    
    			return result;
    
    		},
    
    		// Template methods for derived classes:
    
    		interpolate_: function( i1, t0, t, t1 ) {
    
    			throw new Error( "call to abstract method" );
    			// implementations shall return this.resultBuffer
    
    		},
    
    		intervalChanged_: function( i1, t0, t1 ) {
    
    			// empty
    
    		}
    
    	} );
    
    	//!\ DECLARE ALIAS AFTER assign prototype !
    	Object.assign( Interpolant.prototype, {
    
    		//( 0, t, t0 ), returns this.resultBuffer
    		beforeStart_: Interpolant.prototype.copySampleValue_,
    
    		//( N-1, tN-1, t ), returns this.resultBuffer
    		afterEnd_: Interpolant.prototype.copySampleValue_,
    
    	} );
    
    	/**
    	 * Fast and simple cubic spline interpolant.
    	 *
    	 * It was derived from a Hermitian construction setting the first derivative
    	 * at each sample position to the linear slope between neighboring positions
    	 * over their parameter interval.
    	 *
    	 * @author tschw
    	 */
    
    	function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
    
    		Interpolant.call(
    				this, parameterPositions, sampleValues, sampleSize, resultBuffer );
    
    		this._weightPrev = -0;
    		this._offsetPrev = -0;
    		this._weightNext = -0;
    		this._offsetNext = -0;
    
    	}
    
    	CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
    
    		constructor: CubicInterpolant,
    
    		DefaultSettings_: {
    
    			endingStart: 	ZeroCurvatureEnding,
    			endingEnd:		ZeroCurvatureEnding
    
    		},
    
    		intervalChanged_: function( i1, t0, t1 ) {
    
    			var pp = this.parameterPositions,
    				iPrev = i1 - 2,
    				iNext = i1 + 1,
    
    				tPrev = pp[ iPrev ],
    				tNext = pp[ iNext ];
    
    			if ( tPrev === undefined ) {
    
    				switch ( this.getSettings_().endingStart ) {
    
    					case ZeroSlopeEnding:
    
    						// f'(t0) = 0
    						iPrev = i1;
    						tPrev = 2 * t0 - t1;
    
    						break;
    
    					case WrapAroundEnding:
    
    						// use the other end of the curve
    						iPrev = pp.length - 2;
    						tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];
    
    						break;
    
    					default: // ZeroCurvatureEnding
    
    						// f''(t0) = 0 a.k.a. Natural Spline
    						iPrev = i1;
    						tPrev = t1;
    
    				}
    
    			}
    
    			if ( tNext === undefined ) {
    
    				switch ( this.getSettings_().endingEnd ) {
    
    					case ZeroSlopeEnding:
    
    						// f'(tN) = 0
    						iNext = i1;
    						tNext = 2 * t1 - t0;
    
    						break;
    
    					case WrapAroundEnding:
    
    						// use the other end of the curve
    						iNext = 1;
    						tNext = t1 + pp[ 1 ] - pp[ 0 ];
    
    						break;
    
    					default: // ZeroCurvatureEnding
    
    						// f''(tN) = 0, a.k.a. Natural Spline
    						iNext = i1 - 1;
    						tNext = t0;
    
    				}
    
    			}
    
    			var halfDt = ( t1 - t0 ) * 0.5,
    				stride = this.valueSize;
    
    			this._weightPrev = halfDt / ( t0 - tPrev );
    			this._weightNext = halfDt / ( tNext - t1 );
    			this._offsetPrev = iPrev * stride;
    			this._offsetNext = iNext * stride;
    
    		},
    
    		interpolate_: function( i1, t0, t, t1 ) {
    
    			var result = this.resultBuffer,
    				values = this.sampleValues,
    				stride = this.valueSize,
    
    				o1 = i1 * stride,		o0 = o1 - stride,
    				oP = this._offsetPrev, 	oN = this._offsetNext,
    				wP = this._weightPrev,	wN = this._weightNext,
    
    				p = ( t - t0 ) / ( t1 - t0 ),
    				pp = p * p,
    				ppp = pp * p;
    
    			// evaluate polynomials
    
    			var sP =     - wP   * ppp   +         2 * wP    * pp    -          wP   * p;
    			var s0 = ( 1 + wP ) * ppp   + (-1.5 - 2 * wP )  * pp    + ( -0.5 + wP ) * p     + 1;
    			var s1 = (-1 - wN ) * ppp   + ( 1.5 +   wN   )  * pp    +    0.5        * p;
    			var sN =       wN   * ppp   -           wN      * pp;
    
    			// combine data linearly
    
    			for ( var i = 0; i !== stride; ++ i ) {
    
    				result[ i ] =
    						sP * values[ oP + i ] +
    						s0 * values[ o0 + i ] +
    						s1 * values[ o1 + i ] +
    						sN * values[ oN + i ];
    
    			}
    
    			return result;
    
    		}
    
    	} );
    
    	/**
    	 * @author tschw
    	 */
    
    	function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
    
    		Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
    
    	}
    
    	LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
    
    		constructor: LinearInterpolant,
    
    		interpolate_: function( i1, t0, t, t1 ) {
    
    			var result = this.resultBuffer,
    				values = this.sampleValues,
    				stride = this.valueSize,
    
    				offset1 = i1 * stride,
    				offset0 = offset1 - stride,
    
    				weight1 = ( t - t0 ) / ( t1 - t0 ),
    				weight0 = 1 - weight1;
    
    			for ( var i = 0; i !== stride; ++ i ) {
    
    				result[ i ] =
    						values[ offset0 + i ] * weight0 +
    						values[ offset1 + i ] * weight1;
    
    			}
    
    			return result;
    
    		}
    
    	} );
    
    	/**
    	 *
    	 * Interpolant that evaluates to the sample value at the position preceeding
    	 * the parameter.
    	 *
    	 * @author tschw
    	 */
    
    	function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
    
    		Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
    
    	}
    
    	DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
    
    		constructor: DiscreteInterpolant,
    
    		interpolate_: function( i1, t0, t, t1 ) {
    
    			return this.copySampleValue_( i1 - 1 );
    
    		}
    
    	} );
    
    	var KeyframeTrackPrototype;
    
    	KeyframeTrackPrototype = {
    
    		TimeBufferType: Float32Array,
    		ValueBufferType: Float32Array,
    
    		DefaultInterpolation: InterpolateLinear,
    
    		InterpolantFactoryMethodDiscrete: function ( result ) {
    
    			return new DiscreteInterpolant(
    					this.times, this.values, this.getValueSize(), result );
    
    		},
    
    		InterpolantFactoryMethodLinear: function ( result ) {
    
    			return new LinearInterpolant(
    					this.times, this.values, this.getValueSize(), result );
    
    		},
    
    		InterpolantFactoryMethodSmooth: function ( result ) {
    
    			return new CubicInterpolant(
    					this.times, this.values, this.getValueSize(), result );
    
    		},
    
    		setInterpolation: function ( interpolation ) {
    
    			var factoryMethod;
    
    			switch ( interpolation ) {
    
    				case InterpolateDiscrete:
    
    					factoryMethod = this.InterpolantFactoryMethodDiscrete;
    
    					break;
    
    				case InterpolateLinear:
    
    					factoryMethod = this.InterpolantFactoryMethodLinear;
    
    					break;
    
    				case InterpolateSmooth:
    
    					factoryMethod = this.InterpolantFactoryMethodSmooth;
    
    					break;
    
    			}
    
    			if ( factoryMethod === undefined ) {
    
    				var message = "unsupported interpolation for " +
    						this.ValueTypeName + " keyframe track named " + this.name;
    
    				if ( this.createInterpolant === undefined ) {
    
    					// fall back to default, unless the default itself is messed up
    					if ( interpolation !== this.DefaultInterpolation ) {
    
    						this.setInterpolation( this.DefaultInterpolation );
    
    					} else {
    
    						throw new Error( message ); // fatal, in this case
    
    					}
    
    				}
    
    				console.warn( message );
    				return;
    
    			}
    
    			this.createInterpolant = factoryMethod;
    
    		},
    
    		getInterpolation: function () {
    
    			switch ( this.createInterpolant ) {
    
    				case this.InterpolantFactoryMethodDiscrete:
    
    					return InterpolateDiscrete;
    
    				case this.InterpolantFactoryMethodLinear:
    
    					return InterpolateLinear;
    
    				case this.InterpolantFactoryMethodSmooth:
    
    					return InterpolateSmooth;
    
    			}
    
    		},
    
    		getValueSize: function () {
    
    			return this.values.length / this.times.length;
    
    		},
    
    		// move all keyframes either forwards or backwards in time
    		shift: function ( timeOffset ) {
    
    			if ( timeOffset !== 0.0 ) {
    
    				var times = this.times;
    
    				for ( var i = 0, n = times.length; i !== n; ++ i ) {
    
    					times[ i ] += timeOffset;
    
    				}
    
    			}
    
    			return this;
    
    		},
    
    		// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
    		scale: function ( timeScale ) {
    
    			if ( timeScale !== 1.0 ) {
    
    				var times = this.times;
    
    				for ( var i = 0, n = times.length; i !== n; ++ i ) {
    
    					times[ i ] *= timeScale;
    
    				}
    
    			}
    
    			return this;
    
    		},
    
    		// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
    		// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
    		trim: function ( startTime, endTime ) {
    
    			var times = this.times,
    				nKeys = times.length,
    				from = 0,
    				to = nKeys - 1;
    
    			while ( from !== nKeys && times[ from ] < startTime ) ++ from;
    			while ( to !== - 1 && times[ to ] > endTime ) -- to;
    
    			++ to; // inclusive -> exclusive bound
    
    			if ( from !== 0 || to !== nKeys ) {
    
    				// empty tracks are forbidden, so keep at least one keyframe
    				if ( from >= to ) to = Math.max( to, 1 ), from = to - 1;
    
    				var stride = this.getValueSize();
    				this.times = AnimationUtils.arraySlice( times, from, to );
    				this.values = AnimationUtils.
    						arraySlice( this.values, from * stride, to * stride );
    
    			}
    
    			return this;
    
    		},
    
    		// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
    		validate: function () {
    
    			var valid = true;
    
    			var valueSize = this.getValueSize();
    			if ( valueSize - Math.floor( valueSize ) !== 0 ) {
    
    				console.error( "invalid value size in track", this );
    				valid = false;
    
    			}
    
    			var times = this.times,
    				values = this.values,
    
    				nKeys = times.length;
    
    			if ( nKeys === 0 ) {
    
    				console.error( "track is empty", this );
    				valid = false;
    
    			}
    
    			var prevTime = null;
    
    			for ( var i = 0; i !== nKeys; i ++ ) {
    
    				var currTime = times[ i ];
    
    				if ( typeof currTime === 'number' && isNaN( currTime ) ) {
    
    					console.error( "time is not a valid number", this, i, currTime );
    					valid = false;
    					break;
    
    				}
    
    				if ( prevTime !== null && prevTime > currTime ) {
    
    					console.error( "out of order keys", this, i, currTime, prevTime );
    					valid = false;
    					break;
    
    				}
    
    				prevTime = currTime;
    
    			}
    
    			if ( values !== undefined ) {
    
    				if ( AnimationUtils.isTypedArray( values ) ) {
    
    					for ( var i = 0, n = values.length; i !== n; ++ i ) {
    
    						var value = values[ i ];
    
    						if ( isNaN( value ) ) {
    
    							console.error( "value is not a valid number", this, i, value );
    							valid = false;
    							break;
    
    						}
    
    					}
    
    				}
    
    			}
    
    			return valid;
    
    		},
    
    		// removes equivalent sequential keys as common in morph target sequences
    		// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
    		optimize: function () {
    
    			var times = this.times,
    				values = this.values,
    				stride = this.getValueSize(),
    
    				smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
    
    				writeIndex = 1,
    				lastIndex = times.length - 1;
    
    			for ( var i = 1; i < lastIndex; ++ i ) {
    
    				var keep = false;
    
    				var time = times[ i ];
    				var timeNext = times[ i + 1 ];
    
    				// remove adjacent keyframes scheduled at the same time
    
    				if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {
    
    					if ( ! smoothInterpolation ) {
    
    						// remove unnecessary keyframes same as their neighbors
    
    						var offset = i * stride,
    							offsetP = offset - stride,
    							offsetN = offset + stride;
    
    						for ( var j = 0; j !== stride; ++ j ) {
    
    							var value = values[ offset + j ];
    
    							if ( value !== values[ offsetP + j ] ||
    									value !== values[ offsetN + j ] ) {
    
    								keep = true;
    								break;
    
    							}
    
    						}
    
    					} else keep = true;
    
    				}
    
    				// in-place compaction
    
    				if ( keep ) {
    
    					if ( i !== writeIndex ) {
    
    						times[ writeIndex ] = times[ i ];
    
    						var readOffset = i * stride,
    							writeOffset = writeIndex * stride;
    
    						for ( var j = 0; j !== stride; ++ j )
    
    							values[ writeOffset + j ] = values[ readOffset + j ];
    
    					}
    
    					++ writeIndex;
    
    				}
    
    			}
    
    			// flush last keyframe (compaction looks ahead)
    
    			if ( lastIndex > 0 ) {
    
    				times[ writeIndex ] = times[ lastIndex ];
    
    				for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j )
    
    					values[ writeOffset + j ] = values[ readOffset + j ];
    
    				++ writeIndex;
    
    			}
    
    			if ( writeIndex !== times.length ) {
    
    				this.times = AnimationUtils.arraySlice( times, 0, writeIndex );
    				this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );
    
    			}
    
    			return this;
    
    		}
    
    	};
    
    	function KeyframeTrackConstructor( name, times, values, interpolation ) {
    
    		if ( name === undefined ) throw new Error( "track name is undefined" );
    
    		if ( times === undefined || times.length === 0 ) {
    
    			throw new Error( "no keyframes in track named " + name );
    
    		}
    
    		this.name = name;
    
    		this.times = AnimationUtils.convertArray( times, this.TimeBufferType );
    		this.values = AnimationUtils.convertArray( values, this.ValueBufferType );
    
    		this.setInterpolation( interpolation || this.DefaultInterpolation );
    
    		this.validate();
    		this.optimize();
    
    	}
    
    	/**
    	 *
    	 * A Track of vectored keyframe values.
    	 *
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function VectorKeyframeTrack( name, times, values, interpolation ) {
    
    		KeyframeTrackConstructor.call( this, name, times, values, interpolation );
    
    	}
    
    	VectorKeyframeTrack.prototype =
    			Object.assign( Object.create( KeyframeTrackPrototype ), {
    
    		constructor: VectorKeyframeTrack,
    
    		ValueTypeName: 'vector'
    
    		// ValueBufferType is inherited
    
    		// DefaultInterpolation is inherited
    
    	} );
    
    	/**
    	 * Spherical linear unit quaternion interpolant.
    	 *
    	 * @author tschw
    	 */
    
    	function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
    
    		Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
    
    	}
    
    	QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {
    
    		constructor: QuaternionLinearInterpolant,
    
    		interpolate_: function( i1, t0, t, t1 ) {
    
    			var result = this.resultBuffer,
    				values = this.sampleValues,
    				stride = this.valueSize,
    
    				offset = i1 * stride,
    
    				alpha = ( t - t0 ) / ( t1 - t0 );
    
    			for ( var end = offset + stride; offset !== end; offset += 4 ) {
    
    				Quaternion.slerpFlat( result, 0,
    						values, offset - stride, values, offset, alpha );
    
    			}
    
    			return result;
    
    		}
    
    	} );
    
    	/**
    	 *
    	 * A Track of quaternion keyframe values.
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function QuaternionKeyframeTrack( name, times, values, interpolation ) {
    
    		KeyframeTrackConstructor.call( this, name, times, values, interpolation );
    
    	}
    
    	QuaternionKeyframeTrack.prototype =
    			Object.assign( Object.create( KeyframeTrackPrototype ), {
    
    		constructor: QuaternionKeyframeTrack,
    
    		ValueTypeName: 'quaternion',
    
    		// ValueBufferType is inherited
    
    		DefaultInterpolation: InterpolateLinear,
    
    		InterpolantFactoryMethodLinear: function( result ) {
    
    			return new QuaternionLinearInterpolant(
    					this.times, this.values, this.getValueSize(), result );
    
    		},
    
    		InterpolantFactoryMethodSmooth: undefined // not yet implemented
    
    	} );
    
    	/**
    	 *
    	 * A Track of numeric keyframe values.
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function NumberKeyframeTrack( name, times, values, interpolation ) {
    
    		KeyframeTrackConstructor.call( this, name, times, values, interpolation );
    
    	}
    
    	NumberKeyframeTrack.prototype =
    			Object.assign( Object.create( KeyframeTrackPrototype ), {
    
    		constructor: NumberKeyframeTrack,
    
    		ValueTypeName: 'number'
    
    		// ValueBufferType is inherited
    
    		// DefaultInterpolation is inherited
    
    	} );
    
    	/**
    	 *
    	 * A Track that interpolates Strings
    	 *
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function StringKeyframeTrack( name, times, values, interpolation ) {
    
    		KeyframeTrackConstructor.call( this, name, times, values, interpolation );
    
    	}
    
    	StringKeyframeTrack.prototype =
    			Object.assign( Object.create( KeyframeTrackPrototype ), {
    
    		constructor: StringKeyframeTrack,
    
    		ValueTypeName: 'string',
    		ValueBufferType: Array,
    
    		DefaultInterpolation: InterpolateDiscrete,
    
    		InterpolantFactoryMethodLinear: undefined,
    
    		InterpolantFactoryMethodSmooth: undefined
    
    	} );
    
    	/**
    	 *
    	 * A Track of Boolean keyframe values.
    	 *
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function BooleanKeyframeTrack( name, times, values ) {
    
    		KeyframeTrackConstructor.call( this, name, times, values );
    
    	}
    
    	BooleanKeyframeTrack.prototype =
    			Object.assign( Object.create( KeyframeTrackPrototype ), {
    
    		constructor: BooleanKeyframeTrack,
    
    		ValueTypeName: 'bool',
    		ValueBufferType: Array,
    
    		DefaultInterpolation: InterpolateDiscrete,
    
    		InterpolantFactoryMethodLinear: undefined,
    		InterpolantFactoryMethodSmooth: undefined
    
    		// Note: Actually this track could have a optimized / compressed
    		// representation of a single value and a custom interpolant that
    		// computes "firstValue ^ isOdd( index )".
    
    	} );
    
    	/**
    	 *
    	 * A Track of keyframe values that represent color.
    	 *
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function ColorKeyframeTrack( name, times, values, interpolation ) {
    
    		KeyframeTrackConstructor.call( this, name, times, values, interpolation );
    
    	}
    
    	ColorKeyframeTrack.prototype =
    			Object.assign( Object.create( KeyframeTrackPrototype ), {
    
    		constructor: ColorKeyframeTrack,
    
    		ValueTypeName: 'color'
    
    		// ValueBufferType is inherited
    
    		// DefaultInterpolation is inherited
    
    
    		// Note: Very basic implementation and nothing special yet.
    		// However, this is the place for color space parameterization.
    
    	} );
    
    	/**
    	 *
    	 * A timed sequence of keyframes for a specific property.
    	 *
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function KeyframeTrack( name, times, values, interpolation ) {
    
    		KeyframeTrackConstructor.apply( this, arguments );
    
    	}
    
    	KeyframeTrack.prototype = KeyframeTrackPrototype;
    	KeyframeTrackPrototype.constructor = KeyframeTrack;
    
    	// Static methods:
    
    	Object.assign( KeyframeTrack, {
    
    		// Serialization (in static context, because of constructor invocation
    		// and automatic invocation of .toJSON):
    
    		parse: function( json ) {
    
    			if( json.type === undefined ) {
    
    				throw new Error( "track type undefined, can not parse" );
    
    			}
    
    			var trackType = KeyframeTrack._getTrackTypeForValueTypeName( json.type );
    
    			if ( json.times === undefined ) {
    
    				var times = [], values = [];
    
    				AnimationUtils.flattenJSON( json.keys, times, values, 'value' );
    
    				json.times = times;
    				json.values = values;
    
    			}
    
    			// derived classes can define a static parse method
    			if ( trackType.parse !== undefined ) {
    
    				return trackType.parse( json );
    
    			} else {
    
    				// by default, we asssume a constructor compatible with the base
    				return new trackType(
    						json.name, json.times, json.values, json.interpolation );
    
    			}
    
    		},
    
    		toJSON: function( track ) {
    
    			var trackType = track.constructor;
    
    			var json;
    
    			// derived classes can define a static toJSON method
    			if ( trackType.toJSON !== undefined ) {
    
    				json = trackType.toJSON( track );
    
    			} else {
    
    				// by default, we assume the data can be serialized as-is
    				json = {
    
    					'name': track.name,
    					'times': AnimationUtils.convertArray( track.times, Array ),
    					'values': AnimationUtils.convertArray( track.values, Array )
    
    				};
    
    				var interpolation = track.getInterpolation();
    
    				if ( interpolation !== track.DefaultInterpolation ) {
    
    					json.interpolation = interpolation;
    
    				}
    
    			}
    
    			json.type = track.ValueTypeName; // mandatory
    
    			return json;
    
    		},
    
    		_getTrackTypeForValueTypeName: function( typeName ) {
    
    			switch( typeName.toLowerCase() ) {
    
    				case "scalar":
    				case "double":
    				case "float":
    				case "number":
    				case "integer":
    
    					return NumberKeyframeTrack;
    
    				case "vector":
    				case "vector2":
    				case "vector3":
    				case "vector4":
    
    					return VectorKeyframeTrack;
    
    				case "color":
    
    					return ColorKeyframeTrack;
    
    				case "quaternion":
    
    					return QuaternionKeyframeTrack;
    
    				case "bool":
    				case "boolean":
    
    					return BooleanKeyframeTrack;
    
    				case "string":
    
    					return StringKeyframeTrack;
    
    			}
    
    			throw new Error( "Unsupported typeName: " + typeName );
    
    		}
    
    	} );
    
    	/**
    	 *
    	 * Reusable set of Tracks that represent an animation.
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 */
    
    	function AnimationClip( name, duration, tracks ) {
    
    		this.name = name;
    		this.tracks = tracks;
    		this.duration = ( duration !== undefined ) ? duration : - 1;
    
    		this.uuid = _Math.generateUUID();
    
    		// this means it should figure out its duration by scanning the tracks
    		if ( this.duration < 0 ) {
    
    			this.resetDuration();
    
    		}
    
    		this.optimize();
    
    	}
    
    	Object.assign( AnimationClip, {
    
    		parse: function ( json ) {
    
    			var tracks = [],
    				jsonTracks = json.tracks,
    				frameTime = 1.0 / ( json.fps || 1.0 );
    
    			for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {
    
    				tracks.push( KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) );
    
    			}
    
    			return new AnimationClip( json.name, json.duration, tracks );
    
    		},
    
    		toJSON: function ( clip ) {
    
    			var tracks = [],
    				clipTracks = clip.tracks;
    
    			var json = {
    
    				'name': clip.name,
    				'duration': clip.duration,
    				'tracks': tracks
    
    			};
    
    			for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {
    
    				tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );
    
    			}
    
    			return json;
    
    		},
    
    		CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {
    
    			var numMorphTargets = morphTargetSequence.length;
    			var tracks = [];
    
    			for ( var i = 0; i < numMorphTargets; i ++ ) {
    
    				var times = [];
    				var values = [];
    
    				times.push(
    						( i + numMorphTargets - 1 ) % numMorphTargets,
    						i,
    						( i + 1 ) % numMorphTargets );
    
    				values.push( 0, 1, 0 );
    
    				var order = AnimationUtils.getKeyframeOrder( times );
    				times = AnimationUtils.sortedArray( times, 1, order );
    				values = AnimationUtils.sortedArray( values, 1, order );
    
    				// if there is a key at the first frame, duplicate it as the
    				// last frame as well for perfect loop.
    				if ( ! noLoop && times[ 0 ] === 0 ) {
    
    					times.push( numMorphTargets );
    					values.push( values[ 0 ] );
    
    				}
    
    				tracks.push(
    						new NumberKeyframeTrack(
    							'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
    							times, values
    						).scale( 1.0 / fps ) );
    
    			}
    
    			return new AnimationClip( name, - 1, tracks );
    
    		},
    
    		findByName: function ( objectOrClipArray, name ) {
    
    			var clipArray = objectOrClipArray;
    
    			if ( ! Array.isArray( objectOrClipArray ) ) {
    
    				var o = objectOrClipArray;
    				clipArray = o.geometry && o.geometry.animations || o.animations;
    
    			}
    
    			for ( var i = 0; i < clipArray.length; i ++ ) {
    
    				if ( clipArray[ i ].name === name ) {
    
    					return clipArray[ i ];
    
    				}
    
    			}
    
    			return null;
    
    		},
    
    		CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {
    
    			var animationToMorphTargets = {};
    
    			// tested with https://regex101.com/ on trick sequences
    			// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
    			var pattern = /^([\w-]*?)([\d]+)$/;
    
    			// sort morph target names into animation groups based
    			// patterns like Walk_001, Walk_002, Run_001, Run_002
    			for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {
    
    				var morphTarget = morphTargets[ i ];
    				var parts = morphTarget.name.match( pattern );
    
    				if ( parts && parts.length > 1 ) {
    
    					var name = parts[ 1 ];
    
    					var animationMorphTargets = animationToMorphTargets[ name ];
    					if ( ! animationMorphTargets ) {
    
    						animationToMorphTargets[ name ] = animationMorphTargets = [];
    
    					}
    
    					animationMorphTargets.push( morphTarget );
    
    				}
    
    			}
    
    			var clips = [];
    
    			for ( var name in animationToMorphTargets ) {
    
    				clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );
    
    			}
    
    			return clips;
    
    		},
    
    		// parse the animation.hierarchy format
    		parseAnimation: function ( animation, bones ) {
    
    			if ( ! animation ) {
    
    				console.error( "  no animation in JSONLoader data" );
    				return null;
    
    			}
    
    			var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {
    
    				// only return track if there are actually keys.
    				if ( animationKeys.length !== 0 ) {
    
    					var times = [];
    					var values = [];
    
    					AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );
    
    					// empty keys are filtered out, so check again
    					if ( times.length !== 0 ) {
    
    						destTracks.push( new trackType( trackName, times, values ) );
    
    					}
    
    				}
    
    			};
    
    			var tracks = [];
    
    			var clipName = animation.name || 'default';
    			// automatic length determination in AnimationClip.
    			var duration = animation.length || - 1;
    			var fps = animation.fps || 30;
    
    			var hierarchyTracks = animation.hierarchy || [];
    
    			for ( var h = 0; h < hierarchyTracks.length; h ++ ) {
    
    				var animationKeys = hierarchyTracks[ h ].keys;
    
    				// skip empty tracks
    				if ( ! animationKeys || animationKeys.length === 0 ) continue;
    
    				// process morph targets in a way exactly compatible
    				// with AnimationHandler.init( animation )
    				if ( animationKeys[ 0 ].morphTargets ) {
    
    					// figure out all morph targets used in this track
    					var morphTargetNames = {};
    
    					for ( var k = 0; k < animationKeys.length; k ++ ) {
    
    						if ( animationKeys[ k ].morphTargets ) {
    
    							for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {
    
    								morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;
    
    							}
    
    						}
    
    					}
    
    					// create a track for each morph target with all zero
    					// morphTargetInfluences except for the keys in which
    					// the morphTarget is named.
    					for ( var morphTargetName in morphTargetNames ) {
    
    						var times = [];
    						var values = [];
    
    						for ( var m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {
    
    							var animationKey = animationKeys[ k ];
    
    							times.push( animationKey.time );
    							values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );
    
    						}
    
    						tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );
    
    					}
    
    					duration = morphTargetNames.length * ( fps || 1.0 );
    
    				} else {
    
    					// ...assume skeletal animation
    
    					var boneName = '.bones[' + bones[ h ].name + ']';
    
    					addNonemptyTrack(
    							VectorKeyframeTrack, boneName + '.position',
    							animationKeys, 'pos', tracks );
    
    					addNonemptyTrack(
    							QuaternionKeyframeTrack, boneName + '.quaternion',
    							animationKeys, 'rot', tracks );
    
    					addNonemptyTrack(
    							VectorKeyframeTrack, boneName + '.scale',
    							animationKeys, 'scl', tracks );
    
    				}
    
    			}
    
    			if ( tracks.length === 0 ) {
    
    				return null;
    
    			}
    
    			var clip = new AnimationClip( clipName, duration, tracks );
    
    			return clip;
    
    		}
    
    	} );
    
    	Object.assign( AnimationClip.prototype, {
    
    		resetDuration: function () {
    
    			var tracks = this.tracks, duration = 0;
    
    			for ( var i = 0, n = tracks.length; i !== n; ++ i ) {
    
    				var track = this.tracks[ i ];
    
    				duration = Math.max( duration, track.times[ track.times.length - 1 ] );
    
    			}
    
    			this.duration = duration;
    
    		},
    
    		trim: function () {
    
    			for ( var i = 0; i < this.tracks.length; i ++ ) {
    
    				this.tracks[ i ].trim( 0, this.duration );
    
    			}
    
    			return this;
    
    		},
    
    		optimize: function () {
    
    			for ( var i = 0; i < this.tracks.length; i ++ ) {
    
    				this.tracks[ i ].optimize();
    
    			}
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function MaterialLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    		this.textures = {};
    
    	}
    
    	Object.assign( MaterialLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			var scope = this;
    
    			var loader = new FileLoader( scope.manager );
    			loader.setResponseType( 'json' );
    			loader.load( url, function ( json ) {
    
    				onLoad( scope.parse( json ) );
    
    			}, onProgress, onError );
    
    		},
    
    		setTextures: function ( value ) {
    
    			this.textures = value;
    
    		},
    
    		parse: function ( json ) {
    
    			var textures = this.textures;
    
    			function getTexture( name ) {
    
    				if ( textures[ name ] === undefined ) {
    
    					console.warn( 'THREE.MaterialLoader: Undefined texture', name );
    
    				}
    
    				return textures[ name ];
    
    			}
    
    			var material = new Materials[ json.type ]();
    
    			if ( json.uuid !== undefined ) material.uuid = json.uuid;
    			if ( json.name !== undefined ) material.name = json.name;
    			if ( json.color !== undefined ) material.color.setHex( json.color );
    			if ( json.roughness !== undefined ) material.roughness = json.roughness;
    			if ( json.metalness !== undefined ) material.metalness = json.metalness;
    			if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive );
    			if ( json.specular !== undefined ) material.specular.setHex( json.specular );
    			if ( json.shininess !== undefined ) material.shininess = json.shininess;
    			if ( json.clearCoat !== undefined ) material.clearCoat = json.clearCoat;
    			if ( json.clearCoatRoughness !== undefined ) material.clearCoatRoughness = json.clearCoatRoughness;
    			if ( json.uniforms !== undefined ) material.uniforms = json.uniforms;
    			if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
    			if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;
    			if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors;
    			if ( json.fog !== undefined ) material.fog = json.fog;
    			if ( json.shading !== undefined ) material.shading = json.shading;
    			if ( json.blending !== undefined ) material.blending = json.blending;
    			if ( json.side !== undefined ) material.side = json.side;
    			if ( json.opacity !== undefined ) material.opacity = json.opacity;
    			if ( json.transparent !== undefined ) material.transparent = json.transparent;
    			if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
    			if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
    			if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
    			if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;
    			if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
    			if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
    			if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap;
    			if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin;
    			if ( json.skinning !== undefined ) material.skinning = json.skinning;
    			if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets;
    
    			// for PointsMaterial
    
    			if ( json.size !== undefined ) material.size = json.size;
    			if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;
    
    			// maps
    
    			if ( json.map !== undefined ) material.map = getTexture( json.map );
    
    			if ( json.alphaMap !== undefined ) {
    
    				material.alphaMap = getTexture( json.alphaMap );
    				material.transparent = true;
    
    			}
    
    			if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap );
    			if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;
    
    			if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap );
    			if ( json.normalScale !== undefined ) {
    
    				var normalScale = json.normalScale;
    
    				if ( Array.isArray( normalScale ) === false ) {
    
    					// Blender exporter used to export a scalar. See #7459
    
    					normalScale = [ normalScale, normalScale ];
    
    				}
    
    				material.normalScale = new Vector2().fromArray( normalScale );
    
    			}
    
    			if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap );
    			if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
    			if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;
    
    			if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap );
    			if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap );
    
    			if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap );
    			if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;
    
    			if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap );
    
    			if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap );
    
    			if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity;
    
    			if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap );
    			if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;
    
    			if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap );
    			if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;
    
    			if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap );
    
    			return material;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function BufferGeometryLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    	}
    
    	Object.assign( BufferGeometryLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			var scope = this;
    
    			var loader = new FileLoader( scope.manager );
    			loader.setResponseType( 'json' );
    			loader.load( url, function ( json ) {
    
    				onLoad( scope.parse( json ) );
    
    			}, onProgress, onError );
    
    		},
    
    		parse: function ( json ) {
    
    			var geometry = new BufferGeometry();
    
    			var index = json.data.index;
    
    			if ( index !== undefined ) {
    
    				var typedArray = new TYPED_ARRAYS[ index.type ]( index.array );
    				geometry.setIndex( new BufferAttribute( typedArray, 1 ) );
    
    			}
    
    			var attributes = json.data.attributes;
    
    			for ( var key in attributes ) {
    
    				var attribute = attributes[ key ];
    				var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );
    
    				geometry.addAttribute( key, new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ) );
    
    			}
    
    			var groups = json.data.groups || json.data.drawcalls || json.data.offsets;
    
    			if ( groups !== undefined ) {
    
    				for ( var i = 0, n = groups.length; i !== n; ++ i ) {
    
    					var group = groups[ i ];
    
    					geometry.addGroup( group.start, group.count, group.materialIndex );
    
    				}
    
    			}
    
    			var boundingSphere = json.data.boundingSphere;
    
    			if ( boundingSphere !== undefined ) {
    
    				var center = new Vector3();
    
    				if ( boundingSphere.center !== undefined ) {
    
    					center.fromArray( boundingSphere.center );
    
    				}
    
    				geometry.boundingSphere = new Sphere( center, boundingSphere.radius );
    
    			}
    
    			return geometry;
    
    		}
    
    	} );
    
    	var TYPED_ARRAYS = {
    		Int8Array: Int8Array,
    		Uint8Array: Uint8Array,
    		Uint8ClampedArray: Uint8ClampedArray,
    		Int16Array: Int16Array,
    		Uint16Array: Uint16Array,
    		Int32Array: Int32Array,
    		Uint32Array: Uint32Array,
    		Float32Array: Float32Array,
    		Float64Array: Float64Array
    	};
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function Loader() {
    
    		this.onLoadStart = function () {};
    		this.onLoadProgress = function () {};
    		this.onLoadComplete = function () {};
    
    	}
    
    	Loader.Handlers = {
    
    		handlers: [],
    
    		add: function ( regex, loader ) {
    
    			this.handlers.push( regex, loader );
    
    		},
    
    		get: function ( file ) {
    
    			var handlers = this.handlers;
    
    			for ( var i = 0, l = handlers.length; i < l; i += 2 ) {
    
    				var regex = handlers[ i ];
    				var loader = handlers[ i + 1 ];
    
    				if ( regex.test( file ) ) {
    
    					return loader;
    
    				}
    
    			}
    
    			return null;
    
    		}
    
    	};
    
    	Object.assign( Loader.prototype, {
    
    		crossOrigin: undefined,
    
    		extractUrlBase: function ( url ) {
    
    			var parts = url.split( '/' );
    
    			if ( parts.length === 1 ) return './';
    
    			parts.pop();
    
    			return parts.join( '/' ) + '/';
    
    		},
    
    		initMaterials: function ( materials, texturePath, crossOrigin ) {
    
    			var array = [];
    
    			for ( var i = 0; i < materials.length; ++ i ) {
    
    				array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin );
    
    			}
    
    			return array;
    
    		},
    
    		createMaterial: ( function () {
    
    			var BlendingMode = {
    				NoBlending: NoBlending,
    				NormalBlending: NormalBlending,
    				AdditiveBlending: AdditiveBlending,
    				SubtractiveBlending: SubtractiveBlending,
    				MultiplyBlending: MultiplyBlending,
    				CustomBlending: CustomBlending
    			};
    
    			var color = new Color();
    			var textureLoader = new TextureLoader();
    			var materialLoader = new MaterialLoader();
    
    			return function createMaterial( m, texturePath, crossOrigin ) {
    
    				// convert from old material format
    
    				var textures = {};
    
    				function loadTexture( path, repeat, offset, wrap, anisotropy ) {
    
    					var fullPath = texturePath + path;
    					var loader = Loader.Handlers.get( fullPath );
    
    					var texture;
    
    					if ( loader !== null ) {
    
    						texture = loader.load( fullPath );
    
    					} else {
    
    						textureLoader.setCrossOrigin( crossOrigin );
    						texture = textureLoader.load( fullPath );
    
    					}
    
    					if ( repeat !== undefined ) {
    
    						texture.repeat.fromArray( repeat );
    
    						if ( repeat[ 0 ] !== 1 ) texture.wrapS = RepeatWrapping;
    						if ( repeat[ 1 ] !== 1 ) texture.wrapT = RepeatWrapping;
    
    					}
    
    					if ( offset !== undefined ) {
    
    						texture.offset.fromArray( offset );
    
    					}
    
    					if ( wrap !== undefined ) {
    
    						if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = RepeatWrapping;
    						if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = MirroredRepeatWrapping;
    
    						if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = RepeatWrapping;
    						if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = MirroredRepeatWrapping;
    
    					}
    
    					if ( anisotropy !== undefined ) {
    
    						texture.anisotropy = anisotropy;
    
    					}
    
    					var uuid = _Math.generateUUID();
    
    					textures[ uuid ] = texture;
    
    					return uuid;
    
    				}
    
    				//
    
    				var json = {
    					uuid: _Math.generateUUID(),
    					type: 'MeshLambertMaterial'
    				};
    
    				for ( var name in m ) {
    
    					var value = m[ name ];
    
    					switch ( name ) {
    
    						case 'DbgColor':
    						case 'DbgIndex':
    						case 'opticalDensity':
    						case 'illumination':
    							break;
    						case 'DbgName':
    							json.name = value;
    							break;
    						case 'blending':
    							json.blending = BlendingMode[ value ];
    							break;
    						case 'colorAmbient':
    						case 'mapAmbient':
    							console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' );
    							break;
    						case 'colorDiffuse':
    							json.color = color.fromArray( value ).getHex();
    							break;
    						case 'colorSpecular':
    							json.specular = color.fromArray( value ).getHex();
    							break;
    						case 'colorEmissive':
    							json.emissive = color.fromArray( value ).getHex();
    							break;
    						case 'specularCoef':
    							json.shininess = value;
    							break;
    						case 'shading':
    							if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial';
    							if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial';
    							if ( value.toLowerCase() === 'standard' ) json.type = 'MeshStandardMaterial';
    							break;
    						case 'mapDiffuse':
    							json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy );
    							break;
    						case 'mapDiffuseRepeat':
    						case 'mapDiffuseOffset':
    						case 'mapDiffuseWrap':
    						case 'mapDiffuseAnisotropy':
    							break;
    						case 'mapEmissive':
    							json.emissiveMap = loadTexture( value, m.mapEmissiveRepeat, m.mapEmissiveOffset, m.mapEmissiveWrap, m.mapEmissiveAnisotropy );
    							break;
    						case 'mapEmissiveRepeat':
    						case 'mapEmissiveOffset':
    						case 'mapEmissiveWrap':
    						case 'mapEmissiveAnisotropy':
    							break;
    						case 'mapLight':
    							json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy );
    							break;
    						case 'mapLightRepeat':
    						case 'mapLightOffset':
    						case 'mapLightWrap':
    						case 'mapLightAnisotropy':
    							break;
    						case 'mapAO':
    							json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy );
    							break;
    						case 'mapAORepeat':
    						case 'mapAOOffset':
    						case 'mapAOWrap':
    						case 'mapAOAnisotropy':
    							break;
    						case 'mapBump':
    							json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy );
    							break;
    						case 'mapBumpScale':
    							json.bumpScale = value;
    							break;
    						case 'mapBumpRepeat':
    						case 'mapBumpOffset':
    						case 'mapBumpWrap':
    						case 'mapBumpAnisotropy':
    							break;
    						case 'mapNormal':
    							json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy );
    							break;
    						case 'mapNormalFactor':
    							json.normalScale = [ value, value ];
    							break;
    						case 'mapNormalRepeat':
    						case 'mapNormalOffset':
    						case 'mapNormalWrap':
    						case 'mapNormalAnisotropy':
    							break;
    						case 'mapSpecular':
    							json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy );
    							break;
    						case 'mapSpecularRepeat':
    						case 'mapSpecularOffset':
    						case 'mapSpecularWrap':
    						case 'mapSpecularAnisotropy':
    							break;
    						case 'mapMetalness':
    							json.metalnessMap = loadTexture( value, m.mapMetalnessRepeat, m.mapMetalnessOffset, m.mapMetalnessWrap, m.mapMetalnessAnisotropy );
    							break;
    						case 'mapMetalnessRepeat':
    						case 'mapMetalnessOffset':
    						case 'mapMetalnessWrap':
    						case 'mapMetalnessAnisotropy':
    							break;
    						case 'mapRoughness':
    							json.roughnessMap = loadTexture( value, m.mapRoughnessRepeat, m.mapRoughnessOffset, m.mapRoughnessWrap, m.mapRoughnessAnisotropy );
    							break;
    						case 'mapRoughnessRepeat':
    						case 'mapRoughnessOffset':
    						case 'mapRoughnessWrap':
    						case 'mapRoughnessAnisotropy':
    							break;
    						case 'mapAlpha':
    							json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy );
    							break;
    						case 'mapAlphaRepeat':
    						case 'mapAlphaOffset':
    						case 'mapAlphaWrap':
    						case 'mapAlphaAnisotropy':
    							break;
    						case 'flipSided':
    							json.side = BackSide;
    							break;
    						case 'doubleSided':
    							json.side = DoubleSide;
    							break;
    						case 'transparency':
    							console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' );
    							json.opacity = value;
    							break;
    						case 'depthTest':
    						case 'depthWrite':
    						case 'colorWrite':
    						case 'opacity':
    						case 'reflectivity':
    						case 'transparent':
    						case 'visible':
    						case 'wireframe':
    							json[ name ] = value;
    							break;
    						case 'vertexColors':
    							if ( value === true ) json.vertexColors = VertexColors;
    							if ( value === 'face' ) json.vertexColors = FaceColors;
    							break;
    						default:
    							console.error( 'THREE.Loader.createMaterial: Unsupported', name, value );
    							break;
    
    					}
    
    				}
    
    				if ( json.type === 'MeshBasicMaterial' ) delete json.emissive;
    				if ( json.type !== 'MeshPhongMaterial' ) delete json.specular;
    
    				if ( json.opacity < 1 ) json.transparent = true;
    
    				materialLoader.setTextures( textures );
    
    				return materialLoader.parse( json );
    
    			};
    
    		} )()
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function JSONLoader( manager ) {
    
    		if ( typeof manager === 'boolean' ) {
    
    			console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' );
    			manager = undefined;
    
    		}
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    		this.withCredentials = false;
    
    	}
    
    	Object.assign( JSONLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			var scope = this;
    
    			var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : Loader.prototype.extractUrlBase( url );
    
    			var loader = new FileLoader( this.manager );
    			loader.setResponseType( 'json' );
    			loader.setWithCredentials( this.withCredentials );
    			loader.load( url, function ( json ) {
    
    				var metadata = json.metadata;
    
    				if ( metadata !== undefined ) {
    
    					var type = metadata.type;
    
    					if ( type !== undefined ) {
    
    						if ( type.toLowerCase() === 'object' ) {
    
    							console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' );
    							return;
    
    						}
    
    						if ( type.toLowerCase() === 'scene' ) {
    
    							console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' );
    							return;
    
    						}
    
    					}
    
    				}
    
    				var object = scope.parse( json, texturePath );
    				onLoad( object.geometry, object.materials );
    
    			}, onProgress, onError );
    
    		},
    
    		setTexturePath: function ( value ) {
    
    			this.texturePath = value;
    
    		},
    
    		parse: ( function () {
    
    			function parseModel( json, geometry ) {
    
    				function isBitSet( value, position ) {
    
    					return value & ( 1 << position );
    
    				}
    
    				var i, j, fi,
    
    					offset, zLength,
    
    					colorIndex, normalIndex, uvIndex, materialIndex,
    
    					type,
    					isQuad,
    					hasMaterial,
    					hasFaceVertexUv,
    					hasFaceNormal, hasFaceVertexNormal,
    					hasFaceColor, hasFaceVertexColor,
    
    					vertex, face, faceA, faceB, hex, normal,
    
    					uvLayer, uv, u, v,
    
    					faces = json.faces,
    					vertices = json.vertices,
    					normals = json.normals,
    					colors = json.colors,
    
    					scale = json.scale,
    
    					nUvLayers = 0;
    
    
    				if ( json.uvs !== undefined ) {
    
    					// disregard empty arrays
    
    					for ( i = 0; i < json.uvs.length; i ++ ) {
    
    						if ( json.uvs[ i ].length ) nUvLayers ++;
    
    					}
    
    					for ( i = 0; i < nUvLayers; i ++ ) {
    
    						geometry.faceVertexUvs[ i ] = [];
    
    					}
    
    				}
    
    				offset = 0;
    				zLength = vertices.length;
    
    				while ( offset < zLength ) {
    
    					vertex = new Vector3();
    
    					vertex.x = vertices[ offset ++ ] * scale;
    					vertex.y = vertices[ offset ++ ] * scale;
    					vertex.z = vertices[ offset ++ ] * scale;
    
    					geometry.vertices.push( vertex );
    
    				}
    
    				offset = 0;
    				zLength = faces.length;
    
    				while ( offset < zLength ) {
    
    					type = faces[ offset ++ ];
    
    					isQuad = isBitSet( type, 0 );
    					hasMaterial = isBitSet( type, 1 );
    					hasFaceVertexUv = isBitSet( type, 3 );
    					hasFaceNormal = isBitSet( type, 4 );
    					hasFaceVertexNormal = isBitSet( type, 5 );
    					hasFaceColor = isBitSet( type, 6 );
    					hasFaceVertexColor = isBitSet( type, 7 );
    
    					// console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor);
    
    					if ( isQuad ) {
    
    						faceA = new Face3();
    						faceA.a = faces[ offset ];
    						faceA.b = faces[ offset + 1 ];
    						faceA.c = faces[ offset + 3 ];
    
    						faceB = new Face3();
    						faceB.a = faces[ offset + 1 ];
    						faceB.b = faces[ offset + 2 ];
    						faceB.c = faces[ offset + 3 ];
    
    						offset += 4;
    
    						if ( hasMaterial ) {
    
    							materialIndex = faces[ offset ++ ];
    							faceA.materialIndex = materialIndex;
    							faceB.materialIndex = materialIndex;
    
    						}
    
    						// to get face <=> uv index correspondence
    
    						fi = geometry.faces.length;
    
    						if ( hasFaceVertexUv ) {
    
    							for ( i = 0; i < nUvLayers; i ++ ) {
    
    								uvLayer = json.uvs[ i ];
    
    								geometry.faceVertexUvs[ i ][ fi ] = [];
    								geometry.faceVertexUvs[ i ][ fi + 1 ] = [];
    
    								for ( j = 0; j < 4; j ++ ) {
    
    									uvIndex = faces[ offset ++ ];
    
    									u = uvLayer[ uvIndex * 2 ];
    									v = uvLayer[ uvIndex * 2 + 1 ];
    
    									uv = new Vector2( u, v );
    
    									if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv );
    									if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv );
    
    								}
    
    							}
    
    						}
    
    						if ( hasFaceNormal ) {
    
    							normalIndex = faces[ offset ++ ] * 3;
    
    							faceA.normal.set(
    								normals[ normalIndex ++ ],
    								normals[ normalIndex ++ ],
    								normals[ normalIndex ]
    							);
    
    							faceB.normal.copy( faceA.normal );
    
    						}
    
    						if ( hasFaceVertexNormal ) {
    
    							for ( i = 0; i < 4; i ++ ) {
    
    								normalIndex = faces[ offset ++ ] * 3;
    
    								normal = new Vector3(
    									normals[ normalIndex ++ ],
    									normals[ normalIndex ++ ],
    									normals[ normalIndex ]
    								);
    
    
    								if ( i !== 2 ) faceA.vertexNormals.push( normal );
    								if ( i !== 0 ) faceB.vertexNormals.push( normal );
    
    							}
    
    						}
    
    
    						if ( hasFaceColor ) {
    
    							colorIndex = faces[ offset ++ ];
    							hex = colors[ colorIndex ];
    
    							faceA.color.setHex( hex );
    							faceB.color.setHex( hex );
    
    						}
    
    
    						if ( hasFaceVertexColor ) {
    
    							for ( i = 0; i < 4; i ++ ) {
    
    								colorIndex = faces[ offset ++ ];
    								hex = colors[ colorIndex ];
    
    								if ( i !== 2 ) faceA.vertexColors.push( new Color( hex ) );
    								if ( i !== 0 ) faceB.vertexColors.push( new Color( hex ) );
    
    							}
    
    						}
    
    						geometry.faces.push( faceA );
    						geometry.faces.push( faceB );
    
    					} else {
    
    						face = new Face3();
    						face.a = faces[ offset ++ ];
    						face.b = faces[ offset ++ ];
    						face.c = faces[ offset ++ ];
    
    						if ( hasMaterial ) {
    
    							materialIndex = faces[ offset ++ ];
    							face.materialIndex = materialIndex;
    
    						}
    
    						// to get face <=> uv index correspondence
    
    						fi = geometry.faces.length;
    
    						if ( hasFaceVertexUv ) {
    
    							for ( i = 0; i < nUvLayers; i ++ ) {
    
    								uvLayer = json.uvs[ i ];
    
    								geometry.faceVertexUvs[ i ][ fi ] = [];
    
    								for ( j = 0; j < 3; j ++ ) {
    
    									uvIndex = faces[ offset ++ ];
    
    									u = uvLayer[ uvIndex * 2 ];
    									v = uvLayer[ uvIndex * 2 + 1 ];
    
    									uv = new Vector2( u, v );
    
    									geometry.faceVertexUvs[ i ][ fi ].push( uv );
    
    								}
    
    							}
    
    						}
    
    						if ( hasFaceNormal ) {
    
    							normalIndex = faces[ offset ++ ] * 3;
    
    							face.normal.set(
    								normals[ normalIndex ++ ],
    								normals[ normalIndex ++ ],
    								normals[ normalIndex ]
    							);
    
    						}
    
    						if ( hasFaceVertexNormal ) {
    
    							for ( i = 0; i < 3; i ++ ) {
    
    								normalIndex = faces[ offset ++ ] * 3;
    
    								normal = new Vector3(
    									normals[ normalIndex ++ ],
    									normals[ normalIndex ++ ],
    									normals[ normalIndex ]
    								);
    
    								face.vertexNormals.push( normal );
    
    							}
    
    						}
    
    
    						if ( hasFaceColor ) {
    
    							colorIndex = faces[ offset ++ ];
    							face.color.setHex( colors[ colorIndex ] );
    
    						}
    
    
    						if ( hasFaceVertexColor ) {
    
    							for ( i = 0; i < 3; i ++ ) {
    
    								colorIndex = faces[ offset ++ ];
    								face.vertexColors.push( new Color( colors[ colorIndex ] ) );
    
    							}
    
    						}
    
    						geometry.faces.push( face );
    
    					}
    
    				}
    
    			}
    
    			function parseSkin( json, geometry ) {
    
    				var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2;
    
    				if ( json.skinWeights ) {
    
    					for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) {
    
    						var x = json.skinWeights[ i ];
    						var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0;
    						var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0;
    						var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0;
    
    						geometry.skinWeights.push( new Vector4( x, y, z, w ) );
    
    					}
    
    				}
    
    				if ( json.skinIndices ) {
    
    					for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) {
    
    						var a = json.skinIndices[ i ];
    						var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0;
    						var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0;
    						var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0;
    
    						geometry.skinIndices.push( new Vector4( a, b, c, d ) );
    
    					}
    
    				}
    
    				geometry.bones = json.bones;
    
    				if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) {
    
    					console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' +
    						geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' );
    
    				}
    
    			}
    
    			function parseMorphing( json, geometry ) {
    
    				var scale = json.scale;
    
    				if ( json.morphTargets !== undefined ) {
    
    					for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) {
    
    						geometry.morphTargets[ i ] = {};
    						geometry.morphTargets[ i ].name = json.morphTargets[ i ].name;
    						geometry.morphTargets[ i ].vertices = [];
    
    						var dstVertices = geometry.morphTargets[ i ].vertices;
    						var srcVertices = json.morphTargets[ i ].vertices;
    
    						for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) {
    
    							var vertex = new Vector3();
    							vertex.x = srcVertices[ v ] * scale;
    							vertex.y = srcVertices[ v + 1 ] * scale;
    							vertex.z = srcVertices[ v + 2 ] * scale;
    
    							dstVertices.push( vertex );
    
    						}
    
    					}
    
    				}
    
    				if ( json.morphColors !== undefined && json.morphColors.length > 0 ) {
    
    					console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' );
    
    					var faces = geometry.faces;
    					var morphColors = json.morphColors[ 0 ].colors;
    
    					for ( var i = 0, l = faces.length; i < l; i ++ ) {
    
    						faces[ i ].color.fromArray( morphColors, i * 3 );
    
    					}
    
    				}
    
    			}
    
    			function parseAnimations( json, geometry ) {
    
    				var outputAnimations = [];
    
    				// parse old style Bone/Hierarchy animations
    				var animations = [];
    
    				if ( json.animation !== undefined ) {
    
    					animations.push( json.animation );
    
    				}
    
    				if ( json.animations !== undefined ) {
    
    					if ( json.animations.length ) {
    
    						animations = animations.concat( json.animations );
    
    					} else {
    
    						animations.push( json.animations );
    
    					}
    
    				}
    
    				for ( var i = 0; i < animations.length; i ++ ) {
    
    					var clip = AnimationClip.parseAnimation( animations[ i ], geometry.bones );
    					if ( clip ) outputAnimations.push( clip );
    
    				}
    
    				// parse implicit morph animations
    				if ( geometry.morphTargets ) {
    
    					// TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary.
    					var morphAnimationClips = AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 );
    					outputAnimations = outputAnimations.concat( morphAnimationClips );
    
    				}
    
    				if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations;
    
    			}
    
    			return function ( json, texturePath ) {
    
    				if ( json.data !== undefined ) {
    
    					// Geometry 4.0 spec
    					json = json.data;
    
    				}
    
    				if ( json.scale !== undefined ) {
    
    					json.scale = 1.0 / json.scale;
    
    				} else {
    
    					json.scale = 1.0;
    
    				}
    
    				var geometry = new Geometry();
    
    				parseModel( json, geometry );
    				parseSkin( json, geometry );
    				parseMorphing( json, geometry );
    				parseAnimations( json, geometry );
    
    				geometry.computeFaceNormals();
    				geometry.computeBoundingSphere();
    
    				if ( json.materials === undefined || json.materials.length === 0 ) {
    
    					return { geometry: geometry };
    
    				} else {
    
    					var materials = Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin );
    
    					return { geometry: geometry, materials: materials };
    
    				}
    
    			};
    
    		} )()
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function ObjectLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    		this.texturePath = '';
    
    	}
    
    	Object.assign( ObjectLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			if ( this.texturePath === '' ) {
    
    				this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 );
    
    			}
    
    			var scope = this;
    
    			var loader = new FileLoader( scope.manager );
    			loader.load( url, function ( text ) {
    
    				var json = null;
    
    				try {
    
    					json = JSON.parse( text );
    
    				} catch ( error ) {
    
    					if ( onError !== undefined ) onError( error );
    
    					console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message );
    
    					return;
    
    				}
    
    				var metadata = json.metadata;
    
    				if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) {
    
    					console.error( 'THREE.ObjectLoader: Can\'t load ' + url + '. Use THREE.JSONLoader instead.' );
    					return;
    
    				}
    
    				scope.parse( json, onLoad );
    
    			}, onProgress, onError );
    
    		},
    
    		setTexturePath: function ( value ) {
    
    			this.texturePath = value;
    
    		},
    
    		setCrossOrigin: function ( value ) {
    
    			this.crossOrigin = value;
    
    		},
    
    		parse: function ( json, onLoad ) {
    
    			var geometries = this.parseGeometries( json.geometries );
    
    			var images = this.parseImages( json.images, function () {
    
    				if ( onLoad !== undefined ) onLoad( object );
    
    			} );
    
    			var textures = this.parseTextures( json.textures, images );
    			var materials = this.parseMaterials( json.materials, textures );
    
    			var object = this.parseObject( json.object, geometries, materials );
    
    			if ( json.animations ) {
    
    				object.animations = this.parseAnimations( json.animations );
    
    			}
    
    			if ( json.images === undefined || json.images.length === 0 ) {
    
    				if ( onLoad !== undefined ) onLoad( object );
    
    			}
    
    			return object;
    
    		},
    
    		parseGeometries: function ( json ) {
    
    			var geometries = {};
    
    			if ( json !== undefined ) {
    
    				var geometryLoader = new JSONLoader();
    				var bufferGeometryLoader = new BufferGeometryLoader();
    
    				for ( var i = 0, l = json.length; i < l; i ++ ) {
    
    					var geometry;
    					var data = json[ i ];
    
    					switch ( data.type ) {
    
    						case 'PlaneGeometry':
    						case 'PlaneBufferGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.width,
    								data.height,
    								data.widthSegments,
    								data.heightSegments
    							);
    
    							break;
    
    						case 'BoxGeometry':
    						case 'BoxBufferGeometry':
    						case 'CubeGeometry': // backwards compatible
    
    							geometry = new Geometries[ data.type ](
    								data.width,
    								data.height,
    								data.depth,
    								data.widthSegments,
    								data.heightSegments,
    								data.depthSegments
    							);
    
    							break;
    
    						case 'CircleGeometry':
    						case 'CircleBufferGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.radius,
    								data.segments,
    								data.thetaStart,
    								data.thetaLength
    							);
    
    							break;
    
    						case 'CylinderGeometry':
    						case 'CylinderBufferGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.radiusTop,
    								data.radiusBottom,
    								data.height,
    								data.radialSegments,
    								data.heightSegments,
    								data.openEnded,
    								data.thetaStart,
    								data.thetaLength
    							);
    
    							break;
    
    						case 'ConeGeometry':
    						case 'ConeBufferGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.radius,
    								data.height,
    								data.radialSegments,
    								data.heightSegments,
    								data.openEnded,
    								data.thetaStart,
    								data.thetaLength
    							);
    
    							break;
    
    						case 'SphereGeometry':
    						case 'SphereBufferGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.radius,
    								data.widthSegments,
    								data.heightSegments,
    								data.phiStart,
    								data.phiLength,
    								data.thetaStart,
    								data.thetaLength
    							);
    
    							break;
    
    						case 'DodecahedronGeometry':
    						case 'IcosahedronGeometry':
    						case 'OctahedronGeometry':
    						case 'TetrahedronGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.radius,
    								data.detail
    							);
    
    							break;
    
    						case 'RingGeometry':
    						case 'RingBufferGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.innerRadius,
    								data.outerRadius,
    								data.thetaSegments,
    								data.phiSegments,
    								data.thetaStart,
    								data.thetaLength
    							);
    
    							break;
    
    						case 'TorusGeometry':
    						case 'TorusBufferGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.radius,
    								data.tube,
    								data.radialSegments,
    								data.tubularSegments,
    								data.arc
    							);
    
    							break;
    
    						case 'TorusKnotGeometry':
    						case 'TorusKnotBufferGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.radius,
    								data.tube,
    								data.tubularSegments,
    								data.radialSegments,
    								data.p,
    								data.q
    							);
    
    							break;
    
    						case 'LatheGeometry':
    						case 'LatheBufferGeometry':
    
    							geometry = new Geometries[ data.type ](
    								data.points,
    								data.segments,
    								data.phiStart,
    								data.phiLength
    							);
    
    							break;
    
    						case 'BufferGeometry':
    
    							geometry = bufferGeometryLoader.parse( data );
    
    							break;
    
    						case 'Geometry':
    
    							geometry = geometryLoader.parse( data, this.texturePath ).geometry;
    
    							break;
    
    						default:
    
    							console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' );
    
    							continue;
    
    					}
    
    					geometry.uuid = data.uuid;
    
    					if ( data.name !== undefined ) geometry.name = data.name;
    
    					geometries[ data.uuid ] = geometry;
    
    				}
    
    			}
    
    			return geometries;
    
    		},
    
    		parseMaterials: function ( json, textures ) {
    
    			var materials = {};
    
    			if ( json !== undefined ) {
    
    				var loader = new MaterialLoader();
    				loader.setTextures( textures );
    
    				for ( var i = 0, l = json.length; i < l; i ++ ) {
    
    					var data = json[ i ];
    
    					if ( data.type === 'MultiMaterial' ) {
    
    						// Deprecated
    
    						var array = [];
    
    						for ( var j = 0; j < data.materials.length; j ++ ) {
    
    							array.push( loader.parse( data.materials[ j ] ) );
    
    						}
    
    						materials[ data.uuid ] = array;
    
    					} else {
    
    						materials[ data.uuid ] = loader.parse( data );
    
    					}
    
    				}
    
    			}
    
    			return materials;
    
    		},
    
    		parseAnimations: function ( json ) {
    
    			var animations = [];
    
    			for ( var i = 0; i < json.length; i ++ ) {
    
    				var clip = AnimationClip.parse( json[ i ] );
    
    				animations.push( clip );
    
    			}
    
    			return animations;
    
    		},
    
    		parseImages: function ( json, onLoad ) {
    
    			var scope = this;
    			var images = {};
    
    			function loadImage( url ) {
    
    				scope.manager.itemStart( url );
    
    				return loader.load( url, function () {
    
    					scope.manager.itemEnd( url );
    
    				}, undefined, function () {
    
    					scope.manager.itemEnd( url );
    					scope.manager.itemError( url );
    
    				} );
    
    			}
    
    			if ( json !== undefined && json.length > 0 ) {
    
    				var manager = new LoadingManager( onLoad );
    
    				var loader = new ImageLoader( manager );
    				loader.setCrossOrigin( this.crossOrigin );
    
    				for ( var i = 0, l = json.length; i < l; i ++ ) {
    
    					var image = json[ i ];
    					var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url;
    
    					images[ image.uuid ] = loadImage( path );
    
    				}
    
    			}
    
    			return images;
    
    		},
    
    		parseTextures: function ( json, images ) {
    
    			function parseConstant( value, type ) {
    
    				if ( typeof( value ) === 'number' ) return value;
    
    				console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );
    
    				return type[ value ];
    
    			}
    
    			var textures = {};
    
    			if ( json !== undefined ) {
    
    				for ( var i = 0, l = json.length; i < l; i ++ ) {
    
    					var data = json[ i ];
    
    					if ( data.image === undefined ) {
    
    						console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );
    
    					}
    
    					if ( images[ data.image ] === undefined ) {
    
    						console.warn( 'THREE.ObjectLoader: Undefined image', data.image );
    
    					}
    
    					var texture = new Texture( images[ data.image ] );
    					texture.needsUpdate = true;
    
    					texture.uuid = data.uuid;
    
    					if ( data.name !== undefined ) texture.name = data.name;
    
    					if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING );
    
    					if ( data.offset !== undefined ) texture.offset.fromArray( data.offset );
    					if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat );
    					if ( data.wrap !== undefined ) {
    
    						texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING );
    						texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING );
    
    					}
    
    					if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER );
    					if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER );
    					if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy;
    
    					if ( data.flipY !== undefined ) texture.flipY = data.flipY;
    
    					textures[ data.uuid ] = texture;
    
    				}
    
    			}
    
    			return textures;
    
    		},
    
    		parseObject: function () {
    
    			var matrix = new Matrix4();
    
    			return function parseObject( data, geometries, materials ) {
    
    				var object;
    
    				function getGeometry( name ) {
    
    					if ( geometries[ name ] === undefined ) {
    
    						console.warn( 'THREE.ObjectLoader: Undefined geometry', name );
    
    					}
    
    					return geometries[ name ];
    
    				}
    
    				function getMaterial( name ) {
    
    					if ( name === undefined ) return undefined;
    
    					if ( Array.isArray( name ) ) {
    
    						var array = [];
    
    						for ( var i = 0, l = name.length; i < l; i ++ ) {
    
    							var uuid = name[ i ];
    
    							if ( materials[ uuid ] === undefined ) {
    
    								console.warn( 'THREE.ObjectLoader: Undefined material', uuid );
    
    							}
    
    							array.push( materials[ uuid ] );
    
    						}
    
    						return array;
    
    					}
    
    					if ( materials[ name ] === undefined ) {
    
    						console.warn( 'THREE.ObjectLoader: Undefined material', name );
    
    					}
    
    					return materials[ name ];
    
    				}
    
    				switch ( data.type ) {
    
    					case 'Scene':
    
    						object = new Scene();
    
    						if ( data.background !== undefined ) {
    
    							if ( Number.isInteger( data.background ) ) {
    
    								object.background = new Color( data.background );
    
    							}
    
    						}
    
    						if ( data.fog !== undefined ) {
    
    							if ( data.fog.type === 'Fog' ) {
    
    								object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far );
    
    							} else if ( data.fog.type === 'FogExp2' ) {
    
    								object.fog = new FogExp2( data.fog.color, data.fog.density );
    
    							}
    
    						}
    
    						break;
    
    					case 'PerspectiveCamera':
    
    						object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far );
    
    						if ( data.focus !== undefined ) object.focus = data.focus;
    						if ( data.zoom !== undefined ) object.zoom = data.zoom;
    						if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge;
    						if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset;
    						if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );
    
    						break;
    
    					case 'OrthographicCamera':
    
    						object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );
    
    						break;
    
    					case 'AmbientLight':
    
    						object = new AmbientLight( data.color, data.intensity );
    
    						break;
    
    					case 'DirectionalLight':
    
    						object = new DirectionalLight( data.color, data.intensity );
    
    						break;
    
    					case 'PointLight':
    
    						object = new PointLight( data.color, data.intensity, data.distance, data.decay );
    
    						break;
    
    					case 'RectAreaLight':
    
    						object = new RectAreaLight( data.color, data.intensity, data.width, data.height );
    
    						break;
    
    					case 'SpotLight':
    
    						object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );
    
    						break;
    
    					case 'HemisphereLight':
    
    						object = new HemisphereLight( data.color, data.groundColor, data.intensity );
    
    						break;
    
    					case 'SkinnedMesh':
    
    						console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' );
    
    					case 'Mesh':
    
    						var geometry = getGeometry( data.geometry );
    						var material = getMaterial( data.material );
    
    						if ( geometry.bones && geometry.bones.length > 0 ) {
    
    							object = new SkinnedMesh( geometry, material );
    
    						} else {
    
    							object = new Mesh( geometry, material );
    
    						}
    
    						break;
    
    					case 'LOD':
    
    						object = new LOD();
    
    						break;
    
    					case 'Line':
    
    						object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode );
    
    						break;
    
    					case 'LineLoop':
    
    						object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) );
    
    						break;
    
    					case 'LineSegments':
    
    						object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) );
    
    						break;
    
    					case 'PointCloud':
    					case 'Points':
    
    						object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) );
    
    						break;
    
    					case 'Sprite':
    
    						object = new Sprite( getMaterial( data.material ) );
    
    						break;
    
    					case 'Group':
    
    						object = new Group();
    
    						break;
    
    					default:
    
    						object = new Object3D();
    
    				}
    
    				object.uuid = data.uuid;
    
    				if ( data.name !== undefined ) object.name = data.name;
    				if ( data.matrix !== undefined ) {
    
    					matrix.fromArray( data.matrix );
    					matrix.decompose( object.position, object.quaternion, object.scale );
    
    				} else {
    
    					if ( data.position !== undefined ) object.position.fromArray( data.position );
    					if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation );
    					if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion );
    					if ( data.scale !== undefined ) object.scale.fromArray( data.scale );
    
    				}
    
    				if ( data.castShadow !== undefined ) object.castShadow = data.castShadow;
    				if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow;
    
    				if ( data.shadow ) {
    
    					if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias;
    					if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius;
    					if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize );
    					if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera );
    
    				}
    
    				if ( data.visible !== undefined ) object.visible = data.visible;
    				if ( data.userData !== undefined ) object.userData = data.userData;
    
    				if ( data.children !== undefined ) {
    
    					for ( var child in data.children ) {
    
    						object.add( this.parseObject( data.children[ child ], geometries, materials ) );
    
    					}
    
    				}
    
    				if ( data.type === 'LOD' ) {
    
    					var levels = data.levels;
    
    					for ( var l = 0; l < levels.length; l ++ ) {
    
    						var level = levels[ l ];
    						var child = object.getObjectByProperty( 'uuid', level.object );
    
    						if ( child !== undefined ) {
    
    							object.addLevel( child, level.distance );
    
    						}
    
    					}
    
    				}
    
    				return object;
    
    			};
    
    		}()
    
    	} );
    
    	var TEXTURE_MAPPING = {
    		UVMapping: UVMapping,
    		CubeReflectionMapping: CubeReflectionMapping,
    		CubeRefractionMapping: CubeRefractionMapping,
    		EquirectangularReflectionMapping: EquirectangularReflectionMapping,
    		EquirectangularRefractionMapping: EquirectangularRefractionMapping,
    		SphericalReflectionMapping: SphericalReflectionMapping,
    		CubeUVReflectionMapping: CubeUVReflectionMapping,
    		CubeUVRefractionMapping: CubeUVRefractionMapping
    	};
    
    	var TEXTURE_WRAPPING = {
    		RepeatWrapping: RepeatWrapping,
    		ClampToEdgeWrapping: ClampToEdgeWrapping,
    		MirroredRepeatWrapping: MirroredRepeatWrapping
    	};
    
    	var TEXTURE_FILTER = {
    		NearestFilter: NearestFilter,
    		NearestMipMapNearestFilter: NearestMipMapNearestFilter,
    		NearestMipMapLinearFilter: NearestMipMapLinearFilter,
    		LinearFilter: LinearFilter,
    		LinearMipMapNearestFilter: LinearMipMapNearestFilter,
    		LinearMipMapLinearFilter: LinearMipMapLinearFilter
    	};
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 *
    	 * Bezier Curves formulas obtained from
    	 * http://en.wikipedia.org/wiki/Bézier_curve
    	 */
    
    	function CatmullRom( t, p0, p1, p2, p3 ) {
    
    		var v0 = ( p2 - p0 ) * 0.5;
    		var v1 = ( p3 - p1 ) * 0.5;
    		var t2 = t * t;
    		var t3 = t * t2;
    		return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;
    
    	}
    
    	//
    
    	function QuadraticBezierP0( t, p ) {
    
    		var k = 1 - t;
    		return k * k * p;
    
    	}
    
    	function QuadraticBezierP1( t, p ) {
    
    		return 2 * ( 1 - t ) * t * p;
    
    	}
    
    	function QuadraticBezierP2( t, p ) {
    
    		return t * t * p;
    
    	}
    
    	function QuadraticBezier( t, p0, p1, p2 ) {
    
    		return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) +
    			QuadraticBezierP2( t, p2 );
    
    	}
    
    	//
    
    	function CubicBezierP0( t, p ) {
    
    		var k = 1 - t;
    		return k * k * k * p;
    
    	}
    
    	function CubicBezierP1( t, p ) {
    
    		var k = 1 - t;
    		return 3 * k * k * t * p;
    
    	}
    
    	function CubicBezierP2( t, p ) {
    
    		return 3 * ( 1 - t ) * t * t * p;
    
    	}
    
    	function CubicBezierP3( t, p ) {
    
    		return t * t * t * p;
    
    	}
    
    	function CubicBezier( t, p0, p1, p2, p3 ) {
    
    		return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) +
    			CubicBezierP3( t, p3 );
    
    	}
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 * Extensible curve object
    	 *
    	 * Some common of curve methods:
    	 * .getPoint(t), getTangent(t)
    	 * .getPointAt(u), getTangentAt(u)
    	 * .getPoints(), .getSpacedPoints()
    	 * .getLength()
    	 * .updateArcLengths()
    	 *
    	 * This following curves inherit from THREE.Curve:
    	 *
    	 * -- 2D curves --
    	 * THREE.ArcCurve
    	 * THREE.CubicBezierCurve
    	 * THREE.EllipseCurve
    	 * THREE.LineCurve
    	 * THREE.QuadraticBezierCurve
    	 * THREE.SplineCurve
    	 *
    	 * -- 3D curves --
    	 * THREE.CatmullRomCurve3
    	 * THREE.CubicBezierCurve3
    	 * THREE.LineCurve3
    	 * THREE.QuadraticBezierCurve3
    	 *
    	 * A series of curves can be represented as a THREE.CurvePath.
    	 *
    	 **/
    
    	/**************************************************************
    	 *	Abstract Curve base class
    	 **************************************************************/
    
    	function Curve() {
    
    		this.arcLengthDivisions = 200;
    
    	}
    
    	Object.assign( Curve.prototype, {
    
    		// Virtual base class method to overwrite and implement in subclasses
    		//	- t [0 .. 1]
    
    		getPoint: function () {
    
    			console.warn( 'THREE.Curve: .getPoint() not implemented.' );
    			return null;
    
    		},
    
    		// Get point at relative position in curve according to arc length
    		// - u [0 .. 1]
    
    		getPointAt: function ( u ) {
    
    			var t = this.getUtoTmapping( u );
    			return this.getPoint( t );
    
    		},
    
    		// Get sequence of points using getPoint( t )
    
    		getPoints: function ( divisions ) {
    
    			if ( divisions === undefined ) divisions = 5;
    
    			var points = [];
    
    			for ( var d = 0; d <= divisions; d ++ ) {
    
    				points.push( this.getPoint( d / divisions ) );
    
    			}
    
    			return points;
    
    		},
    
    		// Get sequence of points using getPointAt( u )
    
    		getSpacedPoints: function ( divisions ) {
    
    			if ( divisions === undefined ) divisions = 5;
    
    			var points = [];
    
    			for ( var d = 0; d <= divisions; d ++ ) {
    
    				points.push( this.getPointAt( d / divisions ) );
    
    			}
    
    			return points;
    
    		},
    
    		// Get total curve arc length
    
    		getLength: function () {
    
    			var lengths = this.getLengths();
    			return lengths[ lengths.length - 1 ];
    
    		},
    
    		// Get list of cumulative segment lengths
    
    		getLengths: function ( divisions ) {
    
    			if ( divisions === undefined ) divisions = this.arcLengthDivisions;
    
    			if ( this.cacheArcLengths &&
    				( this.cacheArcLengths.length === divisions + 1 ) &&
    				! this.needsUpdate ) {
    
    				return this.cacheArcLengths;
    
    			}
    
    			this.needsUpdate = false;
    
    			var cache = [];
    			var current, last = this.getPoint( 0 );
    			var p, sum = 0;
    
    			cache.push( 0 );
    
    			for ( p = 1; p <= divisions; p ++ ) {
    
    				current = this.getPoint( p / divisions );
    				sum += current.distanceTo( last );
    				cache.push( sum );
    				last = current;
    
    			}
    
    			this.cacheArcLengths = cache;
    
    			return cache; // { sums: cache, sum: sum }; Sum is in the last element.
    
    		},
    
    		updateArcLengths: function () {
    
    			this.needsUpdate = true;
    			this.getLengths();
    
    		},
    
    		// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
    
    		getUtoTmapping: function ( u, distance ) {
    
    			var arcLengths = this.getLengths();
    
    			var i = 0, il = arcLengths.length;
    
    			var targetArcLength; // The targeted u distance value to get
    
    			if ( distance ) {
    
    				targetArcLength = distance;
    
    			} else {
    
    				targetArcLength = u * arcLengths[ il - 1 ];
    
    			}
    
    			// binary search for the index with largest value smaller than target u distance
    
    			var low = 0, high = il - 1, comparison;
    
    			while ( low <= high ) {
    
    				i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
    
    				comparison = arcLengths[ i ] - targetArcLength;
    
    				if ( comparison < 0 ) {
    
    					low = i + 1;
    
    				} else if ( comparison > 0 ) {
    
    					high = i - 1;
    
    				} else {
    
    					high = i;
    					break;
    
    					// DONE
    
    				}
    
    			}
    
    			i = high;
    
    			if ( arcLengths[ i ] === targetArcLength ) {
    
    				return i / ( il - 1 );
    
    			}
    
    			// we could get finer grain at lengths, or use simple interpolation between two points
    
    			var lengthBefore = arcLengths[ i ];
    			var lengthAfter = arcLengths[ i + 1 ];
    
    			var segmentLength = lengthAfter - lengthBefore;
    
    			// determine where we are between the 'before' and 'after' points
    
    			var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
    
    			// add that fractional amount to t
    
    			var t = ( i + segmentFraction ) / ( il - 1 );
    
    			return t;
    
    		},
    
    		// Returns a unit vector tangent at t
    		// In case any sub curve does not implement its tangent derivation,
    		// 2 points a small delta apart will be used to find its gradient
    		// which seems to give a reasonable approximation
    
    		getTangent: function ( t ) {
    
    			var delta = 0.0001;
    			var t1 = t - delta;
    			var t2 = t + delta;
    
    			// Capping in case of danger
    
    			if ( t1 < 0 ) t1 = 0;
    			if ( t2 > 1 ) t2 = 1;
    
    			var pt1 = this.getPoint( t1 );
    			var pt2 = this.getPoint( t2 );
    
    			var vec = pt2.clone().sub( pt1 );
    			return vec.normalize();
    
    		},
    
    		getTangentAt: function ( u ) {
    
    			var t = this.getUtoTmapping( u );
    			return this.getTangent( t );
    
    		},
    
    		computeFrenetFrames: function ( segments, closed ) {
    
    			// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
    
    			var normal = new Vector3();
    
    			var tangents = [];
    			var normals = [];
    			var binormals = [];
    
    			var vec = new Vector3();
    			var mat = new Matrix4();
    
    			var i, u, theta;
    
    			// compute the tangent vectors for each segment on the curve
    
    			for ( i = 0; i <= segments; i ++ ) {
    
    				u = i / segments;
    
    				tangents[ i ] = this.getTangentAt( u );
    				tangents[ i ].normalize();
    
    			}
    
    			// select an initial normal vector perpendicular to the first tangent vector,
    			// and in the direction of the minimum tangent xyz component
    
    			normals[ 0 ] = new Vector3();
    			binormals[ 0 ] = new Vector3();
    			var min = Number.MAX_VALUE;
    			var tx = Math.abs( tangents[ 0 ].x );
    			var ty = Math.abs( tangents[ 0 ].y );
    			var tz = Math.abs( tangents[ 0 ].z );
    
    			if ( tx <= min ) {
    
    				min = tx;
    				normal.set( 1, 0, 0 );
    
    			}
    
    			if ( ty <= min ) {
    
    				min = ty;
    				normal.set( 0, 1, 0 );
    
    			}
    
    			if ( tz <= min ) {
    
    				normal.set( 0, 0, 1 );
    
    			}
    
    			vec.crossVectors( tangents[ 0 ], normal ).normalize();
    
    			normals[ 0 ].crossVectors( tangents[ 0 ], vec );
    			binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
    
    
    			// compute the slowly-varying normal and binormal vectors for each segment on the curve
    
    			for ( i = 1; i <= segments; i ++ ) {
    
    				normals[ i ] = normals[ i - 1 ].clone();
    
    				binormals[ i ] = binormals[ i - 1 ].clone();
    
    				vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
    
    				if ( vec.length() > Number.EPSILON ) {
    
    					vec.normalize();
    
    					theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
    
    					normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
    
    				}
    
    				binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
    
    			}
    
    			// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
    
    			if ( closed === true ) {
    
    				theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
    				theta /= segments;
    
    				if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {
    
    					theta = - theta;
    
    				}
    
    				for ( i = 1; i <= segments; i ++ ) {
    
    					// twist a little...
    					normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
    					binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
    
    				}
    
    			}
    
    			return {
    				tangents: tangents,
    				normals: normals,
    				binormals: binormals
    			};
    
    		}
    
    	} );
    
    	function LineCurve( v1, v2 ) {
    
    		Curve.call( this );
    
    		this.v1 = v1;
    		this.v2 = v2;
    
    	}
    
    	LineCurve.prototype = Object.create( Curve.prototype );
    	LineCurve.prototype.constructor = LineCurve;
    
    	LineCurve.prototype.isLineCurve = true;
    
    	LineCurve.prototype.getPoint = function ( t ) {
    
    		if ( t === 1 ) {
    
    			return this.v2.clone();
    
    		}
    
    		var point = this.v2.clone().sub( this.v1 );
    		point.multiplyScalar( t ).add( this.v1 );
    
    		return point;
    
    	};
    
    	// Line curve is linear, so we can overwrite default getPointAt
    
    	LineCurve.prototype.getPointAt = function ( u ) {
    
    		return this.getPoint( u );
    
    	};
    
    	LineCurve.prototype.getTangent = function ( t ) {
    
    		var tangent = this.v2.clone().sub( this.v1 );
    
    		return tangent.normalize();
    
    	};
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 *
    	 **/
    
    	/**************************************************************
    	 *	Curved Path - a curve path is simply a array of connected
    	 *  curves, but retains the api of a curve
    	 **************************************************************/
    
    	function CurvePath() {
    
    		Curve.call( this );
    
    		this.curves = [];
    
    		this.autoClose = false; // Automatically closes the path
    
    	}
    
    	CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), {
    
    		constructor: CurvePath,
    
    		add: function ( curve ) {
    
    			this.curves.push( curve );
    
    		},
    
    		closePath: function () {
    
    			// Add a line curve if start and end of lines are not connected
    			var startPoint = this.curves[ 0 ].getPoint( 0 );
    			var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );
    
    			if ( ! startPoint.equals( endPoint ) ) {
    
    				this.curves.push( new LineCurve( endPoint, startPoint ) );
    
    			}
    
    		},
    
    		// To get accurate point with reference to
    		// entire path distance at time t,
    		// following has to be done:
    
    		// 1. Length of each sub path have to be known
    		// 2. Locate and identify type of curve
    		// 3. Get t for the curve
    		// 4. Return curve.getPointAt(t')
    
    		getPoint: function ( t ) {
    
    			var d = t * this.getLength();
    			var curveLengths = this.getCurveLengths();
    			var i = 0;
    
    			// To think about boundaries points.
    
    			while ( i < curveLengths.length ) {
    
    				if ( curveLengths[ i ] >= d ) {
    
    					var diff = curveLengths[ i ] - d;
    					var curve = this.curves[ i ];
    
    					var segmentLength = curve.getLength();
    					var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;
    
    					return curve.getPointAt( u );
    
    				}
    
    				i ++;
    
    			}
    
    			return null;
    
    			// loop where sum != 0, sum > d , sum+1 <d
    
    		},
    
    		// We cannot use the default THREE.Curve getPoint() with getLength() because in
    		// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
    		// getPoint() depends on getLength
    
    		getLength: function () {
    
    			var lens = this.getCurveLengths();
    			return lens[ lens.length - 1 ];
    
    		},
    
    		// cacheLengths must be recalculated.
    		updateArcLengths: function () {
    
    			this.needsUpdate = true;
    			this.cacheLengths = null;
    			this.getCurveLengths();
    
    		},
    
    		// Compute lengths and cache them
    		// We cannot overwrite getLengths() because UtoT mapping uses it.
    
    		getCurveLengths: function () {
    
    			// We use cache values if curves and cache array are same length
    
    			if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {
    
    				return this.cacheLengths;
    
    			}
    
    			// Get length of sub-curve
    			// Push sums into cached array
    
    			var lengths = [], sums = 0;
    
    			for ( var i = 0, l = this.curves.length; i < l; i ++ ) {
    
    				sums += this.curves[ i ].getLength();
    				lengths.push( sums );
    
    			}
    
    			this.cacheLengths = lengths;
    
    			return lengths;
    
    		},
    
    		getSpacedPoints: function ( divisions ) {
    
    			if ( divisions === undefined ) divisions = 40;
    
    			var points = [];
    
    			for ( var i = 0; i <= divisions; i ++ ) {
    
    				points.push( this.getPoint( i / divisions ) );
    
    			}
    
    			if ( this.autoClose ) {
    
    				points.push( points[ 0 ] );
    
    			}
    
    			return points;
    
    		},
    
    		getPoints: function ( divisions ) {
    
    			divisions = divisions || 12;
    
    			var points = [], last;
    
    			for ( var i = 0, curves = this.curves; i < curves.length; i ++ ) {
    
    				var curve = curves[ i ];
    				var resolution = (curve && curve.isEllipseCurve) ? divisions * 2
    					: (curve && curve.isLineCurve) ? 1
    					: (curve && curve.isSplineCurve) ? divisions * curve.points.length
    					: divisions;
    
    				var pts = curve.getPoints( resolution );
    
    				for ( var j = 0; j < pts.length; j++ ) {
    
    					var point = pts[ j ];
    
    					if ( last && last.equals( point ) ) continue; // ensures no consecutive points are duplicates
    
    					points.push( point );
    					last = point;
    
    				}
    
    			}
    
    			if ( this.autoClose && points.length > 1 && !points[ points.length - 1 ].equals( points[ 0 ] ) ) {
    
    				points.push( points[ 0 ] );
    
    			}
    
    			return points;
    
    		},
    
    		/**************************************************************
    		 *	Create Geometries Helpers
    		 **************************************************************/
    
    		/// Generate geometry from path points (for Line or Points objects)
    
    		createPointsGeometry: function ( divisions ) {
    
    			var pts = this.getPoints( divisions );
    			return this.createGeometry( pts );
    
    		},
    
    		// Generate geometry from equidistant sampling along the path
    
    		createSpacedPointsGeometry: function ( divisions ) {
    
    			var pts = this.getSpacedPoints( divisions );
    			return this.createGeometry( pts );
    
    		},
    
    		createGeometry: function ( points ) {
    
    			var geometry = new Geometry();
    
    			for ( var i = 0, l = points.length; i < l; i ++ ) {
    
    				var point = points[ i ];
    				geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );
    
    			}
    
    			return geometry;
    
    		}
    
    	} );
    
    	function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
    
    		Curve.call( this );
    
    		this.aX = aX;
    		this.aY = aY;
    
    		this.xRadius = xRadius;
    		this.yRadius = yRadius;
    
    		this.aStartAngle = aStartAngle;
    		this.aEndAngle = aEndAngle;
    
    		this.aClockwise = aClockwise;
    
    		this.aRotation = aRotation || 0;
    
    	}
    
    	EllipseCurve.prototype = Object.create( Curve.prototype );
    	EllipseCurve.prototype.constructor = EllipseCurve;
    
    	EllipseCurve.prototype.isEllipseCurve = true;
    
    	EllipseCurve.prototype.getPoint = function ( t ) {
    
    		var twoPi = Math.PI * 2;
    		var deltaAngle = this.aEndAngle - this.aStartAngle;
    		var samePoints = Math.abs( deltaAngle ) < Number.EPSILON;
    
    		// ensures that deltaAngle is 0 .. 2 PI
    		while ( deltaAngle < 0 ) deltaAngle += twoPi;
    		while ( deltaAngle > twoPi ) deltaAngle -= twoPi;
    
    		if ( deltaAngle < Number.EPSILON ) {
    
    			if ( samePoints ) {
    
    				deltaAngle = 0;
    
    			} else {
    
    				deltaAngle = twoPi;
    
    			}
    
    		}
    
    		if ( this.aClockwise === true && ! samePoints ) {
    
    			if ( deltaAngle === twoPi ) {
    
    				deltaAngle = - twoPi;
    
    			} else {
    
    				deltaAngle = deltaAngle - twoPi;
    
    			}
    
    		}
    
    		var angle = this.aStartAngle + t * deltaAngle;
    		var x = this.aX + this.xRadius * Math.cos( angle );
    		var y = this.aY + this.yRadius * Math.sin( angle );
    
    		if ( this.aRotation !== 0 ) {
    
    			var cos = Math.cos( this.aRotation );
    			var sin = Math.sin( this.aRotation );
    
    			var tx = x - this.aX;
    			var ty = y - this.aY;
    
    			// Rotate the point about the center of the ellipse.
    			x = tx * cos - ty * sin + this.aX;
    			y = tx * sin + ty * cos + this.aY;
    
    		}
    
    		return new Vector2( x, y );
    
    	};
    
    	function SplineCurve( points /* array of Vector2 */ ) {
    
    		Curve.call( this );
    
    		this.points = ( points === undefined ) ? [] : points;
    
    	}
    
    	SplineCurve.prototype = Object.create( Curve.prototype );
    	SplineCurve.prototype.constructor = SplineCurve;
    
    	SplineCurve.prototype.isSplineCurve = true;
    
    	SplineCurve.prototype.getPoint = function ( t ) {
    
    		var points = this.points;
    		var point = ( points.length - 1 ) * t;
    
    		var intPoint = Math.floor( point );
    		var weight = point - intPoint;
    
    		var point0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ];
    		var point1 = points[ intPoint ];
    		var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
    		var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];
    
    		return new Vector2(
    			CatmullRom( weight, point0.x, point1.x, point2.x, point3.x ),
    			CatmullRom( weight, point0.y, point1.y, point2.y, point3.y )
    		);
    
    	};
    
    	function CubicBezierCurve( v0, v1, v2, v3 ) {
    
    		Curve.call( this );
    
    		this.v0 = v0;
    		this.v1 = v1;
    		this.v2 = v2;
    		this.v3 = v3;
    
    	}
    
    	CubicBezierCurve.prototype = Object.create( Curve.prototype );
    	CubicBezierCurve.prototype.constructor = CubicBezierCurve;
    
    	CubicBezierCurve.prototype.getPoint = function ( t ) {
    
    		var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;
    
    		return new Vector2(
    			CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
    			CubicBezier( t, v0.y, v1.y, v2.y, v3.y )
    		);
    
    	};
    
    	function QuadraticBezierCurve( v0, v1, v2 ) {
    
    		Curve.call( this );
    
    		this.v0 = v0;
    		this.v1 = v1;
    		this.v2 = v2;
    
    	}
    
    	QuadraticBezierCurve.prototype = Object.create( Curve.prototype );
    	QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve;
    
    	QuadraticBezierCurve.prototype.getPoint = function ( t ) {
    
    		var v0 = this.v0, v1 = this.v1, v2 = this.v2;
    
    		return new Vector2(
    			QuadraticBezier( t, v0.x, v1.x, v2.x ),
    			QuadraticBezier( t, v0.y, v1.y, v2.y )
    		);
    
    	};
    
    	var PathPrototype = Object.assign( Object.create( CurvePath.prototype ), {
    
    		fromPoints: function ( vectors ) {
    
    			this.moveTo( vectors[ 0 ].x, vectors[ 0 ].y );
    
    			for ( var i = 1, l = vectors.length; i < l; i ++ ) {
    
    				this.lineTo( vectors[ i ].x, vectors[ i ].y );
    
    			}
    
    		},
    
    		moveTo: function ( x, y ) {
    
    			this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying?
    
    		},
    
    		lineTo: function ( x, y ) {
    
    			var curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) );
    			this.curves.push( curve );
    
    			this.currentPoint.set( x, y );
    
    		},
    
    		quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {
    
    			var curve = new QuadraticBezierCurve(
    				this.currentPoint.clone(),
    				new Vector2( aCPx, aCPy ),
    				new Vector2( aX, aY )
    			);
    
    			this.curves.push( curve );
    
    			this.currentPoint.set( aX, aY );
    
    		},
    
    		bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {
    
    			var curve = new CubicBezierCurve(
    				this.currentPoint.clone(),
    				new Vector2( aCP1x, aCP1y ),
    				new Vector2( aCP2x, aCP2y ),
    				new Vector2( aX, aY )
    			);
    
    			this.curves.push( curve );
    
    			this.currentPoint.set( aX, aY );
    
    		},
    
    		splineThru: function ( pts /*Array of Vector*/ ) {
    
    			var npts = [ this.currentPoint.clone() ].concat( pts );
    
    			var curve = new SplineCurve( npts );
    			this.curves.push( curve );
    
    			this.currentPoint.copy( pts[ pts.length - 1 ] );
    
    		},
    
    		arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
    
    			var x0 = this.currentPoint.x;
    			var y0 = this.currentPoint.y;
    
    			this.absarc( aX + x0, aY + y0, aRadius,
    				aStartAngle, aEndAngle, aClockwise );
    
    		},
    
    		absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
    
    			this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
    
    		},
    
    		ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
    
    			var x0 = this.currentPoint.x;
    			var y0 = this.currentPoint.y;
    
    			this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
    
    		},
    
    		absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
    
    			var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
    
    			if ( this.curves.length > 0 ) {
    
    				// if a previous curve is present, attempt to join
    				var firstPoint = curve.getPoint( 0 );
    
    				if ( ! firstPoint.equals( this.currentPoint ) ) {
    
    					this.lineTo( firstPoint.x, firstPoint.y );
    
    				}
    
    			}
    
    			this.curves.push( curve );
    
    			var lastPoint = curve.getPoint( 1 );
    			this.currentPoint.copy( lastPoint );
    
    		}
    
    	} );
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 * Creates free form 2d path using series of points, lines or curves.
    	 **/
    
    	function Path( points ) {
    
    		CurvePath.call( this );
    		this.currentPoint = new Vector2();
    
    		if ( points ) {
    
    			this.fromPoints( points );
    
    		}
    
    	}
    
    	Path.prototype = PathPrototype;
    	PathPrototype.constructor = Path;
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 * Defines a 2d shape plane using paths.
    	 **/
    
    	// STEP 1 Create a path.
    	// STEP 2 Turn path into shape.
    	// STEP 3 ExtrudeGeometry takes in Shape/Shapes
    	// STEP 3a - Extract points from each shape, turn to vertices
    	// STEP 3b - Triangulate each shape, add faces.
    
    	function Shape() {
    
    		Path.apply( this, arguments );
    
    		this.holes = [];
    
    	}
    
    	Shape.prototype = Object.assign( Object.create( PathPrototype ), {
    
    		constructor: Shape,
    
    		getPointsHoles: function ( divisions ) {
    
    			var holesPts = [];
    
    			for ( var i = 0, l = this.holes.length; i < l; i ++ ) {
    
    				holesPts[ i ] = this.holes[ i ].getPoints( divisions );
    
    			}
    
    			return holesPts;
    
    		},
    
    		// Get points of shape and holes (keypoints based on segments parameter)
    
    		extractAllPoints: function ( divisions ) {
    
    			return {
    
    				shape: this.getPoints( divisions ),
    				holes: this.getPointsHoles( divisions )
    
    			};
    
    		},
    
    		extractPoints: function ( divisions ) {
    
    			return this.extractAllPoints( divisions );
    
    		}
    
    	} );
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 * minimal class for proxing functions to Path. Replaces old "extractSubpaths()"
    	 **/
    
    	function ShapePath() {
    
    		this.subPaths = [];
    		this.currentPath = null;
    
    	}
    
    	Object.assign( ShapePath.prototype, {
    
    		moveTo: function ( x, y ) {
    
    			this.currentPath = new Path();
    			this.subPaths.push( this.currentPath );
    			this.currentPath.moveTo( x, y );
    
    		},
    
    		lineTo: function ( x, y ) {
    
    			this.currentPath.lineTo( x, y );
    
    		},
    
    		quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {
    
    			this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY );
    
    		},
    
    		bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {
    
    			this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY );
    
    		},
    
    		splineThru: function ( pts ) {
    
    			this.currentPath.splineThru( pts );
    
    		},
    
    		toShapes: function ( isCCW, noHoles ) {
    
    			function toShapesNoHoles( inSubpaths ) {
    
    				var shapes = [];
    
    				for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) {
    
    					var tmpPath = inSubpaths[ i ];
    
    					var tmpShape = new Shape();
    					tmpShape.curves = tmpPath.curves;
    
    					shapes.push( tmpShape );
    
    				}
    
    				return shapes;
    
    			}
    
    			function isPointInsidePolygon( inPt, inPolygon ) {
    
    				var polyLen = inPolygon.length;
    
    				// inPt on polygon contour => immediate success    or
    				// toggling of inside/outside at every single! intersection point of an edge
    				//  with the horizontal line through inPt, left of inPt
    				//  not counting lowerY endpoints of edges and whole edges on that line
    				var inside = false;
    				for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {
    
    					var edgeLowPt  = inPolygon[ p ];
    					var edgeHighPt = inPolygon[ q ];
    
    					var edgeDx = edgeHighPt.x - edgeLowPt.x;
    					var edgeDy = edgeHighPt.y - edgeLowPt.y;
    
    					if ( Math.abs( edgeDy ) > Number.EPSILON ) {
    
    						// not parallel
    						if ( edgeDy < 0 ) {
    
    							edgeLowPt  = inPolygon[ q ]; edgeDx = - edgeDx;
    							edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;
    
    						}
    						if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) 		continue;
    
    						if ( inPt.y === edgeLowPt.y ) {
    
    							if ( inPt.x === edgeLowPt.x )		return	true;		// inPt is on contour ?
    							// continue;				// no intersection or edgeLowPt => doesn't count !!!
    
    						} else {
    
    							var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y );
    							if ( perpEdge === 0 )				return	true;		// inPt is on contour ?
    							if ( perpEdge < 0 ) 				continue;
    							inside = ! inside;		// true intersection left of inPt
    
    						}
    
    					} else {
    
    						// parallel or collinear
    						if ( inPt.y !== edgeLowPt.y ) 		continue;			// parallel
    						// edge lies on the same horizontal line as inPt
    						if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) ||
    							 ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) )		return	true;	// inPt: Point on contour !
    						// continue;
    
    					}
    
    				}
    
    				return	inside;
    
    			}
    
    			var isClockWise = ShapeUtils.isClockWise;
    
    			var subPaths = this.subPaths;
    			if ( subPaths.length === 0 ) return [];
    
    			if ( noHoles === true )	return	toShapesNoHoles( subPaths );
    
    
    			var solid, tmpPath, tmpShape, shapes = [];
    
    			if ( subPaths.length === 1 ) {
    
    				tmpPath = subPaths[ 0 ];
    				tmpShape = new Shape();
    				tmpShape.curves = tmpPath.curves;
    				shapes.push( tmpShape );
    				return shapes;
    
    			}
    
    			var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() );
    			holesFirst = isCCW ? ! holesFirst : holesFirst;
    
    			// console.log("Holes first", holesFirst);
    
    			var betterShapeHoles = [];
    			var newShapes = [];
    			var newShapeHoles = [];
    			var mainIdx = 0;
    			var tmpPoints;
    
    			newShapes[ mainIdx ] = undefined;
    			newShapeHoles[ mainIdx ] = [];
    
    			for ( var i = 0, l = subPaths.length; i < l; i ++ ) {
    
    				tmpPath = subPaths[ i ];
    				tmpPoints = tmpPath.getPoints();
    				solid = isClockWise( tmpPoints );
    				solid = isCCW ? ! solid : solid;
    
    				if ( solid ) {
    
    					if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) )	mainIdx ++;
    
    					newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints };
    					newShapes[ mainIdx ].s.curves = tmpPath.curves;
    
    					if ( holesFirst )	mainIdx ++;
    					newShapeHoles[ mainIdx ] = [];
    
    					//console.log('cw', i);
    
    				} else {
    
    					newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );
    
    					//console.log('ccw', i);
    
    				}
    
    			}
    
    			// only Holes? -> probably all Shapes with wrong orientation
    			if ( ! newShapes[ 0 ] )	return	toShapesNoHoles( subPaths );
    
    
    			if ( newShapes.length > 1 ) {
    
    				var ambiguous = false;
    				var toChange = [];
    
    				for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
    
    					betterShapeHoles[ sIdx ] = [];
    
    				}
    
    				for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
    
    					var sho = newShapeHoles[ sIdx ];
    
    					for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) {
    
    						var ho = sho[ hIdx ];
    						var hole_unassigned = true;
    
    						for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {
    
    							if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {
    
    								if ( sIdx !== s2Idx )	toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } );
    								if ( hole_unassigned ) {
    
    									hole_unassigned = false;
    									betterShapeHoles[ s2Idx ].push( ho );
    
    								} else {
    
    									ambiguous = true;
    
    								}
    
    							}
    
    						}
    						if ( hole_unassigned ) {
    
    							betterShapeHoles[ sIdx ].push( ho );
    
    						}
    
    					}
    
    				}
    				// console.log("ambiguous: ", ambiguous);
    				if ( toChange.length > 0 ) {
    
    					// console.log("to change: ", toChange);
    					if ( ! ambiguous )	newShapeHoles = betterShapeHoles;
    
    				}
    
    			}
    
    			var tmpHoles;
    
    			for ( var i = 0, il = newShapes.length; i < il; i ++ ) {
    
    				tmpShape = newShapes[ i ].s;
    				shapes.push( tmpShape );
    				tmpHoles = newShapeHoles[ i ];
    
    				for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) {
    
    					tmpShape.holes.push( tmpHoles[ j ].h );
    
    				}
    
    			}
    
    			//console.log("shape", shapes);
    
    			return shapes;
    
    		}
    
    	} );
    
    	/**
    	 * @author zz85 / http://www.lab4games.net/zz85/blog
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function Font( data ) {
    
    		this.data = data;
    
    	}
    
    	Object.assign( Font.prototype, {
    
    		isFont: true,
    
    		generateShapes: function ( text, size, divisions ) {
    
    			function createPaths( text ) {
    
    				var chars = String( text ).split( '' );
    				var scale = size / data.resolution;
    				var line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale;
    
    				var offsetX = 0, offsetY = 0;
    
    				var paths = [];
    
    				for ( var i = 0; i < chars.length; i ++ ) {
    
    					var char = chars[ i ];
    
    					if ( char === '\n' ) {
    
    						offsetX = 0;
    						offsetY -= line_height;
    
    					} else {
    
    						var ret = createPath( char, scale, offsetX, offsetY );
    						offsetX += ret.offsetX;
    						paths.push( ret.path );
    
    					}
    
    				}
    
    				return paths;
    
    			}
    
    			function createPath( c, scale, offsetX, offsetY ) {
    
    				var glyph = data.glyphs[ c ] || data.glyphs[ '?' ];
    
    				if ( ! glyph ) return;
    
    				var path = new ShapePath();
    
    				var pts = [];
    				var x, y, cpx, cpy, cpx0, cpy0, cpx1, cpy1, cpx2, cpy2, laste;
    
    				if ( glyph.o ) {
    
    					var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );
    
    					for ( var i = 0, l = outline.length; i < l; ) {
    
    						var action = outline[ i ++ ];
    
    						switch ( action ) {
    
    							case 'm': // moveTo
    
    								x = outline[ i ++ ] * scale + offsetX;
    								y = outline[ i ++ ] * scale + offsetY;
    
    								path.moveTo( x, y );
    
    								break;
    
    							case 'l': // lineTo
    
    								x = outline[ i ++ ] * scale + offsetX;
    								y = outline[ i ++ ] * scale + offsetY;
    
    								path.lineTo( x, y );
    
    								break;
    
    							case 'q': // quadraticCurveTo
    
    								cpx  = outline[ i ++ ] * scale + offsetX;
    								cpy  = outline[ i ++ ] * scale + offsetY;
    								cpx1 = outline[ i ++ ] * scale + offsetX;
    								cpy1 = outline[ i ++ ] * scale + offsetY;
    
    								path.quadraticCurveTo( cpx1, cpy1, cpx, cpy );
    
    								laste = pts[ pts.length - 1 ];
    
    								if ( laste ) {
    
    									cpx0 = laste.x;
    									cpy0 = laste.y;
    
    									for ( var i2 = 1; i2 <= divisions; i2 ++ ) {
    
    										var t = i2 / divisions;
    										QuadraticBezier( t, cpx0, cpx1, cpx );
    										QuadraticBezier( t, cpy0, cpy1, cpy );
    
    									}
    
    								}
    
    								break;
    
    							case 'b': // bezierCurveTo
    
    								cpx  = outline[ i ++ ] * scale + offsetX;
    								cpy  = outline[ i ++ ] * scale + offsetY;
    								cpx1 = outline[ i ++ ] * scale + offsetX;
    								cpy1 = outline[ i ++ ] * scale + offsetY;
    								cpx2 = outline[ i ++ ] * scale + offsetX;
    								cpy2 = outline[ i ++ ] * scale + offsetY;
    
    								path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy );
    
    								laste = pts[ pts.length - 1 ];
    
    								if ( laste ) {
    
    									cpx0 = laste.x;
    									cpy0 = laste.y;
    
    									for ( var i2 = 1; i2 <= divisions; i2 ++ ) {
    
    										var t = i2 / divisions;
    										CubicBezier( t, cpx0, cpx1, cpx2, cpx );
    										CubicBezier( t, cpy0, cpy1, cpy2, cpy );
    
    									}
    
    								}
    
    								break;
    
    						}
    
    					}
    
    				}
    
    				return { offsetX: glyph.ha * scale, path: path };
    
    			}
    
    			//
    
    			if ( size === undefined ) size = 100;
    			if ( divisions === undefined ) divisions = 4;
    
    			var data = this.data;
    
    			var paths = createPaths( text );
    			var shapes = [];
    
    			for ( var p = 0, pl = paths.length; p < pl; p ++ ) {
    
    				Array.prototype.push.apply( shapes, paths[ p ].toShapes() );
    
    			}
    
    			return shapes;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function FontLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    	}
    
    	Object.assign( FontLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			var scope = this;
    
    			var loader = new FileLoader( this.manager );
    			loader.load( url, function ( text ) {
    
    				var json;
    
    				try {
    
    					json = JSON.parse( text );
    
    				} catch ( e ) {
    
    					console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' );
    					json = JSON.parse( text.substring( 65, text.length - 2 ) );
    
    				}
    
    				var font = scope.parse( json );
    
    				if ( onLoad ) onLoad( font );
    
    			}, onProgress, onError );
    
    		},
    
    		parse: function ( json ) {
    
    			return new Font( json );
    
    		}
    
    	} );
    
    	var context;
    
    	var AudioContext = {
    
    		getContext: function () {
    
    			if ( context === undefined ) {
    
    				context = new ( window.AudioContext || window.webkitAudioContext )();
    
    			}
    
    			return context;
    
    		},
    
    		setContext: function ( value ) {
    
    			context = value;
    
    		}
    
    	};
    
    	/**
    	 * @author Reece Aaron Lecrivain / http://reecenotes.com/
    	 */
    
    	function AudioLoader( manager ) {
    
    		this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
    
    	}
    
    	Object.assign( AudioLoader.prototype, {
    
    		load: function ( url, onLoad, onProgress, onError ) {
    
    			var loader = new FileLoader( this.manager );
    			loader.setResponseType( 'arraybuffer' );
    			loader.load( url, function ( buffer ) {
    
    				var context = AudioContext.getContext();
    
    				context.decodeAudioData( buffer, function ( audioBuffer ) {
    
    					onLoad( audioBuffer );
    
    				} );
    
    			}, onProgress, onError );
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function StereoCamera() {
    
    		this.type = 'StereoCamera';
    
    		this.aspect = 1;
    
    		this.eyeSep = 0.064;
    
    		this.cameraL = new PerspectiveCamera();
    		this.cameraL.layers.enable( 1 );
    		this.cameraL.matrixAutoUpdate = false;
    
    		this.cameraR = new PerspectiveCamera();
    		this.cameraR.layers.enable( 2 );
    		this.cameraR.matrixAutoUpdate = false;
    
    	}
    
    	Object.assign( StereoCamera.prototype, {
    
    		update: ( function () {
    
    			var instance, focus, fov, aspect, near, far, zoom, eyeSep;
    
    			var eyeRight = new Matrix4();
    			var eyeLeft = new Matrix4();
    
    			return function update( camera ) {
    
    				var needsUpdate = instance !== this || focus !== camera.focus || fov !== camera.fov ||
    													aspect !== camera.aspect * this.aspect || near !== camera.near ||
    													far !== camera.far || zoom !== camera.zoom || eyeSep !== this.eyeSep;
    
    				if ( needsUpdate ) {
    
    					instance = this;
    					focus = camera.focus;
    					fov = camera.fov;
    					aspect = camera.aspect * this.aspect;
    					near = camera.near;
    					far = camera.far;
    					zoom = camera.zoom;
    
    					// Off-axis stereoscopic effect based on
    					// http://paulbourke.net/stereographics/stereorender/
    
    					var projectionMatrix = camera.projectionMatrix.clone();
    					eyeSep = this.eyeSep / 2;
    					var eyeSepOnProjection = eyeSep * near / focus;
    					var ymax = ( near * Math.tan( _Math.DEG2RAD * fov * 0.5 ) ) / zoom;
    					var xmin, xmax;
    
    					// translate xOffset
    
    					eyeLeft.elements[ 12 ] = - eyeSep;
    					eyeRight.elements[ 12 ] = eyeSep;
    
    					// for left eye
    
    					xmin = - ymax * aspect + eyeSepOnProjection;
    					xmax = ymax * aspect + eyeSepOnProjection;
    
    					projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
    					projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
    
    					this.cameraL.projectionMatrix.copy( projectionMatrix );
    
    					// for right eye
    
    					xmin = - ymax * aspect - eyeSepOnProjection;
    					xmax = ymax * aspect - eyeSepOnProjection;
    
    					projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
    					projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
    
    					this.cameraR.projectionMatrix.copy( projectionMatrix );
    
    				}
    
    				this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft );
    				this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight );
    
    			};
    
    		} )()
    
    	} );
    
    	/**
    	 * Camera for rendering cube maps
    	 *	- renders scene into axis-aligned cube
    	 *
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function CubeCamera( near, far, cubeResolution ) {
    
    		Object3D.call( this );
    
    		this.type = 'CubeCamera';
    
    		var fov = 90, aspect = 1;
    
    		var cameraPX = new PerspectiveCamera( fov, aspect, near, far );
    		cameraPX.up.set( 0, - 1, 0 );
    		cameraPX.lookAt( new Vector3( 1, 0, 0 ) );
    		this.add( cameraPX );
    
    		var cameraNX = new PerspectiveCamera( fov, aspect, near, far );
    		cameraNX.up.set( 0, - 1, 0 );
    		cameraNX.lookAt( new Vector3( - 1, 0, 0 ) );
    		this.add( cameraNX );
    
    		var cameraPY = new PerspectiveCamera( fov, aspect, near, far );
    		cameraPY.up.set( 0, 0, 1 );
    		cameraPY.lookAt( new Vector3( 0, 1, 0 ) );
    		this.add( cameraPY );
    
    		var cameraNY = new PerspectiveCamera( fov, aspect, near, far );
    		cameraNY.up.set( 0, 0, - 1 );
    		cameraNY.lookAt( new Vector3( 0, - 1, 0 ) );
    		this.add( cameraNY );
    
    		var cameraPZ = new PerspectiveCamera( fov, aspect, near, far );
    		cameraPZ.up.set( 0, - 1, 0 );
    		cameraPZ.lookAt( new Vector3( 0, 0, 1 ) );
    		this.add( cameraPZ );
    
    		var cameraNZ = new PerspectiveCamera( fov, aspect, near, far );
    		cameraNZ.up.set( 0, - 1, 0 );
    		cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) );
    		this.add( cameraNZ );
    
    		var options = { format: RGBFormat, magFilter: LinearFilter, minFilter: LinearFilter };
    
    		this.renderTarget = new WebGLRenderTargetCube( cubeResolution, cubeResolution, options );
    		this.renderTarget.texture.name = "CubeCamera";
    
    		this.updateCubeMap = function ( renderer, scene ) {
    
    			if ( this.parent === null ) this.updateMatrixWorld();
    
    			var renderTarget = this.renderTarget;
    			var generateMipmaps = renderTarget.texture.generateMipmaps;
    
    			renderTarget.texture.generateMipmaps = false;
    
    			renderTarget.activeCubeFace = 0;
    			renderer.render( scene, cameraPX, renderTarget );
    
    			renderTarget.activeCubeFace = 1;
    			renderer.render( scene, cameraNX, renderTarget );
    
    			renderTarget.activeCubeFace = 2;
    			renderer.render( scene, cameraPY, renderTarget );
    
    			renderTarget.activeCubeFace = 3;
    			renderer.render( scene, cameraNY, renderTarget );
    
    			renderTarget.activeCubeFace = 4;
    			renderer.render( scene, cameraPZ, renderTarget );
    
    			renderTarget.texture.generateMipmaps = generateMipmaps;
    
    			renderTarget.activeCubeFace = 5;
    			renderer.render( scene, cameraNZ, renderTarget );
    
    			renderer.setRenderTarget( null );
    
    		};
    
    	}
    
    	CubeCamera.prototype = Object.create( Object3D.prototype );
    	CubeCamera.prototype.constructor = CubeCamera;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function ArrayCamera( array ) {
    
    		PerspectiveCamera.call( this );
    
    		this.enabled = false;
    		this.cameras = array || [];
    
    	}
    
    	ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {
    
    		constructor: ArrayCamera,
    
    		isArrayCamera: true
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function AudioListener() {
    
    		Object3D.call( this );
    
    		this.type = 'AudioListener';
    
    		this.context = AudioContext.getContext();
    
    		this.gain = this.context.createGain();
    		this.gain.connect( this.context.destination );
    
    		this.filter = null;
    
    	}
    
    	AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: AudioListener,
    
    		getInput: function () {
    
    			return this.gain;
    
    		},
    
    		removeFilter: function ( ) {
    
    			if ( this.filter !== null ) {
    
    				this.gain.disconnect( this.filter );
    				this.filter.disconnect( this.context.destination );
    				this.gain.connect( this.context.destination );
    				this.filter = null;
    
    			}
    
    		},
    
    		getFilter: function () {
    
    			return this.filter;
    
    		},
    
    		setFilter: function ( value ) {
    
    			if ( this.filter !== null ) {
    
    				this.gain.disconnect( this.filter );
    				this.filter.disconnect( this.context.destination );
    
    			} else {
    
    				this.gain.disconnect( this.context.destination );
    
    			}
    
    			this.filter = value;
    			this.gain.connect( this.filter );
    			this.filter.connect( this.context.destination );
    
    		},
    
    		getMasterVolume: function () {
    
    			return this.gain.gain.value;
    
    		},
    
    		setMasterVolume: function ( value ) {
    
    			this.gain.gain.value = value;
    
    		},
    
    		updateMatrixWorld: ( function () {
    
    			var position = new Vector3();
    			var quaternion = new Quaternion();
    			var scale = new Vector3();
    
    			var orientation = new Vector3();
    
    			return function updateMatrixWorld( force ) {
    
    				Object3D.prototype.updateMatrixWorld.call( this, force );
    
    				var listener = this.context.listener;
    				var up = this.up;
    
    				this.matrixWorld.decompose( position, quaternion, scale );
    
    				orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion );
    
    				if ( listener.positionX ) {
    
    					listener.positionX.setValueAtTime( position.x, this.context.currentTime );
    					listener.positionY.setValueAtTime( position.y, this.context.currentTime );
    					listener.positionZ.setValueAtTime( position.z, this.context.currentTime );
    					listener.forwardX.setValueAtTime( orientation.x, this.context.currentTime );
    					listener.forwardY.setValueAtTime( orientation.y, this.context.currentTime );
    					listener.forwardZ.setValueAtTime( orientation.z, this.context.currentTime );
    					listener.upX.setValueAtTime( up.x, this.context.currentTime );
    					listener.upY.setValueAtTime( up.y, this.context.currentTime );
    					listener.upZ.setValueAtTime( up.z, this.context.currentTime );
    
    				} else {
    
    					listener.setPosition( position.x, position.y, position.z );
    					listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z );
    
    				}
    
    			};
    
    		} )()
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author Reece Aaron Lecrivain / http://reecenotes.com/
    	 */
    
    	function Audio( listener ) {
    
    		Object3D.call( this );
    
    		this.type = 'Audio';
    
    		this.context = listener.context;
    
    		this.gain = this.context.createGain();
    		this.gain.connect( listener.getInput() );
    
    		this.autoplay = false;
    
    		this.buffer = null;
    		this.loop = false;
    		this.startTime = 0;
    		this.playbackRate = 1;
    		this.isPlaying = false;
    		this.hasPlaybackControl = true;
    		this.sourceType = 'empty';
    
    		this.filters = [];
    
    	}
    
    	Audio.prototype = Object.assign( Object.create( Object3D.prototype ), {
    
    		constructor: Audio,
    
    		getOutput: function () {
    
    			return this.gain;
    
    		},
    
    		setNodeSource: function ( audioNode ) {
    
    			this.hasPlaybackControl = false;
    			this.sourceType = 'audioNode';
    			this.source = audioNode;
    			this.connect();
    
    			return this;
    
    		},
    
    		setBuffer: function ( audioBuffer ) {
    
    			this.buffer = audioBuffer;
    			this.sourceType = 'buffer';
    
    			if ( this.autoplay ) this.play();
    
    			return this;
    
    		},
    
    		play: function () {
    
    			if ( this.isPlaying === true ) {
    
    				console.warn( 'THREE.Audio: Audio is already playing.' );
    				return;
    
    			}
    
    			if ( this.hasPlaybackControl === false ) {
    
    				console.warn( 'THREE.Audio: this Audio has no playback control.' );
    				return;
    
    			}
    
    			var source = this.context.createBufferSource();
    
    			source.buffer = this.buffer;
    			source.loop = this.loop;
    			source.onended = this.onEnded.bind( this );
    			source.playbackRate.setValueAtTime( this.playbackRate, this.startTime );
    			source.start( 0, this.startTime );
    
    			this.isPlaying = true;
    
    			this.source = source;
    
    			return this.connect();
    
    		},
    
    		pause: function () {
    
    			if ( this.hasPlaybackControl === false ) {
    
    				console.warn( 'THREE.Audio: this Audio has no playback control.' );
    				return;
    
    			}
    
    			this.source.stop();
    			this.startTime = this.context.currentTime;
    			this.isPlaying = false;
    
    			return this;
    
    		},
    
    		stop: function () {
    
    			if ( this.hasPlaybackControl === false ) {
    
    				console.warn( 'THREE.Audio: this Audio has no playback control.' );
    				return;
    
    			}
    
    			this.source.stop();
    			this.startTime = 0;
    			this.isPlaying = false;
    
    			return this;
    
    		},
    
    		connect: function () {
    
    			if ( this.filters.length > 0 ) {
    
    				this.source.connect( this.filters[ 0 ] );
    
    				for ( var i = 1, l = this.filters.length; i < l; i ++ ) {
    
    					this.filters[ i - 1 ].connect( this.filters[ i ] );
    
    				}
    
    				this.filters[ this.filters.length - 1 ].connect( this.getOutput() );
    
    			} else {
    
    				this.source.connect( this.getOutput() );
    
    			}
    
    			return this;
    
    		},
    
    		disconnect: function () {
    
    			if ( this.filters.length > 0 ) {
    
    				this.source.disconnect( this.filters[ 0 ] );
    
    				for ( var i = 1, l = this.filters.length; i < l; i ++ ) {
    
    					this.filters[ i - 1 ].disconnect( this.filters[ i ] );
    
    				}
    
    				this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() );
    
    			} else {
    
    				this.source.disconnect( this.getOutput() );
    
    			}
    
    			return this;
    
    		},
    
    		getFilters: function () {
    
    			return this.filters;
    
    		},
    
    		setFilters: function ( value ) {
    
    			if ( ! value ) value = [];
    
    			if ( this.isPlaying === true ) {
    
    				this.disconnect();
    				this.filters = value;
    				this.connect();
    
    			} else {
    
    				this.filters = value;
    
    			}
    
    			return this;
    
    		},
    
    		getFilter: function () {
    
    			return this.getFilters()[ 0 ];
    
    		},
    
    		setFilter: function ( filter ) {
    
    			return this.setFilters( filter ? [ filter ] : [] );
    
    		},
    
    		setPlaybackRate: function ( value ) {
    
    			if ( this.hasPlaybackControl === false ) {
    
    				console.warn( 'THREE.Audio: this Audio has no playback control.' );
    				return;
    
    			}
    
    			this.playbackRate = value;
    
    			if ( this.isPlaying === true ) {
    
    				this.source.playbackRate.setValueAtTime( this.playbackRate, this.context.currentTime );
    
    			}
    
    			return this;
    
    		},
    
    		getPlaybackRate: function () {
    
    			return this.playbackRate;
    
    		},
    
    		onEnded: function () {
    
    			this.isPlaying = false;
    
    		},
    
    		getLoop: function () {
    
    			if ( this.hasPlaybackControl === false ) {
    
    				console.warn( 'THREE.Audio: this Audio has no playback control.' );
    				return false;
    
    			}
    
    			return this.loop;
    
    		},
    
    		setLoop: function ( value ) {
    
    			if ( this.hasPlaybackControl === false ) {
    
    				console.warn( 'THREE.Audio: this Audio has no playback control.' );
    				return;
    
    			}
    
    			this.loop = value;
    
    			if ( this.isPlaying === true ) {
    
    				this.source.loop = this.loop;
    
    			}
    
    			return this;
    
    		},
    
    		getVolume: function () {
    
    			return this.gain.gain.value;
    
    		},
    		
    		setVolume: function ( value ) {
    
    			this.gain.gain.value = value;
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function PositionalAudio( listener ) {
    
    		Audio.call( this, listener );
    
    		this.panner = this.context.createPanner();
    		this.panner.connect( this.gain );
    
    	}
    
    	PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), {
    
    		constructor: PositionalAudio,
    
    		getOutput: function () {
    
    			return this.panner;
    
    		},
    
    		getRefDistance: function () {
    
    			return this.panner.refDistance;
    
    		},
    
    		setRefDistance: function ( value ) {
    
    			this.panner.refDistance = value;
    
    		},
    
    		getRolloffFactor: function () {
    
    			return this.panner.rolloffFactor;
    
    		},
    
    		setRolloffFactor: function ( value ) {
    
    			this.panner.rolloffFactor = value;
    
    		},
    
    		getDistanceModel: function () {
    
    			return this.panner.distanceModel;
    
    		},
    
    		setDistanceModel: function ( value ) {
    
    			this.panner.distanceModel = value;
    
    		},
    
    		getMaxDistance: function () {
    
    			return this.panner.maxDistance;
    
    		},
    
    		setMaxDistance: function ( value ) {
    
    			this.panner.maxDistance = value;
    
    		},
    
    		updateMatrixWorld: ( function () {
    
    			var position = new Vector3();
    
    			return function updateMatrixWorld( force ) {
    
    				Object3D.prototype.updateMatrixWorld.call( this, force );
    
    				position.setFromMatrixPosition( this.matrixWorld );
    
    				this.panner.setPosition( position.x, position.y, position.z );
    
    			};
    
    		} )()
    
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function AudioAnalyser( audio, fftSize ) {
    
    		this.analyser = audio.context.createAnalyser();
    		this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048;
    
    		this.data = new Uint8Array( this.analyser.frequencyBinCount );
    
    		audio.getOutput().connect( this.analyser );
    
    	}
    
    	Object.assign( AudioAnalyser.prototype, {
    
    		getFrequencyData: function () {
    
    			this.analyser.getByteFrequencyData( this.data );
    
    			return this.data;
    
    		},
    
    		getAverageFrequency: function () {
    
    			var value = 0, data = this.getFrequencyData();
    
    			for ( var i = 0; i < data.length; i ++ ) {
    
    				value += data[ i ];
    
    			}
    
    			return value / data.length;
    
    		}
    
    	} );
    
    	/**
    	 *
    	 * Buffered scene graph property that allows weighted accumulation.
    	 *
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function PropertyMixer( binding, typeName, valueSize ) {
    
    		this.binding = binding;
    		this.valueSize = valueSize;
    
    		var bufferType = Float64Array,
    			mixFunction;
    
    		switch ( typeName ) {
    
    			case 'quaternion':
    				mixFunction = this._slerp;
    				break;
    
    			case 'string':
    			case 'bool':
    				bufferType = Array;
    				mixFunction = this._select;
    				break;
    
    			default:
    				mixFunction = this._lerp;
    
    		}
    
    		this.buffer = new bufferType( valueSize * 4 );
    		// layout: [ incoming | accu0 | accu1 | orig ]
    		//
    		// interpolators can use .buffer as their .result
    		// the data then goes to 'incoming'
    		//
    		// 'accu0' and 'accu1' are used frame-interleaved for
    		// the cumulative result and are compared to detect
    		// changes
    		//
    		// 'orig' stores the original state of the property
    
    		this._mixBufferRegion = mixFunction;
    
    		this.cumulativeWeight = 0;
    
    		this.useCount = 0;
    		this.referenceCount = 0;
    
    	}
    
    	Object.assign( PropertyMixer.prototype, {
    
    		// accumulate data in the 'incoming' region into 'accu<i>'
    		accumulate: function ( accuIndex, weight ) {
    
    			// note: happily accumulating nothing when weight = 0, the caller knows
    			// the weight and shouldn't have made the call in the first place
    
    			var buffer = this.buffer,
    				stride = this.valueSize,
    				offset = accuIndex * stride + stride,
    
    				currentWeight = this.cumulativeWeight;
    
    			if ( currentWeight === 0 ) {
    
    				// accuN := incoming * weight
    
    				for ( var i = 0; i !== stride; ++ i ) {
    
    					buffer[ offset + i ] = buffer[ i ];
    
    				}
    
    				currentWeight = weight;
    
    			} else {
    
    				// accuN := accuN + incoming * weight
    
    				currentWeight += weight;
    				var mix = weight / currentWeight;
    				this._mixBufferRegion( buffer, offset, 0, mix, stride );
    
    			}
    
    			this.cumulativeWeight = currentWeight;
    
    		},
    
    		// apply the state of 'accu<i>' to the binding when accus differ
    		apply: function ( accuIndex ) {
    
    			var stride = this.valueSize,
    				buffer = this.buffer,
    				offset = accuIndex * stride + stride,
    
    				weight = this.cumulativeWeight,
    
    				binding = this.binding;
    
    			this.cumulativeWeight = 0;
    
    			if ( weight < 1 ) {
    
    				// accuN := accuN + original * ( 1 - cumulativeWeight )
    
    				var originalValueOffset = stride * 3;
    
    				this._mixBufferRegion(
    					buffer, offset, originalValueOffset, 1 - weight, stride );
    
    			}
    
    			for ( var i = stride, e = stride + stride; i !== e; ++ i ) {
    
    				if ( buffer[ i ] !== buffer[ i + stride ] ) {
    
    					// value has changed -> update scene graph
    
    					binding.setValue( buffer, offset );
    					break;
    
    				}
    
    			}
    
    		},
    
    		// remember the state of the bound property and copy it to both accus
    		saveOriginalState: function () {
    
    			var binding = this.binding;
    
    			var buffer = this.buffer,
    				stride = this.valueSize,
    
    				originalValueOffset = stride * 3;
    
    			binding.getValue( buffer, originalValueOffset );
    
    			// accu[0..1] := orig -- initially detect changes against the original
    			for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) {
    
    				buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];
    
    			}
    
    			this.cumulativeWeight = 0;
    
    		},
    
    		// apply the state previously taken via 'saveOriginalState' to the binding
    		restoreOriginalState: function () {
    
    			var originalValueOffset = this.valueSize * 3;
    			this.binding.setValue( this.buffer, originalValueOffset );
    
    		},
    
    
    		// mix functions
    
    		_select: function ( buffer, dstOffset, srcOffset, t, stride ) {
    
    			if ( t >= 0.5 ) {
    
    				for ( var i = 0; i !== stride; ++ i ) {
    
    					buffer[ dstOffset + i ] = buffer[ srcOffset + i ];
    
    				}
    
    			}
    
    		},
    
    		_slerp: function ( buffer, dstOffset, srcOffset, t ) {
    
    			Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t );
    
    		},
    
    		_lerp: function ( buffer, dstOffset, srcOffset, t, stride ) {
    
    			var s = 1 - t;
    
    			for ( var i = 0; i !== stride; ++ i ) {
    
    				var j = dstOffset + i;
    
    				buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;
    
    			}
    
    		}
    
    	} );
    
    	/**
    	 *
    	 * A reference to a real property in the scene graph.
    	 *
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function Composite( targetGroup, path, optionalParsedPath ) {
    
    		var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path );
    
    		this._targetGroup = targetGroup;
    		this._bindings = targetGroup.subscribe_( path, parsedPath );
    
    	}
    
    	Object.assign( Composite.prototype, {
    
    		getValue: function ( array, offset ) {
    
    			this.bind(); // bind all binding
    
    			var firstValidIndex = this._targetGroup.nCachedObjects_,
    				binding = this._bindings[ firstValidIndex ];
    
    			// and only call .getValue on the first
    			if ( binding !== undefined ) binding.getValue( array, offset );
    
    		},
    
    		setValue: function ( array, offset ) {
    
    			var bindings = this._bindings;
    
    			for ( var i = this._targetGroup.nCachedObjects_,
    					  n = bindings.length; i !== n; ++ i ) {
    
    				bindings[ i ].setValue( array, offset );
    
    			}
    
    		},
    
    		bind: function () {
    
    			var bindings = this._bindings;
    
    			for ( var i = this._targetGroup.nCachedObjects_,
    					  n = bindings.length; i !== n; ++ i ) {
    
    				bindings[ i ].bind();
    
    			}
    
    		},
    
    		unbind: function () {
    
    			var bindings = this._bindings;
    
    			for ( var i = this._targetGroup.nCachedObjects_,
    					  n = bindings.length; i !== n; ++ i ) {
    
    				bindings[ i ].unbind();
    
    			}
    
    		}
    
    	} );
    
    
    	function PropertyBinding( rootNode, path, parsedPath ) {
    
    		this.path = path;
    		this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path );
    
    		this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode;
    
    		this.rootNode = rootNode;
    
    	}
    
    	Object.assign( PropertyBinding, {
    
    		Composite: Composite,
    
    		create: function ( root, path, parsedPath ) {
    
    			if ( ! ( root && root.isAnimationObjectGroup ) ) {
    
    				return new PropertyBinding( root, path, parsedPath );
    
    			} else {
    
    				return new PropertyBinding.Composite( root, path, parsedPath );
    
    			}
    
    		},
    
    		parseTrackName: function () {
    
    			// Parent directories, delimited by '/' or ':'. Currently unused, but must
    			// be matched to parse the rest of the track name.
    			var directoryRe = /((?:[\w-]+[\/:])*)/;
    
    			// Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
    			var nodeRe = /([\w-\.]+)?/;
    
    			// Object on target node, and accessor. Name may contain only word
    			// characters. Accessor may contain any character except closing bracket.
    			var objectRe = /(?:\.([\w-]+)(?:\[(.+)\])?)?/;
    
    			// Property and accessor. May contain only word characters. Accessor may
    			// contain any non-bracket characters.
    			var propertyRe = /\.([\w-]+)(?:\[(.+)\])?/;
    
    			var trackRe = new RegExp(''
    				+ '^'
    				+ directoryRe.source
    				+ nodeRe.source
    				+ objectRe.source
    				+ propertyRe.source
    				+ '$'
    			);
    
    			var supportedObjectNames = [ 'material', 'materials', 'bones' ];
    
    			return function ( trackName ) {
    
    					var matches = trackRe.exec( trackName );
    
    					if ( ! matches ) {
    
    						throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName );
    
    					}
    
    					var results = {
    						// directoryName: matches[ 1 ], // (tschw) currently unused
    						nodeName: matches[ 2 ],
    						objectName: matches[ 3 ],
    						objectIndex: matches[ 4 ],
    						propertyName: matches[ 5 ],     // required
    						propertyIndex: matches[ 6 ]
    					};
    
    					var lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' );
    
    					if ( lastDot !== undefined && lastDot !== -1 ) {
    
    						var objectName = results.nodeName.substring( lastDot + 1 );
    
    						// Object names must be checked against a whitelist. Otherwise, there
    						// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
    						// 'bar' could be the objectName, or part of a nodeName (which can
    						// include '.' characters).
    						if ( supportedObjectNames.indexOf( objectName ) !== -1 ) {
    
    							results.nodeName = results.nodeName.substring( 0, lastDot );
    							results.objectName = objectName;
    
    						}
    
    					}
    
    					if ( results.propertyName === null || results.propertyName.length === 0 ) {
    
    						throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName );
    
    					}
    
    					return results;
    
    				};
    
    		}(),
    
    		findNode: function ( root, nodeName ) {
    
    			if ( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) {
    
    				return root;
    
    			}
    
    			// search into skeleton bones.
    			if ( root.skeleton ) {
    
    				var searchSkeleton = function ( skeleton ) {
    
    					for ( var i = 0; i < skeleton.bones.length; i ++ ) {
    
    						var bone = skeleton.bones[ i ];
    
    						if ( bone.name === nodeName ) {
    
    							return bone;
    
    						}
    
    					}
    
    					return null;
    
    				};
    
    				var bone = searchSkeleton( root.skeleton );
    
    				if ( bone ) {
    
    					return bone;
    
    				}
    
    			}
    
    			// search into node subtree.
    			if ( root.children ) {
    
    				var searchNodeSubtree = function ( children ) {
    
    					for ( var i = 0; i < children.length; i ++ ) {
    
    						var childNode = children[ i ];
    
    						if ( childNode.name === nodeName || childNode.uuid === nodeName ) {
    
    							return childNode;
    
    						}
    
    						var result = searchNodeSubtree( childNode.children );
    
    						if ( result ) return result;
    
    					}
    
    					return null;
    
    				};
    
    				var subTreeNode = searchNodeSubtree( root.children );
    
    				if ( subTreeNode ) {
    
    					return subTreeNode;
    
    				}
    
    			}
    
    			return null;
    
    		}
    
    	} );
    
    	Object.assign( PropertyBinding.prototype, { // prototype, continued
    
    		// these are used to "bind" a nonexistent property
    		_getValue_unavailable: function () {},
    		_setValue_unavailable: function () {},
    
    		BindingType: {
    			Direct: 0,
    			EntireArray: 1,
    			ArrayElement: 2,
    			HasFromToArray: 3
    		},
    
    		Versioning: {
    			None: 0,
    			NeedsUpdate: 1,
    			MatrixWorldNeedsUpdate: 2
    		},
    
    		GetterByBindingType: [
    
    			function getValue_direct( buffer, offset ) {
    
    				buffer[ offset ] = this.node[ this.propertyName ];
    
    			},
    
    			function getValue_array( buffer, offset ) {
    
    				var source = this.resolvedProperty;
    
    				for ( var i = 0, n = source.length; i !== n; ++ i ) {
    
    					buffer[ offset ++ ] = source[ i ];
    
    				}
    
    			},
    
    			function getValue_arrayElement( buffer, offset ) {
    
    				buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];
    
    			},
    
    			function getValue_toArray( buffer, offset ) {
    
    				this.resolvedProperty.toArray( buffer, offset );
    
    			}
    
    		],
    
    		SetterByBindingTypeAndVersioning: [
    
    			[
    				// Direct
    
    				function setValue_direct( buffer, offset ) {
    
    					this.node[ this.propertyName ] = buffer[ offset ];
    
    				},
    
    				function setValue_direct_setNeedsUpdate( buffer, offset ) {
    
    					this.node[ this.propertyName ] = buffer[ offset ];
    					this.targetObject.needsUpdate = true;
    
    				},
    
    				function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {
    
    					this.node[ this.propertyName ] = buffer[ offset ];
    					this.targetObject.matrixWorldNeedsUpdate = true;
    
    				}
    
    			], [
    
    				// EntireArray
    
    				function setValue_array( buffer, offset ) {
    
    					var dest = this.resolvedProperty;
    
    					for ( var i = 0, n = dest.length; i !== n; ++ i ) {
    
    						dest[ i ] = buffer[ offset ++ ];
    
    					}
    
    				},
    
    				function setValue_array_setNeedsUpdate( buffer, offset ) {
    
    					var dest = this.resolvedProperty;
    
    					for ( var i = 0, n = dest.length; i !== n; ++ i ) {
    
    						dest[ i ] = buffer[ offset ++ ];
    
    					}
    
    					this.targetObject.needsUpdate = true;
    
    				},
    
    				function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {
    
    					var dest = this.resolvedProperty;
    
    					for ( var i = 0, n = dest.length; i !== n; ++ i ) {
    
    						dest[ i ] = buffer[ offset ++ ];
    
    					}
    
    					this.targetObject.matrixWorldNeedsUpdate = true;
    
    				}
    
    			], [
    
    				// ArrayElement
    
    				function setValue_arrayElement( buffer, offset ) {
    
    					this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
    
    				},
    
    				function setValue_arrayElement_setNeedsUpdate( buffer, offset ) {
    
    					this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
    					this.targetObject.needsUpdate = true;
    
    				},
    
    				function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {
    
    					this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
    					this.targetObject.matrixWorldNeedsUpdate = true;
    
    				}
    
    			], [
    
    				// HasToFromArray
    
    				function setValue_fromArray( buffer, offset ) {
    
    					this.resolvedProperty.fromArray( buffer, offset );
    
    				},
    
    				function setValue_fromArray_setNeedsUpdate( buffer, offset ) {
    
    					this.resolvedProperty.fromArray( buffer, offset );
    					this.targetObject.needsUpdate = true;
    
    				},
    
    				function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {
    
    					this.resolvedProperty.fromArray( buffer, offset );
    					this.targetObject.matrixWorldNeedsUpdate = true;
    
    				}
    
    			]
    
    		],
    
    		getValue: function getValue_unbound( targetArray, offset ) {
    
    			this.bind();
    			this.getValue( targetArray, offset );
    
    			// Note: This class uses a State pattern on a per-method basis:
    			// 'bind' sets 'this.getValue' / 'setValue' and shadows the
    			// prototype version of these methods with one that represents
    			// the bound state. When the property is not found, the methods
    			// become no-ops.
    
    		},
    
    		setValue: function getValue_unbound( sourceArray, offset ) {
    
    			this.bind();
    			this.setValue( sourceArray, offset );
    
    		},
    
    		// create getter / setter pair for a property in the scene graph
    		bind: function () {
    
    			var targetObject = this.node,
    				parsedPath = this.parsedPath,
    
    				objectName = parsedPath.objectName,
    				propertyName = parsedPath.propertyName,
    				propertyIndex = parsedPath.propertyIndex;
    
    			if ( ! targetObject ) {
    
    				targetObject = PropertyBinding.findNode(
    						this.rootNode, parsedPath.nodeName ) || this.rootNode;
    
    				this.node = targetObject;
    
    			}
    
    			// set fail state so we can just 'return' on error
    			this.getValue = this._getValue_unavailable;
    			this.setValue = this._setValue_unavailable;
    
    			// ensure there is a value node
    			if ( ! targetObject ) {
    
    				console.error( "  trying to update node for track: " + this.path + " but it wasn't found." );
    				return;
    
    			}
    
    			if ( objectName ) {
    
    				var objectIndex = parsedPath.objectIndex;
    
    				// special cases were we need to reach deeper into the hierarchy to get the face materials....
    				switch ( objectName ) {
    
    					case 'materials':
    
    						if ( ! targetObject.material ) {
    
    							console.error( '  can not bind to material as node does not have a material', this );
    							return;
    
    						}
    
    						if ( ! targetObject.material.materials ) {
    
    							console.error( '  can not bind to material.materials as node.material does not have a materials array', this );
    							return;
    
    						}
    
    						targetObject = targetObject.material.materials;
    
    						break;
    
    					case 'bones':
    
    						if ( ! targetObject.skeleton ) {
    
    							console.error( '  can not bind to bones as node does not have a skeleton', this );
    							return;
    
    						}
    
    						// potential future optimization: skip this if propertyIndex is already an integer
    						// and convert the integer string to a true integer.
    
    						targetObject = targetObject.skeleton.bones;
    
    						// support resolving morphTarget names into indices.
    						for ( var i = 0; i < targetObject.length; i ++ ) {
    
    							if ( targetObject[ i ].name === objectIndex ) {
    
    								objectIndex = i;
    								break;
    
    							}
    
    						}
    
    						break;
    
    					default:
    
    						if ( targetObject[ objectName ] === undefined ) {
    
    							console.error( '  can not bind to objectName of node, undefined', this );
    							return;
    
    						}
    
    						targetObject = targetObject[ objectName ];
    
    				}
    
    
    				if ( objectIndex !== undefined ) {
    
    					if ( targetObject[ objectIndex ] === undefined ) {
    
    						console.error( "  trying to bind to objectIndex of objectName, but is undefined:", this, targetObject );
    						return;
    
    					}
    
    					targetObject = targetObject[ objectIndex ];
    
    				}
    
    			}
    
    			// resolve property
    			var nodeProperty = targetObject[ propertyName ];
    
    			if ( nodeProperty === undefined ) {
    
    				var nodeName = parsedPath.nodeName;
    
    				console.error( "  trying to update property for track: " + nodeName +
    					'.' + propertyName + " but it wasn't found.", targetObject );
    				return;
    
    			}
    
    			// determine versioning scheme
    			var versioning = this.Versioning.None;
    
    			if ( targetObject.needsUpdate !== undefined ) { // material
    
    				versioning = this.Versioning.NeedsUpdate;
    				this.targetObject = targetObject;
    
    			} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform
    
    				versioning = this.Versioning.MatrixWorldNeedsUpdate;
    				this.targetObject = targetObject;
    
    			}
    
    			// determine how the property gets bound
    			var bindingType = this.BindingType.Direct;
    
    			if ( propertyIndex !== undefined ) {
    
    				// access a sub element of the property array (only primitives are supported right now)
    
    				if ( propertyName === "morphTargetInfluences" ) {
    
    					// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
    
    					// support resolving morphTarget names into indices.
    					if ( ! targetObject.geometry ) {
    
    						console.error( '  can not bind to morphTargetInfluences becasuse node does not have a geometry', this );
    						return;
    
    					}
    
    					if ( ! targetObject.geometry.morphTargets ) {
    
    						console.error( '  can not bind to morphTargetInfluences becasuse node does not have a geometry.morphTargets', this );
    						return;
    
    					}
    
    					for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) {
    
    						if ( targetObject.geometry.morphTargets[ i ].name === propertyIndex ) {
    
    							propertyIndex = i;
    							break;
    
    						}
    
    					}
    
    				}
    
    				bindingType = this.BindingType.ArrayElement;
    
    				this.resolvedProperty = nodeProperty;
    				this.propertyIndex = propertyIndex;
    
    			} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {
    
    				// must use copy for Object3D.Euler/Quaternion
    
    				bindingType = this.BindingType.HasFromToArray;
    
    				this.resolvedProperty = nodeProperty;
    
    			} else if ( Array.isArray( nodeProperty ) ) {
    
    				bindingType = this.BindingType.EntireArray;
    
    				this.resolvedProperty = nodeProperty;
    
    			} else {
    
    				this.propertyName = propertyName;
    
    			}
    
    			// select getter / setter
    			this.getValue = this.GetterByBindingType[ bindingType ];
    			this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];
    
    		},
    
    		unbind: function () {
    
    			this.node = null;
    
    			// back to the prototype version of getValue / setValue
    			// note: avoiding to mutate the shape of 'this' via 'delete'
    			this.getValue = this._getValue_unbound;
    			this.setValue = this._setValue_unbound;
    
    		}
    
    	} );
    
    	//!\ DECLARE ALIAS AFTER assign prototype !
    	Object.assign( PropertyBinding.prototype, {
    
    		// initial state of these methods that calls 'bind'
    		_getValue_unbound: PropertyBinding.prototype.getValue,
    		_setValue_unbound: PropertyBinding.prototype.setValue,
    
    	} );
    
    	/**
    	 *
    	 * A group of objects that receives a shared animation state.
    	 *
    	 * Usage:
    	 *
    	 * 	-	Add objects you would otherwise pass as 'root' to the
    	 * 		constructor or the .clipAction method of AnimationMixer.
    	 *
    	 * 	-	Instead pass this object as 'root'.
    	 *
    	 * 	-	You can also add and remove objects later when the mixer
    	 * 		is running.
    	 *
    	 * Note:
    	 *
    	 *  	Objects of this class appear as one object to the mixer,
    	 *  	so cache control of the individual objects must be done
    	 *  	on the group.
    	 *
    	 * Limitation:
    	 *
    	 * 	- 	The animated properties must be compatible among the
    	 * 		all objects in the group.
    	 *
    	 *  -	A single property can either be controlled through a
    	 *  	target group or directly, but not both.
    	 *
    	 * @author tschw
    	 */
    
    	function AnimationObjectGroup( var_args ) {
    
    		this.uuid = _Math.generateUUID();
    
    		// cached objects followed by the active ones
    		this._objects = Array.prototype.slice.call( arguments );
    
    		this.nCachedObjects_ = 0;			// threshold
    		// note: read by PropertyBinding.Composite
    
    		var indices = {};
    		this._indicesByUUID = indices;		// for bookkeeping
    
    		for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
    
    			indices[ arguments[ i ].uuid ] = i;
    
    		}
    
    		this._paths = [];					// inside: string
    		this._parsedPaths = [];				// inside: { we don't care, here }
    		this._bindings = []; 				// inside: Array< PropertyBinding >
    		this._bindingsIndicesByPath = {}; 	// inside: indices in these arrays
    
    		var scope = this;
    
    		this.stats = {
    
    			objects: {
    				get total() { return scope._objects.length; },
    				get inUse() { return this.total - scope.nCachedObjects_; }
    			},
    
    			get bindingsPerObject() { return scope._bindings.length; }
    
    		};
    
    	}
    
    	Object.assign( AnimationObjectGroup.prototype, {
    
    		isAnimationObjectGroup: true,
    
    		add: function( var_args ) {
    
    			var objects = this._objects,
    				nObjects = objects.length,
    				nCachedObjects = this.nCachedObjects_,
    				indicesByUUID = this._indicesByUUID,
    				paths = this._paths,
    				parsedPaths = this._parsedPaths,
    				bindings = this._bindings,
    				nBindings = bindings.length;
    
    			for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
    
    				var object = arguments[ i ],
    					uuid = object.uuid,
    					index = indicesByUUID[ uuid ],
    					knownObject = undefined;
    
    				if ( index === undefined ) {
    
    					// unknown object -> add it to the ACTIVE region
    
    					index = nObjects ++;
    					indicesByUUID[ uuid ] = index;
    					objects.push( object );
    
    					// accounting is done, now do the same for all bindings
    
    					for ( var j = 0, m = nBindings; j !== m; ++ j ) {
    
    						bindings[ j ].push(
    								new PropertyBinding(
    									object, paths[ j ], parsedPaths[ j ] ) );
    
    					}
    
    				} else if ( index < nCachedObjects ) {
    
    					knownObject = objects[ index ];
    
    					// move existing object to the ACTIVE region
    
    					var firstActiveIndex = -- nCachedObjects,
    						lastCachedObject = objects[ firstActiveIndex ];
    
    					indicesByUUID[ lastCachedObject.uuid ] = index;
    					objects[ index ] = lastCachedObject;
    
    					indicesByUUID[ uuid ] = firstActiveIndex;
    					objects[ firstActiveIndex ] = object;
    
    					// accounting is done, now do the same for all bindings
    
    					for ( var j = 0, m = nBindings; j !== m; ++ j ) {
    
    						var bindingsForPath = bindings[ j ],
    							lastCached = bindingsForPath[ firstActiveIndex ],
    							binding = bindingsForPath[ index ];
    
    						bindingsForPath[ index ] = lastCached;
    
    						if ( binding === undefined ) {
    
    							// since we do not bother to create new bindings
    							// for objects that are cached, the binding may
    							// or may not exist
    
    							binding = new PropertyBinding(
    									object, paths[ j ], parsedPaths[ j ] );
    
    						}
    
    						bindingsForPath[ firstActiveIndex ] = binding;
    
    					}
    
    				} else if ( objects[ index ] !== knownObject ) {
    
    					console.error( "Different objects with the same UUID " +
    							"detected. Clean the caches or recreate your " +
    							"infrastructure when reloading scenes..." );
    
    				} // else the object is already where we want it to be
    
    			} // for arguments
    
    			this.nCachedObjects_ = nCachedObjects;
    
    		},
    
    		remove: function( var_args ) {
    
    			var objects = this._objects,
    				nCachedObjects = this.nCachedObjects_,
    				indicesByUUID = this._indicesByUUID,
    				bindings = this._bindings,
    				nBindings = bindings.length;
    
    			for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
    
    				var object = arguments[ i ],
    					uuid = object.uuid,
    					index = indicesByUUID[ uuid ];
    
    				if ( index !== undefined && index >= nCachedObjects ) {
    
    					// move existing object into the CACHED region
    
    					var lastCachedIndex = nCachedObjects ++,
    						firstActiveObject = objects[ lastCachedIndex ];
    
    					indicesByUUID[ firstActiveObject.uuid ] = index;
    					objects[ index ] = firstActiveObject;
    
    					indicesByUUID[ uuid ] = lastCachedIndex;
    					objects[ lastCachedIndex ] = object;
    
    					// accounting is done, now do the same for all bindings
    
    					for ( var j = 0, m = nBindings; j !== m; ++ j ) {
    
    						var bindingsForPath = bindings[ j ],
    							firstActive = bindingsForPath[ lastCachedIndex ],
    							binding = bindingsForPath[ index ];
    
    						bindingsForPath[ index ] = firstActive;
    						bindingsForPath[ lastCachedIndex ] = binding;
    
    					}
    
    				}
    
    			} // for arguments
    
    			this.nCachedObjects_ = nCachedObjects;
    
    		},
    
    		// remove & forget
    		uncache: function( var_args ) {
    
    			var objects = this._objects,
    				nObjects = objects.length,
    				nCachedObjects = this.nCachedObjects_,
    				indicesByUUID = this._indicesByUUID,
    				bindings = this._bindings,
    				nBindings = bindings.length;
    
    			for ( var i = 0, n = arguments.length; i !== n; ++ i ) {
    
    				var object = arguments[ i ],
    					uuid = object.uuid,
    					index = indicesByUUID[ uuid ];
    
    				if ( index !== undefined ) {
    
    					delete indicesByUUID[ uuid ];
    
    					if ( index < nCachedObjects ) {
    
    						// object is cached, shrink the CACHED region
    
    						var firstActiveIndex = -- nCachedObjects,
    							lastCachedObject = objects[ firstActiveIndex ],
    							lastIndex = -- nObjects,
    							lastObject = objects[ lastIndex ];
    
    						// last cached object takes this object's place
    						indicesByUUID[ lastCachedObject.uuid ] = index;
    						objects[ index ] = lastCachedObject;
    
    						// last object goes to the activated slot and pop
    						indicesByUUID[ lastObject.uuid ] = firstActiveIndex;
    						objects[ firstActiveIndex ] = lastObject;
    						objects.pop();
    
    						// accounting is done, now do the same for all bindings
    
    						for ( var j = 0, m = nBindings; j !== m; ++ j ) {
    
    							var bindingsForPath = bindings[ j ],
    								lastCached = bindingsForPath[ firstActiveIndex ],
    								last = bindingsForPath[ lastIndex ];
    
    							bindingsForPath[ index ] = lastCached;
    							bindingsForPath[ firstActiveIndex ] = last;
    							bindingsForPath.pop();
    
    						}
    
    					} else {
    
    						// object is active, just swap with the last and pop
    
    						var lastIndex = -- nObjects,
    							lastObject = objects[ lastIndex ];
    
    						indicesByUUID[ lastObject.uuid ] = index;
    						objects[ index ] = lastObject;
    						objects.pop();
    
    						// accounting is done, now do the same for all bindings
    
    						for ( var j = 0, m = nBindings; j !== m; ++ j ) {
    
    							var bindingsForPath = bindings[ j ];
    
    							bindingsForPath[ index ] = bindingsForPath[ lastIndex ];
    							bindingsForPath.pop();
    
    						}
    
    					} // cached or active
    
    				} // if object is known
    
    			} // for arguments
    
    			this.nCachedObjects_ = nCachedObjects;
    
    		},
    
    		// Internal interface used by befriended PropertyBinding.Composite:
    
    		subscribe_: function ( path, parsedPath ) {
    
    			// returns an array of bindings for the given path that is changed
    			// according to the contained objects in the group
    
    			var indicesByPath = this._bindingsIndicesByPath,
    				index = indicesByPath[ path ],
    				bindings = this._bindings;
    
    			if ( index !== undefined ) return bindings[ index ];
    
    			var paths = this._paths,
    				parsedPaths = this._parsedPaths,
    				objects = this._objects,
    				nObjects = objects.length,
    				nCachedObjects = this.nCachedObjects_,
    				bindingsForPath = new Array( nObjects );
    
    			index = bindings.length;
    
    			indicesByPath[ path ] = index;
    
    			paths.push( path );
    			parsedPaths.push( parsedPath );
    			bindings.push( bindingsForPath );
    
    			for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) {
    
    				var object = objects[ i ];
    				bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath );
    
    			}
    
    			return bindingsForPath;
    
    		},
    
    		unsubscribe_: function ( path ) {
    
    			// tells the group to forget about a property path and no longer
    			// update the array previously obtained with 'subscribe_'
    
    			var indicesByPath = this._bindingsIndicesByPath,
    				index = indicesByPath[ path ];
    
    			if ( index !== undefined ) {
    
    				var paths = this._paths,
    					parsedPaths = this._parsedPaths,
    					bindings = this._bindings,
    					lastBindingsIndex = bindings.length - 1,
    					lastBindings = bindings[ lastBindingsIndex ],
    					lastBindingsPath = path[ lastBindingsIndex ];
    
    				indicesByPath[ lastBindingsPath ] = index;
    
    				bindings[ index ] = lastBindings;
    				bindings.pop();
    
    				parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ];
    				parsedPaths.pop();
    
    				paths[ index ] = paths[ lastBindingsIndex ];
    				paths.pop();
    
    			}
    
    		}
    
    	} );
    
    	/**
    	 *
    	 * Action provided by AnimationMixer for scheduling clip playback on specific
    	 * objects.
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 *
    	 */
    
    	function AnimationAction( mixer, clip, localRoot ) {
    
    		this._mixer = mixer;
    		this._clip = clip;
    		this._localRoot = localRoot || null;
    
    		var tracks = clip.tracks,
    			nTracks = tracks.length,
    			interpolants = new Array( nTracks );
    
    		var interpolantSettings = {
    				endingStart: 	ZeroCurvatureEnding,
    				endingEnd:		ZeroCurvatureEnding
    		};
    
    		for ( var i = 0; i !== nTracks; ++ i ) {
    
    			var interpolant = tracks[ i ].createInterpolant( null );
    			interpolants[ i ] = interpolant;
    			interpolant.settings = interpolantSettings;
    
    		}
    
    		this._interpolantSettings = interpolantSettings;
    
    		this._interpolants = interpolants;	// bound by the mixer
    
    		// inside: PropertyMixer (managed by the mixer)
    		this._propertyBindings = new Array( nTracks );
    
    		this._cacheIndex = null;			// for the memory manager
    		this._byClipCacheIndex = null;		// for the memory manager
    
    		this._timeScaleInterpolant = null;
    		this._weightInterpolant = null;
    
    		this.loop = LoopRepeat;
    		this._loopCount = -1;
    
    		// global mixer time when the action is to be started
    		// it's set back to 'null' upon start of the action
    		this._startTime = null;
    
    		// scaled local time of the action
    		// gets clamped or wrapped to 0..clip.duration according to loop
    		this.time = 0;
    
    		this.timeScale = 1;
    		this._effectiveTimeScale = 1;
    
    		this.weight = 1;
    		this._effectiveWeight = 1;
    
    		this.repetitions = Infinity; 		// no. of repetitions when looping
    
    		this.paused = false;				// true -> zero effective time scale
    		this.enabled = true;				// false -> zero effective weight
    
    		this.clampWhenFinished 	= false;	// keep feeding the last frame?
    
    		this.zeroSlopeAtStart 	= true;		// for smooth interpolation w/o separate
    		this.zeroSlopeAtEnd		= true;		// clips for start, loop and end
    
    	}
    
    	Object.assign( AnimationAction.prototype, {
    
    		// State & Scheduling
    
    		play: function() {
    
    			this._mixer._activateAction( this );
    
    			return this;
    
    		},
    
    		stop: function() {
    
    			this._mixer._deactivateAction( this );
    
    			return this.reset();
    
    		},
    
    		reset: function() {
    
    			this.paused = false;
    			this.enabled = true;
    
    			this.time = 0;			// restart clip
    			this._loopCount = -1;	// forget previous loops
    			this._startTime = null;	// forget scheduling
    
    			return this.stopFading().stopWarping();
    
    		},
    
    		isRunning: function() {
    
    			return this.enabled && ! this.paused && this.timeScale !== 0 &&
    					this._startTime === null && this._mixer._isActiveAction( this );
    
    		},
    
    		// return true when play has been called
    		isScheduled: function() {
    
    			return this._mixer._isActiveAction( this );
    
    		},
    
    		startAt: function( time ) {
    
    			this._startTime = time;
    
    			return this;
    
    		},
    
    		setLoop: function( mode, repetitions ) {
    
    			this.loop = mode;
    			this.repetitions = repetitions;
    
    			return this;
    
    		},
    
    		// Weight
    
    		// set the weight stopping any scheduled fading
    		// although .enabled = false yields an effective weight of zero, this
    		// method does *not* change .enabled, because it would be confusing
    		setEffectiveWeight: function( weight ) {
    
    			this.weight = weight;
    
    			// note: same logic as when updated at runtime
    			this._effectiveWeight = this.enabled ? weight : 0;
    
    			return this.stopFading();
    
    		},
    
    		// return the weight considering fading and .enabled
    		getEffectiveWeight: function() {
    
    			return this._effectiveWeight;
    
    		},
    
    		fadeIn: function( duration ) {
    
    			return this._scheduleFading( duration, 0, 1 );
    
    		},
    
    		fadeOut: function( duration ) {
    
    			return this._scheduleFading( duration, 1, 0 );
    
    		},
    
    		crossFadeFrom: function( fadeOutAction, duration, warp ) {
    
    			fadeOutAction.fadeOut( duration );
    			this.fadeIn( duration );
    
    			if( warp ) {
    
    				var fadeInDuration = this._clip.duration,
    					fadeOutDuration = fadeOutAction._clip.duration,
    
    					startEndRatio = fadeOutDuration / fadeInDuration,
    					endStartRatio = fadeInDuration / fadeOutDuration;
    
    				fadeOutAction.warp( 1.0, startEndRatio, duration );
    				this.warp( endStartRatio, 1.0, duration );
    
    			}
    
    			return this;
    
    		},
    
    		crossFadeTo: function( fadeInAction, duration, warp ) {
    
    			return fadeInAction.crossFadeFrom( this, duration, warp );
    
    		},
    
    		stopFading: function() {
    
    			var weightInterpolant = this._weightInterpolant;
    
    			if ( weightInterpolant !== null ) {
    
    				this._weightInterpolant = null;
    				this._mixer._takeBackControlInterpolant( weightInterpolant );
    
    			}
    
    			return this;
    
    		},
    
    		// Time Scale Control
    
    		// set the time scale stopping any scheduled warping
    		// although .paused = true yields an effective time scale of zero, this
    		// method does *not* change .paused, because it would be confusing
    		setEffectiveTimeScale: function( timeScale ) {
    
    			this.timeScale = timeScale;
    			this._effectiveTimeScale = this.paused ? 0 :timeScale;
    
    			return this.stopWarping();
    
    		},
    
    		// return the time scale considering warping and .paused
    		getEffectiveTimeScale: function() {
    
    			return this._effectiveTimeScale;
    
    		},
    
    		setDuration: function( duration ) {
    
    			this.timeScale = this._clip.duration / duration;
    
    			return this.stopWarping();
    
    		},
    
    		syncWith: function( action ) {
    
    			this.time = action.time;
    			this.timeScale = action.timeScale;
    
    			return this.stopWarping();
    
    		},
    
    		halt: function( duration ) {
    
    			return this.warp( this._effectiveTimeScale, 0, duration );
    
    		},
    
    		warp: function( startTimeScale, endTimeScale, duration ) {
    
    			var mixer = this._mixer, now = mixer.time,
    				interpolant = this._timeScaleInterpolant,
    
    				timeScale = this.timeScale;
    
    			if ( interpolant === null ) {
    
    				interpolant = mixer._lendControlInterpolant();
    				this._timeScaleInterpolant = interpolant;
    
    			}
    
    			var times = interpolant.parameterPositions,
    				values = interpolant.sampleValues;
    
    			times[ 0 ] = now;
    			times[ 1 ] = now + duration;
    
    			values[ 0 ] = startTimeScale / timeScale;
    			values[ 1 ] = endTimeScale / timeScale;
    
    			return this;
    
    		},
    
    		stopWarping: function() {
    
    			var timeScaleInterpolant = this._timeScaleInterpolant;
    
    			if ( timeScaleInterpolant !== null ) {
    
    				this._timeScaleInterpolant = null;
    				this._mixer._takeBackControlInterpolant( timeScaleInterpolant );
    
    			}
    
    			return this;
    
    		},
    
    		// Object Accessors
    
    		getMixer: function() {
    
    			return this._mixer;
    
    		},
    
    		getClip: function() {
    
    			return this._clip;
    
    		},
    
    		getRoot: function() {
    
    			return this._localRoot || this._mixer._root;
    
    		},
    
    		// Interna
    
    		_update: function( time, deltaTime, timeDirection, accuIndex ) {
    
    			// called by the mixer
    
    			if ( ! this.enabled ) {
    
    				// call ._updateWeight() to update ._effectiveWeight
    
    				this._updateWeight( time );
    				return;
    
    			}
    
    			var startTime = this._startTime;
    
    			if ( startTime !== null ) {
    
    				// check for scheduled start of action
    
    				var timeRunning = ( time - startTime ) * timeDirection;
    				if ( timeRunning < 0 || timeDirection === 0 ) {
    
    					return; // yet to come / don't decide when delta = 0
    
    				}
    
    				// start
    
    				this._startTime = null; // unschedule
    				deltaTime = timeDirection * timeRunning;
    
    			}
    
    			// apply time scale and advance time
    
    			deltaTime *= this._updateTimeScale( time );
    			var clipTime = this._updateTime( deltaTime );
    
    			// note: _updateTime may disable the action resulting in
    			// an effective weight of 0
    
    			var weight = this._updateWeight( time );
    
    			if ( weight > 0 ) {
    
    				var interpolants = this._interpolants;
    				var propertyMixers = this._propertyBindings;
    
    				for ( var j = 0, m = interpolants.length; j !== m; ++ j ) {
    
    					interpolants[ j ].evaluate( clipTime );
    					propertyMixers[ j ].accumulate( accuIndex, weight );
    
    				}
    
    			}
    
    		},
    
    		_updateWeight: function( time ) {
    
    			var weight = 0;
    
    			if ( this.enabled ) {
    
    				weight = this.weight;
    				var interpolant = this._weightInterpolant;
    
    				if ( interpolant !== null ) {
    
    					var interpolantValue = interpolant.evaluate( time )[ 0 ];
    
    					weight *= interpolantValue;
    
    					if ( time > interpolant.parameterPositions[ 1 ] ) {
    
    						this.stopFading();
    
    						if ( interpolantValue === 0 ) {
    
    							// faded out, disable
    							this.enabled = false;
    
    						}
    
    					}
    
    				}
    
    			}
    
    			this._effectiveWeight = weight;
    			return weight;
    
    		},
    
    		_updateTimeScale: function( time ) {
    
    			var timeScale = 0;
    
    			if ( ! this.paused ) {
    
    				timeScale = this.timeScale;
    
    				var interpolant = this._timeScaleInterpolant;
    
    				if ( interpolant !== null ) {
    
    					var interpolantValue = interpolant.evaluate( time )[ 0 ];
    
    					timeScale *= interpolantValue;
    
    					if ( time > interpolant.parameterPositions[ 1 ] ) {
    
    						this.stopWarping();
    
    						if ( timeScale === 0 ) {
    
    							// motion has halted, pause
    							this.paused = true;
    
    						} else {
    
    							// warp done - apply final time scale
    							this.timeScale = timeScale;
    
    						}
    
    					}
    
    				}
    
    			}
    
    			this._effectiveTimeScale = timeScale;
    			return timeScale;
    
    		},
    
    		_updateTime: function( deltaTime ) {
    
    			var time = this.time + deltaTime;
    
    			if ( deltaTime === 0 ) return time;
    
    			var duration = this._clip.duration,
    
    				loop = this.loop,
    				loopCount = this._loopCount;
    
    			if ( loop === LoopOnce ) {
    
    				if ( loopCount === -1 ) {
    					// just started
    
    					this._loopCount = 0;
    					this._setEndings( true, true, false );
    
    				}
    
    				handle_stop: {
    
    					if ( time >= duration ) {
    
    						time = duration;
    
    					} else if ( time < 0 ) {
    
    						time = 0;
    
    					} else break handle_stop;
    
    					if ( this.clampWhenFinished ) this.paused = true;
    					else this.enabled = false;
    
    					this._mixer.dispatchEvent( {
    						type: 'finished', action: this,
    						direction: deltaTime < 0 ? -1 : 1
    					} );
    
    				}
    
    			} else { // repetitive Repeat or PingPong
    
    				var pingPong = ( loop === LoopPingPong );
    
    				if ( loopCount === -1 ) {
    					// just started
    
    					if ( deltaTime >= 0 ) {
    
    						loopCount = 0;
    
    						this._setEndings(
    								true, this.repetitions === 0, pingPong );
    
    					} else {
    
    						// when looping in reverse direction, the initial
    						// transition through zero counts as a repetition,
    						// so leave loopCount at -1
    
    						this._setEndings(
    								this.repetitions === 0, true, pingPong );
    
    					}
    
    				}
    
    				if ( time >= duration || time < 0 ) {
    					// wrap around
    
    					var loopDelta = Math.floor( time / duration ); // signed
    					time -= duration * loopDelta;
    
    					loopCount += Math.abs( loopDelta );
    
    					var pending = this.repetitions - loopCount;
    
    					if ( pending < 0 ) {
    						// have to stop (switch state, clamp time, fire event)
    
    						if ( this.clampWhenFinished ) this.paused = true;
    						else this.enabled = false;
    
    						time = deltaTime > 0 ? duration : 0;
    
    						this._mixer.dispatchEvent( {
    							type: 'finished', action: this,
    							direction: deltaTime > 0 ? 1 : -1
    						} );
    
    					} else {
    						// keep running
    
    						if ( pending === 0 ) {
    							// entering the last round
    
    							var atStart = deltaTime < 0;
    							this._setEndings( atStart, ! atStart, pingPong );
    
    						} else {
    
    							this._setEndings( false, false, pingPong );
    
    						}
    
    						this._loopCount = loopCount;
    
    						this._mixer.dispatchEvent( {
    							type: 'loop', action: this, loopDelta: loopDelta
    						} );
    
    					}
    
    				}
    
    				if ( pingPong && ( loopCount & 1 ) === 1 ) {
    					// invert time for the "pong round"
    
    					this.time = time;
    					return duration - time;
    
    				}
    
    			}
    
    			this.time = time;
    			return time;
    
    		},
    
    		_setEndings: function( atStart, atEnd, pingPong ) {
    
    			var settings = this._interpolantSettings;
    
    			if ( pingPong ) {
    
    				settings.endingStart 	= ZeroSlopeEnding;
    				settings.endingEnd		= ZeroSlopeEnding;
    
    			} else {
    
    				// assuming for LoopOnce atStart == atEnd == true
    
    				if ( atStart ) {
    
    					settings.endingStart = this.zeroSlopeAtStart ?
    							ZeroSlopeEnding : ZeroCurvatureEnding;
    
    				} else {
    
    					settings.endingStart = WrapAroundEnding;
    
    				}
    
    				if ( atEnd ) {
    
    					settings.endingEnd = this.zeroSlopeAtEnd ?
    							ZeroSlopeEnding : ZeroCurvatureEnding;
    
    				} else {
    
    					settings.endingEnd 	 = WrapAroundEnding;
    
    				}
    
    			}
    
    		},
    
    		_scheduleFading: function( duration, weightNow, weightThen ) {
    
    			var mixer = this._mixer, now = mixer.time,
    				interpolant = this._weightInterpolant;
    
    			if ( interpolant === null ) {
    
    				interpolant = mixer._lendControlInterpolant();
    				this._weightInterpolant = interpolant;
    
    			}
    
    			var times = interpolant.parameterPositions,
    				values = interpolant.sampleValues;
    
    			times[ 0 ] = now; 				values[ 0 ] = weightNow;
    			times[ 1 ] = now + duration;	values[ 1 ] = weightThen;
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 *
    	 * Player for AnimationClips.
    	 *
    	 *
    	 * @author Ben Houston / http://clara.io/
    	 * @author David Sarno / http://lighthaus.us/
    	 * @author tschw
    	 */
    
    	function AnimationMixer( root ) {
    
    		this._root = root;
    		this._initMemoryManager();
    		this._accuIndex = 0;
    
    		this.time = 0;
    
    		this.timeScale = 1.0;
    
    	}
    
    	Object.assign( AnimationMixer.prototype, EventDispatcher.prototype, {
    
    		_bindAction: function ( action, prototypeAction ) {
    
    			var root = action._localRoot || this._root,
    				tracks = action._clip.tracks,
    				nTracks = tracks.length,
    				bindings = action._propertyBindings,
    				interpolants = action._interpolants,
    				rootUuid = root.uuid,
    				bindingsByRoot = this._bindingsByRootAndName,
    				bindingsByName = bindingsByRoot[ rootUuid ];
    
    			if ( bindingsByName === undefined ) {
    
    				bindingsByName = {};
    				bindingsByRoot[ rootUuid ] = bindingsByName;
    
    			}
    
    			for ( var i = 0; i !== nTracks; ++ i ) {
    
    				var track = tracks[ i ],
    					trackName = track.name,
    					binding = bindingsByName[ trackName ];
    
    				if ( binding !== undefined ) {
    
    					bindings[ i ] = binding;
    
    				} else {
    
    					binding = bindings[ i ];
    
    					if ( binding !== undefined ) {
    
    						// existing binding, make sure the cache knows
    
    						if ( binding._cacheIndex === null ) {
    
    							++ binding.referenceCount;
    							this._addInactiveBinding( binding, rootUuid, trackName );
    
    						}
    
    						continue;
    
    					}
    
    					var path = prototypeAction && prototypeAction.
    							_propertyBindings[ i ].binding.parsedPath;
    
    					binding = new PropertyMixer(
    						PropertyBinding.create( root, trackName, path ),
    						track.ValueTypeName, track.getValueSize() );
    
    					++ binding.referenceCount;
    					this._addInactiveBinding( binding, rootUuid, trackName );
    
    					bindings[ i ] = binding;
    
    				}
    
    				interpolants[ i ].resultBuffer = binding.buffer;
    
    			}
    
    		},
    
    		_activateAction: function ( action ) {
    
    			if ( ! this._isActiveAction( action ) ) {
    
    				if ( action._cacheIndex === null ) {
    
    					// this action has been forgotten by the cache, but the user
    					// appears to be still using it -> rebind
    
    					var rootUuid = ( action._localRoot || this._root ).uuid,
    						clipUuid = action._clip.uuid,
    						actionsForClip = this._actionsByClip[ clipUuid ];
    
    					this._bindAction( action,
    						actionsForClip && actionsForClip.knownActions[ 0 ] );
    
    					this._addInactiveAction( action, clipUuid, rootUuid );
    
    				}
    
    				var bindings = action._propertyBindings;
    
    				// increment reference counts / sort out state
    				for ( var i = 0, n = bindings.length; i !== n; ++ i ) {
    
    					var binding = bindings[ i ];
    
    					if ( binding.useCount ++ === 0 ) {
    
    						this._lendBinding( binding );
    						binding.saveOriginalState();
    
    					}
    
    				}
    
    				this._lendAction( action );
    
    			}
    
    		},
    
    		_deactivateAction: function ( action ) {
    
    			if ( this._isActiveAction( action ) ) {
    
    				var bindings = action._propertyBindings;
    
    				// decrement reference counts / sort out state
    				for ( var i = 0, n = bindings.length; i !== n; ++ i ) {
    
    					var binding = bindings[ i ];
    
    					if ( -- binding.useCount === 0 ) {
    
    						binding.restoreOriginalState();
    						this._takeBackBinding( binding );
    
    					}
    
    				}
    
    				this._takeBackAction( action );
    
    			}
    
    		},
    
    		// Memory manager
    
    		_initMemoryManager: function () {
    
    			this._actions = []; // 'nActiveActions' followed by inactive ones
    			this._nActiveActions = 0;
    
    			this._actionsByClip = {};
    			// inside:
    			// {
    			// 		knownActions: Array< AnimationAction >	- used as prototypes
    			// 		actionByRoot: AnimationAction			- lookup
    			// }
    
    
    			this._bindings = []; // 'nActiveBindings' followed by inactive ones
    			this._nActiveBindings = 0;
    
    			this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
    
    
    			this._controlInterpolants = []; // same game as above
    			this._nActiveControlInterpolants = 0;
    
    			var scope = this;
    
    			this.stats = {
    
    				actions: {
    					get total() { return scope._actions.length; },
    					get inUse() { return scope._nActiveActions; }
    				},
    				bindings: {
    					get total() { return scope._bindings.length; },
    					get inUse() { return scope._nActiveBindings; }
    				},
    				controlInterpolants: {
    					get total() { return scope._controlInterpolants.length; },
    					get inUse() { return scope._nActiveControlInterpolants; }
    				}
    
    			};
    
    		},
    
    		// Memory management for AnimationAction objects
    
    		_isActiveAction: function ( action ) {
    
    			var index = action._cacheIndex;
    			return index !== null && index < this._nActiveActions;
    
    		},
    
    		_addInactiveAction: function ( action, clipUuid, rootUuid ) {
    
    			var actions = this._actions,
    				actionsByClip = this._actionsByClip,
    				actionsForClip = actionsByClip[ clipUuid ];
    
    			if ( actionsForClip === undefined ) {
    
    				actionsForClip = {
    
    					knownActions: [ action ],
    					actionByRoot: {}
    
    				};
    
    				action._byClipCacheIndex = 0;
    
    				actionsByClip[ clipUuid ] = actionsForClip;
    
    			} else {
    
    				var knownActions = actionsForClip.knownActions;
    
    				action._byClipCacheIndex = knownActions.length;
    				knownActions.push( action );
    
    			}
    
    			action._cacheIndex = actions.length;
    			actions.push( action );
    
    			actionsForClip.actionByRoot[ rootUuid ] = action;
    
    		},
    
    		_removeInactiveAction: function ( action ) {
    
    			var actions = this._actions,
    				lastInactiveAction = actions[ actions.length - 1 ],
    				cacheIndex = action._cacheIndex;
    
    			lastInactiveAction._cacheIndex = cacheIndex;
    			actions[ cacheIndex ] = lastInactiveAction;
    			actions.pop();
    
    			action._cacheIndex = null;
    
    
    			var clipUuid = action._clip.uuid,
    				actionsByClip = this._actionsByClip,
    				actionsForClip = actionsByClip[ clipUuid ],
    				knownActionsForClip = actionsForClip.knownActions,
    
    				lastKnownAction =
    					knownActionsForClip[ knownActionsForClip.length - 1 ],
    
    				byClipCacheIndex = action._byClipCacheIndex;
    
    			lastKnownAction._byClipCacheIndex = byClipCacheIndex;
    			knownActionsForClip[ byClipCacheIndex ] = lastKnownAction;
    			knownActionsForClip.pop();
    
    			action._byClipCacheIndex = null;
    
    
    			var actionByRoot = actionsForClip.actionByRoot,
    				rootUuid = ( action._localRoot || this._root ).uuid;
    
    			delete actionByRoot[ rootUuid ];
    
    			if ( knownActionsForClip.length === 0 ) {
    
    				delete actionsByClip[ clipUuid ];
    
    			}
    
    			this._removeInactiveBindingsForAction( action );
    
    		},
    
    		_removeInactiveBindingsForAction: function ( action ) {
    
    			var bindings = action._propertyBindings;
    			for ( var i = 0, n = bindings.length; i !== n; ++ i ) {
    
    				var binding = bindings[ i ];
    
    				if ( -- binding.referenceCount === 0 ) {
    
    					this._removeInactiveBinding( binding );
    
    				}
    
    			}
    
    		},
    
    		_lendAction: function ( action ) {
    
    			// [ active actions |  inactive actions  ]
    			// [  active actions >| inactive actions ]
    			//                 s        a
    			//                  <-swap->
    			//                 a        s
    
    			var actions = this._actions,
    				prevIndex = action._cacheIndex,
    
    				lastActiveIndex = this._nActiveActions ++,
    
    				firstInactiveAction = actions[ lastActiveIndex ];
    
    			action._cacheIndex = lastActiveIndex;
    			actions[ lastActiveIndex ] = action;
    
    			firstInactiveAction._cacheIndex = prevIndex;
    			actions[ prevIndex ] = firstInactiveAction;
    
    		},
    
    		_takeBackAction: function ( action ) {
    
    			// [  active actions  | inactive actions ]
    			// [ active actions |< inactive actions  ]
    			//        a        s
    			//         <-swap->
    			//        s        a
    
    			var actions = this._actions,
    				prevIndex = action._cacheIndex,
    
    				firstInactiveIndex = -- this._nActiveActions,
    
    				lastActiveAction = actions[ firstInactiveIndex ];
    
    			action._cacheIndex = firstInactiveIndex;
    			actions[ firstInactiveIndex ] = action;
    
    			lastActiveAction._cacheIndex = prevIndex;
    			actions[ prevIndex ] = lastActiveAction;
    
    		},
    
    		// Memory management for PropertyMixer objects
    
    		_addInactiveBinding: function ( binding, rootUuid, trackName ) {
    
    			var bindingsByRoot = this._bindingsByRootAndName,
    				bindingByName = bindingsByRoot[ rootUuid ],
    
    				bindings = this._bindings;
    
    			if ( bindingByName === undefined ) {
    
    				bindingByName = {};
    				bindingsByRoot[ rootUuid ] = bindingByName;
    
    			}
    
    			bindingByName[ trackName ] = binding;
    
    			binding._cacheIndex = bindings.length;
    			bindings.push( binding );
    
    		},
    
    		_removeInactiveBinding: function ( binding ) {
    
    			var bindings = this._bindings,
    				propBinding = binding.binding,
    				rootUuid = propBinding.rootNode.uuid,
    				trackName = propBinding.path,
    				bindingsByRoot = this._bindingsByRootAndName,
    				bindingByName = bindingsByRoot[ rootUuid ],
    
    				lastInactiveBinding = bindings[ bindings.length - 1 ],
    				cacheIndex = binding._cacheIndex;
    
    			lastInactiveBinding._cacheIndex = cacheIndex;
    			bindings[ cacheIndex ] = lastInactiveBinding;
    			bindings.pop();
    
    			delete bindingByName[ trackName ];
    
    			remove_empty_map: {
    
    				for ( var _ in bindingByName ) break remove_empty_map;
    
    				delete bindingsByRoot[ rootUuid ];
    
    			}
    
    		},
    
    		_lendBinding: function ( binding ) {
    
    			var bindings = this._bindings,
    				prevIndex = binding._cacheIndex,
    
    				lastActiveIndex = this._nActiveBindings ++,
    
    				firstInactiveBinding = bindings[ lastActiveIndex ];
    
    			binding._cacheIndex = lastActiveIndex;
    			bindings[ lastActiveIndex ] = binding;
    
    			firstInactiveBinding._cacheIndex = prevIndex;
    			bindings[ prevIndex ] = firstInactiveBinding;
    
    		},
    
    		_takeBackBinding: function ( binding ) {
    
    			var bindings = this._bindings,
    				prevIndex = binding._cacheIndex,
    
    				firstInactiveIndex = -- this._nActiveBindings,
    
    				lastActiveBinding = bindings[ firstInactiveIndex ];
    
    			binding._cacheIndex = firstInactiveIndex;
    			bindings[ firstInactiveIndex ] = binding;
    
    			lastActiveBinding._cacheIndex = prevIndex;
    			bindings[ prevIndex ] = lastActiveBinding;
    
    		},
    
    
    		// Memory management of Interpolants for weight and time scale
    
    		_lendControlInterpolant: function () {
    
    			var interpolants = this._controlInterpolants,
    				lastActiveIndex = this._nActiveControlInterpolants ++,
    				interpolant = interpolants[ lastActiveIndex ];
    
    			if ( interpolant === undefined ) {
    
    				interpolant = new LinearInterpolant(
    					new Float32Array( 2 ), new Float32Array( 2 ),
    					1, this._controlInterpolantsResultBuffer );
    
    				interpolant.__cacheIndex = lastActiveIndex;
    				interpolants[ lastActiveIndex ] = interpolant;
    
    			}
    
    			return interpolant;
    
    		},
    
    		_takeBackControlInterpolant: function ( interpolant ) {
    
    			var interpolants = this._controlInterpolants,
    				prevIndex = interpolant.__cacheIndex,
    
    				firstInactiveIndex = -- this._nActiveControlInterpolants,
    
    				lastActiveInterpolant = interpolants[ firstInactiveIndex ];
    
    			interpolant.__cacheIndex = firstInactiveIndex;
    			interpolants[ firstInactiveIndex ] = interpolant;
    
    			lastActiveInterpolant.__cacheIndex = prevIndex;
    			interpolants[ prevIndex ] = lastActiveInterpolant;
    
    		},
    
    		_controlInterpolantsResultBuffer: new Float32Array( 1 ),
    
    		// return an action for a clip optionally using a custom root target
    		// object (this method allocates a lot of dynamic memory in case a
    		// previously unknown clip/root combination is specified)
    		clipAction: function ( clip, optionalRoot ) {
    
    			var root = optionalRoot || this._root,
    				rootUuid = root.uuid,
    
    				clipObject = typeof clip === 'string' ?
    					AnimationClip.findByName( root, clip ) : clip,
    
    				clipUuid = clipObject !== null ? clipObject.uuid : clip,
    
    				actionsForClip = this._actionsByClip[ clipUuid ],
    				prototypeAction = null;
    
    			if ( actionsForClip !== undefined ) {
    
    				var existingAction =
    						actionsForClip.actionByRoot[ rootUuid ];
    
    				if ( existingAction !== undefined ) {
    
    					return existingAction;
    
    				}
    
    				// we know the clip, so we don't have to parse all
    				// the bindings again but can just copy
    				prototypeAction = actionsForClip.knownActions[ 0 ];
    
    				// also, take the clip from the prototype action
    				if ( clipObject === null )
    					clipObject = prototypeAction._clip;
    
    			}
    
    			// clip must be known when specified via string
    			if ( clipObject === null ) return null;
    
    			// allocate all resources required to run it
    			var newAction = new AnimationAction( this, clipObject, optionalRoot );
    
    			this._bindAction( newAction, prototypeAction );
    
    			// and make the action known to the memory manager
    			this._addInactiveAction( newAction, clipUuid, rootUuid );
    
    			return newAction;
    
    		},
    
    		// get an existing action
    		existingAction: function ( clip, optionalRoot ) {
    
    			var root = optionalRoot || this._root,
    				rootUuid = root.uuid,
    
    				clipObject = typeof clip === 'string' ?
    					AnimationClip.findByName( root, clip ) : clip,
    
    				clipUuid = clipObject ? clipObject.uuid : clip,
    
    				actionsForClip = this._actionsByClip[ clipUuid ];
    
    			if ( actionsForClip !== undefined ) {
    
    				return actionsForClip.actionByRoot[ rootUuid ] || null;
    
    			}
    
    			return null;
    
    		},
    
    		// deactivates all previously scheduled actions
    		stopAllAction: function () {
    
    			var actions = this._actions,
    				nActions = this._nActiveActions,
    				bindings = this._bindings,
    				nBindings = this._nActiveBindings;
    
    			this._nActiveActions = 0;
    			this._nActiveBindings = 0;
    
    			for ( var i = 0; i !== nActions; ++ i ) {
    
    				actions[ i ].reset();
    
    			}
    
    			for ( var i = 0; i !== nBindings; ++ i ) {
    
    				bindings[ i ].useCount = 0;
    
    			}
    
    			return this;
    
    		},
    
    		// advance the time and update apply the animation
    		update: function ( deltaTime ) {
    
    			deltaTime *= this.timeScale;
    
    			var actions = this._actions,
    				nActions = this._nActiveActions,
    
    				time = this.time += deltaTime,
    				timeDirection = Math.sign( deltaTime ),
    
    				accuIndex = this._accuIndex ^= 1;
    
    			// run active actions
    
    			for ( var i = 0; i !== nActions; ++ i ) {
    
    				var action = actions[ i ];
    
    				action._update( time, deltaTime, timeDirection, accuIndex );
    
    			}
    
    			// update scene graph
    
    			var bindings = this._bindings,
    				nBindings = this._nActiveBindings;
    
    			for ( var i = 0; i !== nBindings; ++ i ) {
    
    				bindings[ i ].apply( accuIndex );
    
    			}
    
    			return this;
    
    		},
    
    		// return this mixer's root target object
    		getRoot: function () {
    
    			return this._root;
    
    		},
    
    		// free all resources specific to a particular clip
    		uncacheClip: function ( clip ) {
    
    			var actions = this._actions,
    				clipUuid = clip.uuid,
    				actionsByClip = this._actionsByClip,
    				actionsForClip = actionsByClip[ clipUuid ];
    
    			if ( actionsForClip !== undefined ) {
    
    				// note: just calling _removeInactiveAction would mess up the
    				// iteration state and also require updating the state we can
    				// just throw away
    
    				var actionsToRemove = actionsForClip.knownActions;
    
    				for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) {
    
    					var action = actionsToRemove[ i ];
    
    					this._deactivateAction( action );
    
    					var cacheIndex = action._cacheIndex,
    						lastInactiveAction = actions[ actions.length - 1 ];
    
    					action._cacheIndex = null;
    					action._byClipCacheIndex = null;
    
    					lastInactiveAction._cacheIndex = cacheIndex;
    					actions[ cacheIndex ] = lastInactiveAction;
    					actions.pop();
    
    					this._removeInactiveBindingsForAction( action );
    
    				}
    
    				delete actionsByClip[ clipUuid ];
    
    			}
    
    		},
    
    		// free all resources specific to a particular root target object
    		uncacheRoot: function ( root ) {
    
    			var rootUuid = root.uuid,
    				actionsByClip = this._actionsByClip;
    
    			for ( var clipUuid in actionsByClip ) {
    
    				var actionByRoot = actionsByClip[ clipUuid ].actionByRoot,
    					action = actionByRoot[ rootUuid ];
    
    				if ( action !== undefined ) {
    
    					this._deactivateAction( action );
    					this._removeInactiveAction( action );
    
    				}
    
    			}
    
    			var bindingsByRoot = this._bindingsByRootAndName,
    				bindingByName = bindingsByRoot[ rootUuid ];
    
    			if ( bindingByName !== undefined ) {
    
    				for ( var trackName in bindingByName ) {
    
    					var binding = bindingByName[ trackName ];
    					binding.restoreOriginalState();
    					this._removeInactiveBinding( binding );
    
    				}
    
    			}
    
    		},
    
    		// remove a targeted clip from the cache
    		uncacheAction: function ( clip, optionalRoot ) {
    
    			var action = this.existingAction( clip, optionalRoot );
    
    			if ( action !== null ) {
    
    				this._deactivateAction( action );
    				this._removeInactiveAction( action );
    
    			}
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function Uniform( value ) {
    
    		if ( typeof value === 'string' ) {
    
    			console.warn( 'THREE.Uniform: Type parameter is no longer needed.' );
    			value = arguments[ 1 ];
    
    		}
    
    		this.value = value;
    
    	}
    
    	Uniform.prototype.clone = function () {
    
    		return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() );
    
    	};
    
    	/**
    	 * @author benaadams / https://twitter.com/ben_a_adams
    	 */
    
    	function InstancedBufferGeometry() {
    
    		BufferGeometry.call( this );
    
    		this.type = 'InstancedBufferGeometry';
    		this.maxInstancedCount = undefined;
    
    	}
    
    	InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), {
    
    		constructor: InstancedBufferGeometry,
    
    		isInstancedBufferGeometry: true,
    
    		addGroup: function ( start, count, materialIndex ) {
    
    			this.groups.push( {
    
    				start: start,
    				count: count,
    				materialIndex: materialIndex
    
    			} );
    
    		},
    
    		copy: function ( source ) {
    
    			var index = source.index;
    
    			if ( index !== null ) {
    
    				this.setIndex( index.clone() );
    
    			}
    
    			var attributes = source.attributes;
    
    			for ( var name in attributes ) {
    
    				var attribute = attributes[ name ];
    				this.addAttribute( name, attribute.clone() );
    
    			}
    
    			var groups = source.groups;
    
    			for ( var i = 0, l = groups.length; i < l; i ++ ) {
    
    				var group = groups[ i ];
    				this.addGroup( group.start, group.count, group.materialIndex );
    
    			}
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author benaadams / https://twitter.com/ben_a_adams
    	 */
    
    	function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) {
    
    		this.uuid = _Math.generateUUID();
    
    		this.data = interleavedBuffer;
    		this.itemSize = itemSize;
    		this.offset = offset;
    
    		this.normalized = normalized === true;
    
    	}
    
    	Object.defineProperties( InterleavedBufferAttribute.prototype, {
    
    		count: {
    
    			get: function () {
    
    				return this.data.count;
    
    			}
    
    		},
    
    		array: {
    
    			get: function () {
    
    				return this.data.array;
    
    			}
    
    		}
    
    	} );
    
    	Object.assign( InterleavedBufferAttribute.prototype, {
    
    		isInterleavedBufferAttribute: true,
    
    		setX: function ( index, x ) {
    
    			this.data.array[ index * this.data.stride + this.offset ] = x;
    
    			return this;
    
    		},
    
    		setY: function ( index, y ) {
    
    			this.data.array[ index * this.data.stride + this.offset + 1 ] = y;
    
    			return this;
    
    		},
    
    		setZ: function ( index, z ) {
    
    			this.data.array[ index * this.data.stride + this.offset + 2 ] = z;
    
    			return this;
    
    		},
    
    		setW: function ( index, w ) {
    
    			this.data.array[ index * this.data.stride + this.offset + 3 ] = w;
    
    			return this;
    
    		},
    
    		getX: function ( index ) {
    
    			return this.data.array[ index * this.data.stride + this.offset ];
    
    		},
    
    		getY: function ( index ) {
    
    			return this.data.array[ index * this.data.stride + this.offset + 1 ];
    
    		},
    
    		getZ: function ( index ) {
    
    			return this.data.array[ index * this.data.stride + this.offset + 2 ];
    
    		},
    
    		getW: function ( index ) {
    
    			return this.data.array[ index * this.data.stride + this.offset + 3 ];
    
    		},
    
    		setXY: function ( index, x, y ) {
    
    			index = index * this.data.stride + this.offset;
    
    			this.data.array[ index + 0 ] = x;
    			this.data.array[ index + 1 ] = y;
    
    			return this;
    
    		},
    
    		setXYZ: function ( index, x, y, z ) {
    
    			index = index * this.data.stride + this.offset;
    
    			this.data.array[ index + 0 ] = x;
    			this.data.array[ index + 1 ] = y;
    			this.data.array[ index + 2 ] = z;
    
    			return this;
    
    		},
    
    		setXYZW: function ( index, x, y, z, w ) {
    
    			index = index * this.data.stride + this.offset;
    
    			this.data.array[ index + 0 ] = x;
    			this.data.array[ index + 1 ] = y;
    			this.data.array[ index + 2 ] = z;
    			this.data.array[ index + 3 ] = w;
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author benaadams / https://twitter.com/ben_a_adams
    	 */
    
    	function InterleavedBuffer( array, stride ) {
    
    		this.uuid = _Math.generateUUID();
    
    		this.array = array;
    		this.stride = stride;
    		this.count = array !== undefined ? array.length / stride : 0;
    
    		this.dynamic = false;
    		this.updateRange = { offset: 0, count: - 1 };
    
    		this.onUploadCallback = function () {};
    
    		this.version = 0;
    
    	}
    
    	Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', {
    
    		set: function ( value ) {
    
    			if ( value === true ) this.version ++;
    
    		}
    
    	} );
    
    	Object.assign( InterleavedBuffer.prototype, {
    
    		isInterleavedBuffer: true,
    
    		setArray: function ( array ) {
    
    			if ( Array.isArray( array ) ) {
    
    				throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
    
    			}
    
    			this.count = array !== undefined ? array.length / this.stride : 0;
    			this.array = array;
    
    		},
    
    		setDynamic: function ( value ) {
    
    			this.dynamic = value;
    
    			return this;
    
    		},
    
    		copy: function ( source ) {
    
    			this.array = new source.array.constructor( source.array );
    			this.count = source.count;
    			this.stride = source.stride;
    			this.dynamic = source.dynamic;
    
    			return this;
    
    		},
    
    		copyAt: function ( index1, attribute, index2 ) {
    
    			index1 *= this.stride;
    			index2 *= attribute.stride;
    
    			for ( var i = 0, l = this.stride; i < l; i ++ ) {
    
    				this.array[ index1 + i ] = attribute.array[ index2 + i ];
    
    			}
    
    			return this;
    
    		},
    
    		set: function ( value, offset ) {
    
    			if ( offset === undefined ) offset = 0;
    
    			this.array.set( value, offset );
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		onUpload: function ( callback ) {
    
    			this.onUploadCallback = callback;
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author benaadams / https://twitter.com/ben_a_adams
    	 */
    
    	function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) {
    
    		InterleavedBuffer.call( this, array, stride );
    
    		this.meshPerAttribute = meshPerAttribute || 1;
    
    	}
    
    	InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), {
    
    		constructor: InstancedInterleavedBuffer,
    
    		isInstancedInterleavedBuffer: true,
    
    		copy: function ( source ) {
    
    			InterleavedBuffer.prototype.copy.call( this, source );
    
    			this.meshPerAttribute = source.meshPerAttribute;
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author benaadams / https://twitter.com/ben_a_adams
    	 */
    
    	function InstancedBufferAttribute( array, itemSize, meshPerAttribute ) {
    
    		BufferAttribute.call( this, array, itemSize );
    
    		this.meshPerAttribute = meshPerAttribute || 1;
    
    	}
    
    	InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), {
    
    		constructor: InstancedBufferAttribute,
    
    		isInstancedBufferAttribute: true,
    
    		copy: function ( source ) {
    
    			BufferAttribute.prototype.copy.call( this, source );
    
    			this.meshPerAttribute = source.meshPerAttribute;
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author bhouston / http://clara.io/
    	 * @author stephomi / http://stephaneginier.com/
    	 */
    
    	function Raycaster( origin, direction, near, far ) {
    
    		this.ray = new Ray( origin, direction );
    		// direction is assumed to be normalized (for accurate distance calculations)
    
    		this.near = near || 0;
    		this.far = far || Infinity;
    
    		this.params = {
    			Mesh: {},
    			Line: {},
    			LOD: {},
    			Points: { threshold: 1 },
    			Sprite: {}
    		};
    
    		Object.defineProperties( this.params, {
    			PointCloud: {
    				get: function () {
    					console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
    					return this.Points;
    				}
    			}
    		} );
    
    	}
    
    	function ascSort( a, b ) {
    
    		return a.distance - b.distance;
    
    	}
    
    	function intersectObject( object, raycaster, intersects, recursive ) {
    
    		if ( object.visible === false ) return;
    
    		object.raycast( raycaster, intersects );
    
    		if ( recursive === true ) {
    
    			var children = object.children;
    
    			for ( var i = 0, l = children.length; i < l; i ++ ) {
    
    				intersectObject( children[ i ], raycaster, intersects, true );
    
    			}
    
    		}
    
    	}
    
    	Object.assign( Raycaster.prototype, {
    
    		linePrecision: 1,
    
    		set: function ( origin, direction ) {
    
    			// direction is assumed to be normalized (for accurate distance calculations)
    
    			this.ray.set( origin, direction );
    
    		},
    
    		setFromCamera: function ( coords, camera ) {
    
    			if ( ( camera && camera.isPerspectiveCamera ) ) {
    
    				this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
    				this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();
    
    			} else if ( ( camera && camera.isOrthographicCamera ) ) {
    
    				this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera
    				this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );
    
    			} else {
    
    				console.error( 'THREE.Raycaster: Unsupported camera type.' );
    
    			}
    
    		},
    
    		intersectObject: function ( object, recursive ) {
    
    			var intersects = [];
    
    			intersectObject( object, this, intersects, recursive );
    
    			intersects.sort( ascSort );
    
    			return intersects;
    
    		},
    
    		intersectObjects: function ( objects, recursive ) {
    
    			var intersects = [];
    
    			if ( Array.isArray( objects ) === false ) {
    
    				console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
    				return intersects;
    
    			}
    
    			for ( var i = 0, l = objects.length; i < l; i ++ ) {
    
    				intersectObject( objects[ i ], this, intersects, recursive );
    
    			}
    
    			intersects.sort( ascSort );
    
    			return intersects;
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function Clock( autoStart ) {
    
    		this.autoStart = ( autoStart !== undefined ) ? autoStart : true;
    
    		this.startTime = 0;
    		this.oldTime = 0;
    		this.elapsedTime = 0;
    
    		this.running = false;
    
    	}
    
    	Object.assign( Clock.prototype, {
    
    		start: function () {
    
    			this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732
    
    			this.oldTime = this.startTime;
    			this.elapsedTime = 0;
    			this.running = true;
    
    		},
    
    		stop: function () {
    
    			this.getElapsedTime();
    			this.running = false;
    
    		},
    
    		getElapsedTime: function () {
    
    			this.getDelta();
    			return this.elapsedTime;
    
    		},
    
    		getDelta: function () {
    
    			var diff = 0;
    
    			if ( this.autoStart && ! this.running ) {
    
    				this.start();
    				return 0;
    
    			}
    
    			if ( this.running ) {
    
    				var newTime = ( typeof performance === 'undefined' ? Date : performance ).now();
    
    				diff = ( newTime - this.oldTime ) / 1000;
    				this.oldTime = newTime;
    
    				this.elapsedTime += diff;
    
    			}
    
    			return diff;
    
    		}
    
    	} );
    
    	/**
    	 * @author bhouston / http://clara.io
    	 * @author WestLangley / http://github.com/WestLangley
    	 *
    	 * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
    	 *
    	 * The poles (phi) are at the positive and negative y axis.
    	 * The equator starts at positive z.
    	 */
    
    	function Spherical( radius, phi, theta ) {
    
    		this.radius = ( radius !== undefined ) ? radius : 1.0;
    		this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole
    		this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere
    
    		return this;
    
    	}
    
    	Object.assign( Spherical.prototype, {
    
    		set: function ( radius, phi, theta ) {
    
    			this.radius = radius;
    			this.phi = phi;
    			this.theta = theta;
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( other ) {
    
    			this.radius = other.radius;
    			this.phi = other.phi;
    			this.theta = other.theta;
    
    			return this;
    
    		},
    
    		// restrict phi to be betwee EPS and PI-EPS
    		makeSafe: function() {
    
    			var EPS = 0.000001;
    			this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );
    
    			return this;
    
    		},
    
    		setFromVector3: function( vec3 ) {
    
    			this.radius = vec3.length();
    
    			if ( this.radius === 0 ) {
    
    				this.theta = 0;
    				this.phi = 0;
    
    			} else {
    
    				this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis
    				this.phi = Math.acos( _Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle
    
    			}
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author Mugen87 / https://github.com/Mugen87
    	 *
    	 * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
    	 *
    	 */
    
    	function Cylindrical( radius, theta, y ) {
    
    		this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane
    		this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
    		this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane
    
    		return this;
    
    	}
    
    	Object.assign( Cylindrical.prototype, {
    
    		set: function ( radius, theta, y ) {
    
    			this.radius = radius;
    			this.theta = theta;
    			this.y = y;
    
    			return this;
    
    		},
    
    		clone: function () {
    
    			return new this.constructor().copy( this );
    
    		},
    
    		copy: function ( other ) {
    
    			this.radius = other.radius;
    			this.theta = other.theta;
    			this.y = other.y;
    
    			return this;
    
    		},
    
    		setFromVector3: function( vec3 ) {
    
    			this.radius = Math.sqrt( vec3.x * vec3.x + vec3.z * vec3.z );
    			this.theta = Math.atan2( vec3.x, vec3.z );
    			this.y = vec3.y;
    
    			return this;
    
    		}
    
    	} );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function MorphBlendMesh( geometry, material ) {
    
    		Mesh.call( this, geometry, material );
    
    		this.animationsMap = {};
    		this.animationsList = [];
    
    		// prepare default animation
    		// (all frames played together in 1 second)
    
    		var numFrames = this.geometry.morphTargets.length;
    
    		var name = "__default";
    
    		var startFrame = 0;
    		var endFrame = numFrames - 1;
    
    		var fps = numFrames / 1;
    
    		this.createAnimation( name, startFrame, endFrame, fps );
    		this.setAnimationWeight( name, 1 );
    
    	}
    
    	MorphBlendMesh.prototype = Object.create( Mesh.prototype );
    	MorphBlendMesh.prototype.constructor = MorphBlendMesh;
    
    	MorphBlendMesh.prototype.createAnimation = function ( name, start, end, fps ) {
    
    		var animation = {
    
    			start: start,
    			end: end,
    
    			length: end - start + 1,
    
    			fps: fps,
    			duration: ( end - start ) / fps,
    
    			lastFrame: 0,
    			currentFrame: 0,
    
    			active: false,
    
    			time: 0,
    			direction: 1,
    			weight: 1,
    
    			directionBackwards: false,
    			mirroredLoop: false
    
    		};
    
    		this.animationsMap[ name ] = animation;
    		this.animationsList.push( animation );
    
    	};
    
    	MorphBlendMesh.prototype.autoCreateAnimations = function ( fps ) {
    
    		var pattern = /([a-z]+)_?(\d+)/i;
    
    		var firstAnimation, frameRanges = {};
    
    		var geometry = this.geometry;
    
    		for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) {
    
    			var morph = geometry.morphTargets[ i ];
    			var chunks = morph.name.match( pattern );
    
    			if ( chunks && chunks.length > 1 ) {
    
    				var name = chunks[ 1 ];
    
    				if ( ! frameRanges[ name ] ) frameRanges[ name ] = { start: Infinity, end: - Infinity };
    
    				var range = frameRanges[ name ];
    
    				if ( i < range.start ) range.start = i;
    				if ( i > range.end ) range.end = i;
    
    				if ( ! firstAnimation ) firstAnimation = name;
    
    			}
    
    		}
    
    		for ( var name in frameRanges ) {
    
    			var range = frameRanges[ name ];
    			this.createAnimation( name, range.start, range.end, fps );
    
    		}
    
    		this.firstAnimation = firstAnimation;
    
    	};
    
    	MorphBlendMesh.prototype.setAnimationDirectionForward = function ( name ) {
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			animation.direction = 1;
    			animation.directionBackwards = false;
    
    		}
    
    	};
    
    	MorphBlendMesh.prototype.setAnimationDirectionBackward = function ( name ) {
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			animation.direction = - 1;
    			animation.directionBackwards = true;
    
    		}
    
    	};
    
    	MorphBlendMesh.prototype.setAnimationFPS = function ( name, fps ) {
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			animation.fps = fps;
    			animation.duration = ( animation.end - animation.start ) / animation.fps;
    
    		}
    
    	};
    
    	MorphBlendMesh.prototype.setAnimationDuration = function ( name, duration ) {
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			animation.duration = duration;
    			animation.fps = ( animation.end - animation.start ) / animation.duration;
    
    		}
    
    	};
    
    	MorphBlendMesh.prototype.setAnimationWeight = function ( name, weight ) {
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			animation.weight = weight;
    
    		}
    
    	};
    
    	MorphBlendMesh.prototype.setAnimationTime = function ( name, time ) {
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			animation.time = time;
    
    		}
    
    	};
    
    	MorphBlendMesh.prototype.getAnimationTime = function ( name ) {
    
    		var time = 0;
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			time = animation.time;
    
    		}
    
    		return time;
    
    	};
    
    	MorphBlendMesh.prototype.getAnimationDuration = function ( name ) {
    
    		var duration = - 1;
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			duration = animation.duration;
    
    		}
    
    		return duration;
    
    	};
    
    	MorphBlendMesh.prototype.playAnimation = function ( name ) {
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			animation.time = 0;
    			animation.active = true;
    
    		} else {
    
    			console.warn( "THREE.MorphBlendMesh: animation[" + name + "] undefined in .playAnimation()" );
    
    		}
    
    	};
    
    	MorphBlendMesh.prototype.stopAnimation = function ( name ) {
    
    		var animation = this.animationsMap[ name ];
    
    		if ( animation ) {
    
    			animation.active = false;
    
    		}
    
    	};
    
    	MorphBlendMesh.prototype.update = function ( delta ) {
    
    		for ( var i = 0, il = this.animationsList.length; i < il; i ++ ) {
    
    			var animation = this.animationsList[ i ];
    
    			if ( ! animation.active ) continue;
    
    			var frameTime = animation.duration / animation.length;
    
    			animation.time += animation.direction * delta;
    
    			if ( animation.mirroredLoop ) {
    
    				if ( animation.time > animation.duration || animation.time < 0 ) {
    
    					animation.direction *= - 1;
    
    					if ( animation.time > animation.duration ) {
    
    						animation.time = animation.duration;
    						animation.directionBackwards = true;
    
    					}
    
    					if ( animation.time < 0 ) {
    
    						animation.time = 0;
    						animation.directionBackwards = false;
    
    					}
    
    				}
    
    			} else {
    
    				animation.time = animation.time % animation.duration;
    
    				if ( animation.time < 0 ) animation.time += animation.duration;
    
    			}
    
    			var keyframe = animation.start + _Math.clamp( Math.floor( animation.time / frameTime ), 0, animation.length - 1 );
    			var weight = animation.weight;
    
    			if ( keyframe !== animation.currentFrame ) {
    
    				this.morphTargetInfluences[ animation.lastFrame ] = 0;
    				this.morphTargetInfluences[ animation.currentFrame ] = 1 * weight;
    
    				this.morphTargetInfluences[ keyframe ] = 0;
    
    				animation.lastFrame = animation.currentFrame;
    				animation.currentFrame = keyframe;
    
    			}
    
    			var mix = ( animation.time % frameTime ) / frameTime;
    
    			if ( animation.directionBackwards ) mix = 1 - mix;
    
    			if ( animation.currentFrame !== animation.lastFrame ) {
    
    				this.morphTargetInfluences[ animation.currentFrame ] = mix * weight;
    				this.morphTargetInfluences[ animation.lastFrame ] = ( 1 - mix ) * weight;
    
    			} else {
    
    				this.morphTargetInfluences[ animation.currentFrame ] = weight;
    
    			}
    
    		}
    
    	};
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	function ImmediateRenderObject( material ) {
    
    		Object3D.call( this );
    
    		this.material = material;
    		this.render = function ( renderCallback ) {};
    
    	}
    
    	ImmediateRenderObject.prototype = Object.create( Object3D.prototype );
    	ImmediateRenderObject.prototype.constructor = ImmediateRenderObject;
    
    	ImmediateRenderObject.prototype.isImmediateRenderObject = true;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	*/
    
    	function VertexNormalsHelper( object, size, hex, linewidth ) {
    
    		this.object = object;
    
    		this.size = ( size !== undefined ) ? size : 1;
    
    		var color = ( hex !== undefined ) ? hex : 0xff0000;
    
    		var width = ( linewidth !== undefined ) ? linewidth : 1;
    
    		//
    
    		var nNormals = 0;
    
    		var objGeometry = this.object.geometry;
    
    		if ( objGeometry && objGeometry.isGeometry ) {
    
    			nNormals = objGeometry.faces.length * 3;
    
    		} else if ( objGeometry && objGeometry.isBufferGeometry ) {
    
    			nNormals = objGeometry.attributes.normal.count;
    
    		}
    
    		//
    
    		var geometry = new BufferGeometry();
    
    		var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 );
    
    		geometry.addAttribute( 'position', positions );
    
    		LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) );
    
    		//
    
    		this.matrixAutoUpdate = false;
    
    		this.update();
    
    	}
    
    	VertexNormalsHelper.prototype = Object.create( LineSegments.prototype );
    	VertexNormalsHelper.prototype.constructor = VertexNormalsHelper;
    
    	VertexNormalsHelper.prototype.update = ( function () {
    
    		var v1 = new Vector3();
    		var v2 = new Vector3();
    		var normalMatrix = new Matrix3();
    
    		return function update() {
    
    			var keys = [ 'a', 'b', 'c' ];
    
    			this.object.updateMatrixWorld( true );
    
    			normalMatrix.getNormalMatrix( this.object.matrixWorld );
    
    			var matrixWorld = this.object.matrixWorld;
    
    			var position = this.geometry.attributes.position;
    
    			//
    
    			var objGeometry = this.object.geometry;
    
    			if ( objGeometry && objGeometry.isGeometry ) {
    
    				var vertices = objGeometry.vertices;
    
    				var faces = objGeometry.faces;
    
    				var idx = 0;
    
    				for ( var i = 0, l = faces.length; i < l; i ++ ) {
    
    					var face = faces[ i ];
    
    					for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
    
    						var vertex = vertices[ face[ keys[ j ] ] ];
    
    						var normal = face.vertexNormals[ j ];
    
    						v1.copy( vertex ).applyMatrix4( matrixWorld );
    
    						v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );
    
    						position.setXYZ( idx, v1.x, v1.y, v1.z );
    
    						idx = idx + 1;
    
    						position.setXYZ( idx, v2.x, v2.y, v2.z );
    
    						idx = idx + 1;
    
    					}
    
    				}
    
    			} else if ( objGeometry && objGeometry.isBufferGeometry ) {
    
    				var objPos = objGeometry.attributes.position;
    
    				var objNorm = objGeometry.attributes.normal;
    
    				var idx = 0;
    
    				// for simplicity, ignore index and drawcalls, and render every normal
    
    				for ( var j = 0, jl = objPos.count; j < jl; j ++ ) {
    
    					v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld );
    
    					v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) );
    
    					v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );
    
    					position.setXYZ( idx, v1.x, v1.y, v1.z );
    
    					idx = idx + 1;
    
    					position.setXYZ( idx, v2.x, v2.y, v2.z );
    
    					idx = idx + 1;
    
    				}
    
    			}
    
    			position.needsUpdate = true;
    
    		};
    
    	}() );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	*/
    
    	function SpotLightHelper( light ) {
    
    		Object3D.call( this );
    
    		this.light = light;
    		this.light.updateMatrixWorld();
    
    		this.matrix = light.matrixWorld;
    		this.matrixAutoUpdate = false;
    
    		var geometry = new BufferGeometry();
    
    		var positions = [
    			0, 0, 0,   0,   0,   1,
    			0, 0, 0,   1,   0,   1,
    			0, 0, 0, - 1,   0,   1,
    			0, 0, 0,   0,   1,   1,
    			0, 0, 0,   0, - 1,   1
    		];
    
    		for ( var i = 0, j = 1, l = 32; i < l; i ++, j ++ ) {
    
    			var p1 = ( i / l ) * Math.PI * 2;
    			var p2 = ( j / l ) * Math.PI * 2;
    
    			positions.push(
    				Math.cos( p1 ), Math.sin( p1 ), 1,
    				Math.cos( p2 ), Math.sin( p2 ), 1
    			);
    
    		}
    
    		geometry.addAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
    
    		var material = new LineBasicMaterial( { fog: false } );
    
    		this.cone = new LineSegments( geometry, material );
    		this.add( this.cone );
    
    		this.update();
    
    	}
    
    	SpotLightHelper.prototype = Object.create( Object3D.prototype );
    	SpotLightHelper.prototype.constructor = SpotLightHelper;
    
    	SpotLightHelper.prototype.dispose = function () {
    
    		this.cone.geometry.dispose();
    		this.cone.material.dispose();
    
    	};
    
    	SpotLightHelper.prototype.update = function () {
    
    		var vector = new Vector3();
    		var vector2 = new Vector3();
    
    		return function update() {
    
    			var coneLength = this.light.distance ? this.light.distance : 1000;
    			var coneWidth = coneLength * Math.tan( this.light.angle );
    
    			this.cone.scale.set( coneWidth, coneWidth, coneLength );
    
    			vector.setFromMatrixPosition( this.light.matrixWorld );
    			vector2.setFromMatrixPosition( this.light.target.matrixWorld );
    
    			this.cone.lookAt( vector2.sub( vector ) );
    
    			this.cone.material.color.copy( this.light.color );
    
    		};
    
    	}();
    
    	/**
    	 * @author Sean Griffin / http://twitter.com/sgrif
    	 * @author Michael Guerrero / http://realitymeltdown.com
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author ikerr / http://verold.com
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	function SkeletonHelper( object ) {
    
    		this.bones = this.getBoneList( object );
    
    		var geometry = new BufferGeometry();
    
    		var vertices = [];
    		var colors = [];
    
    		var color1 = new Color( 0, 0, 1 );
    		var color2 = new Color( 0, 1, 0 );
    
    		for ( var i = 0; i < this.bones.length; i ++ ) {
    
    			var bone = this.bones[ i ];
    
    			if ( bone.parent && bone.parent.isBone ) {
    
    				vertices.push( 0, 0, 0 );
    				vertices.push( 0, 0, 0 );
    				colors.push( color1.r, color1.g, color1.b );
    				colors.push( color2.r, color2.g, color2.b );
    
    			}
    
    		}
    
    		geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
    
    		var material = new LineBasicMaterial( { vertexColors: VertexColors, depthTest: false, depthWrite: false, transparent: true } );
    
    		LineSegments.call( this, geometry, material );
    
    		this.root = object;
    
    		this.matrix = object.matrixWorld;
    		this.matrixAutoUpdate = false;
    
    		this.update();
    
    	}
    
    
    	SkeletonHelper.prototype = Object.create( LineSegments.prototype );
    	SkeletonHelper.prototype.constructor = SkeletonHelper;
    
    	SkeletonHelper.prototype.getBoneList = function( object ) {
    
    		var boneList = [];
    
    		if ( object && object.isBone ) {
    
    			boneList.push( object );
    
    		}
    
    		for ( var i = 0; i < object.children.length; i ++ ) {
    
    			boneList.push.apply( boneList, this.getBoneList( object.children[ i ] ) );
    
    		}
    
    		return boneList;
    
    	};
    
    	SkeletonHelper.prototype.update = function () {
    
    		var vector = new Vector3();
    
    		var boneMatrix = new Matrix4();
    		var matrixWorldInv = new Matrix4();
    
    		return function update() {
    
    			var geometry = this.geometry;
    			var position = geometry.getAttribute( 'position' );
    
    			matrixWorldInv.getInverse( this.root.matrixWorld );
    
    			for ( var i = 0, j = 0; i < this.bones.length; i ++ ) {
    
    				var bone = this.bones[ i ];
    
    				if ( bone.parent && bone.parent.isBone ) {
    
    					boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld );
    					vector.setFromMatrixPosition( boneMatrix );
    					position.setXYZ( j, vector.x, vector.y, vector.z );
    
    					boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld );
    					vector.setFromMatrixPosition( boneMatrix );
    					position.setXYZ( j + 1, vector.x, vector.y, vector.z );
    
    					j += 2;
    
    				}
    
    			}
    
    			geometry.getAttribute( 'position' ).needsUpdate = true;
    
    		};
    
    	}();
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function PointLightHelper( light, sphereSize ) {
    
    		this.light = light;
    		this.light.updateMatrixWorld();
    
    		var geometry = new SphereBufferGeometry( sphereSize, 4, 2 );
    		var material = new MeshBasicMaterial( { wireframe: true, fog: false } );
    		material.color.copy( this.light.color );
    
    		Mesh.call( this, geometry, material );
    
    		this.matrix = this.light.matrixWorld;
    		this.matrixAutoUpdate = false;
    
    		/*
    		var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 );
    		var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
    
    		this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
    		this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );
    
    		var d = light.distance;
    
    		if ( d === 0.0 ) {
    
    			this.lightDistance.visible = false;
    
    		} else {
    
    			this.lightDistance.scale.set( d, d, d );
    
    		}
    
    		this.add( this.lightDistance );
    		*/
    
    	}
    
    	PointLightHelper.prototype = Object.create( Mesh.prototype );
    	PointLightHelper.prototype.constructor = PointLightHelper;
    
    	PointLightHelper.prototype.dispose = function () {
    
    		this.geometry.dispose();
    		this.material.dispose();
    
    	};
    
    	PointLightHelper.prototype.update = function () {
    
    		this.material.color.copy( this.light.color );
    
    		/*
    		var d = this.light.distance;
    
    		if ( d === 0.0 ) {
    
    			this.lightDistance.visible = false;
    
    		} else {
    
    			this.lightDistance.visible = true;
    			this.lightDistance.scale.set( d, d, d );
    
    		}
    		*/
    
    	};
    
    	/**
    	 * @author abelnation / http://github.com/abelnation
    	 * @author Mugen87 / http://github.com/Mugen87
    	 * @author WestLangley / http://github.com/WestLangley
    	 */
    
    	function RectAreaLightHelper( light ) {
    
    		Object3D.call( this );
    
    		this.light = light;
    		this.light.updateMatrixWorld();
    
    		this.matrix = light.matrixWorld;
    		this.matrixAutoUpdate = false;
    
    		var material = new LineBasicMaterial( { color: light.color } );
    
    		var geometry = new BufferGeometry();
    
    		geometry.addAttribute( 'position', new BufferAttribute( new Float32Array( 5 * 3 ), 3 ) );
    
    		this.add( new Line( geometry, material ) );
    
    		this.update();
    
    	}
    
    	RectAreaLightHelper.prototype = Object.create( Object3D.prototype );
    	RectAreaLightHelper.prototype.constructor = RectAreaLightHelper;
    
    	RectAreaLightHelper.prototype.dispose = function () {
    
    		this.children[ 0 ].geometry.dispose();
    		this.children[ 0 ].material.dispose();
    
    	};
    
    	RectAreaLightHelper.prototype.update = function () {
    
    		var line = this.children[ 0 ];
    
    		// update material
    
    		line.material.color.copy( this.light.color );
    
    		// calculate new dimensions of the helper
    
    		var hx = this.light.width * 0.5;
    		var hy = this.light.height * 0.5;
    
    		var position = line.geometry.attributes.position;
    		var array = position.array;
    
    		// update vertices
    
    		array[  0 ] =   hx; array[  1 ] = - hy; array[  2 ] = 0;
    		array[  3 ] =   hx; array[  4 ] =   hy; array[  5 ] = 0;
    		array[  6 ] = - hx; array[  7 ] =   hy; array[  8 ] = 0;
    		array[  9 ] = - hx; array[ 10 ] = - hy; array[ 11 ] = 0;
    		array[ 12 ] =   hx; array[ 13 ] = - hy; array[ 14 ] = 0;
    
    		position.needsUpdate = true;
    
    	};
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author Mugen87 / https://github.com/Mugen87
    	 */
    
    	function HemisphereLightHelper( light, size ) {
    
    		Object3D.call( this );
    
    		this.light = light;
    		this.light.updateMatrixWorld();
    
    		this.matrix = light.matrixWorld;
    		this.matrixAutoUpdate = false;
    
    		var geometry = new OctahedronBufferGeometry( size );
    		geometry.rotateY( Math.PI * 0.5 );
    
    		var material = new MeshBasicMaterial( { vertexColors: VertexColors, wireframe: true } );
    
    		var position = geometry.getAttribute( 'position' );
    		var colors = new Float32Array( position.count * 3 );
    
    		geometry.addAttribute( 'color', new BufferAttribute( colors, 3 ) );
    
    		this.add( new Mesh( geometry, material ) );
    
    		this.update();
    
    	}
    
    	HemisphereLightHelper.prototype = Object.create( Object3D.prototype );
    	HemisphereLightHelper.prototype.constructor = HemisphereLightHelper;
    
    	HemisphereLightHelper.prototype.dispose = function () {
    
    		this.children[ 0 ].geometry.dispose();
    		this.children[ 0 ].material.dispose();
    
    	};
    
    	HemisphereLightHelper.prototype.update = function () {
    
    		var vector = new Vector3();
    
    		var color1 = new Color();
    		var color2 = new Color();
    
    		return function update() {
    
    			var mesh = this.children[ 0 ];
    
    			var colors = mesh.geometry.getAttribute( 'color' );
    
    			color1.copy( this.light.color );
    			color2.copy( this.light.groundColor );
    
    			for ( var i = 0, l = colors.count; i < l; i ++ ) {
    
    				var color = ( i < ( l / 2 ) ) ? color1 : color2;
    
    				colors.setXYZ( i, color.r, color.g, color.b );
    
    			}
    
    			mesh.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() );
    
    			colors.needsUpdate = true;
    
    		};
    
    	}();
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function GridHelper( size, divisions, color1, color2 ) {
    
    		size = size || 10;
    		divisions = divisions || 10;
    		color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
    		color2 = new Color( color2 !== undefined ? color2 : 0x888888 );
    
    		var center = divisions / 2;
    		var step = size / divisions;
    		var halfSize = size / 2;
    
    		var vertices = [], colors = [];
    
    		for ( var i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) {
    
    			vertices.push( - halfSize, 0, k, halfSize, 0, k );
    			vertices.push( k, 0, - halfSize, k, 0, halfSize );
    
    			var color = i === center ? color1 : color2;
    
    			color.toArray( colors, j ); j += 3;
    			color.toArray( colors, j ); j += 3;
    			color.toArray( colors, j ); j += 3;
    			color.toArray( colors, j ); j += 3;
    
    		}
    
    		var geometry = new BufferGeometry();
    		geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
    
    		var material = new LineBasicMaterial( { vertexColors: VertexColors } );
    
    		LineSegments.call( this, geometry, material );
    
    	}
    
    	GridHelper.prototype = Object.create( LineSegments.prototype );
    	GridHelper.prototype.constructor = GridHelper;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author Mugen87 / http://github.com/Mugen87
    	 * @author Hectate / http://www.github.com/Hectate
    	 */
    
    	function PolarGridHelper( radius, radials, circles, divisions, color1, color2 ) {
    
    		radius = radius || 10;
    		radials = radials || 16;
    		circles = circles || 8;
    		divisions = divisions || 64;
    		color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
    		color2 = new Color( color2 !== undefined ? color2 : 0x888888 );
    
    		var vertices = [];
    		var colors = [];
    
    		var x, z;
    		var v, i, j, r, color;
    
    		// create the radials
    
    		for ( i = 0; i <= radials; i ++ ) {
    
    			v = ( i / radials ) * ( Math.PI * 2 );
    
    			x = Math.sin( v ) * radius;
    			z = Math.cos( v ) * radius;
    
    			vertices.push( 0, 0, 0 );
    			vertices.push( x, 0, z );
    
    			color = ( i & 1 ) ? color1 : color2;
    
    			colors.push( color.r, color.g, color.b );
    			colors.push( color.r, color.g, color.b );
    
    		}
    
    		// create the circles
    
    		for ( i = 0; i <= circles; i ++ ) {
    
    			color = ( i & 1 ) ? color1 : color2;
    
    			r = radius - ( radius / circles * i );
    
    			for ( j = 0; j < divisions; j ++ ) {
    
    				// first vertex
    
    				v = ( j / divisions ) * ( Math.PI * 2 );
    
    				x = Math.sin( v ) * r;
    				z = Math.cos( v ) * r;
    
    				vertices.push( x, 0, z );
    				colors.push( color.r, color.g, color.b );
    
    				// second vertex
    
    				v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 );
    
    				x = Math.sin( v ) * r;
    				z = Math.cos( v ) * r;
    
    				vertices.push( x, 0, z );
    				colors.push( color.r, color.g, color.b );
    
    			}
    
    		}
    
    		var geometry = new BufferGeometry();
    		geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
    
    		var material = new LineBasicMaterial( { vertexColors: VertexColors } );
    
    		LineSegments.call( this, geometry, material );
    
    	}
    
    	PolarGridHelper.prototype = Object.create( LineSegments.prototype );
    	PolarGridHelper.prototype.constructor = PolarGridHelper;
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	*/
    
    	function FaceNormalsHelper( object, size, hex, linewidth ) {
    
    		// FaceNormalsHelper only supports THREE.Geometry
    
    		this.object = object;
    
    		this.size = ( size !== undefined ) ? size : 1;
    
    		var color = ( hex !== undefined ) ? hex : 0xffff00;
    
    		var width = ( linewidth !== undefined ) ? linewidth : 1;
    
    		//
    
    		var nNormals = 0;
    
    		var objGeometry = this.object.geometry;
    
    		if ( objGeometry && objGeometry.isGeometry ) {
    
    			nNormals = objGeometry.faces.length;
    
    		} else {
    
    			console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' );
    
    		}
    
    		//
    
    		var geometry = new BufferGeometry();
    
    		var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 );
    
    		geometry.addAttribute( 'position', positions );
    
    		LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) );
    
    		//
    
    		this.matrixAutoUpdate = false;
    		this.update();
    
    	}
    
    	FaceNormalsHelper.prototype = Object.create( LineSegments.prototype );
    	FaceNormalsHelper.prototype.constructor = FaceNormalsHelper;
    
    	FaceNormalsHelper.prototype.update = ( function () {
    
    		var v1 = new Vector3();
    		var v2 = new Vector3();
    		var normalMatrix = new Matrix3();
    
    		return function update() {
    
    			this.object.updateMatrixWorld( true );
    
    			normalMatrix.getNormalMatrix( this.object.matrixWorld );
    
    			var matrixWorld = this.object.matrixWorld;
    
    			var position = this.geometry.attributes.position;
    
    			//
    
    			var objGeometry = this.object.geometry;
    
    			var vertices = objGeometry.vertices;
    
    			var faces = objGeometry.faces;
    
    			var idx = 0;
    
    			for ( var i = 0, l = faces.length; i < l; i ++ ) {
    
    				var face = faces[ i ];
    
    				var normal = face.normal;
    
    				v1.copy( vertices[ face.a ] )
    					.add( vertices[ face.b ] )
    					.add( vertices[ face.c ] )
    					.divideScalar( 3 )
    					.applyMatrix4( matrixWorld );
    
    				v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );
    
    				position.setXYZ( idx, v1.x, v1.y, v1.z );
    
    				idx = idx + 1;
    
    				position.setXYZ( idx, v2.x, v2.y, v2.z );
    
    				idx = idx + 1;
    
    			}
    
    			position.needsUpdate = true;
    
    		};
    
    	}() );
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author WestLangley / http://github.com/WestLangley
    	 */
    
    	function DirectionalLightHelper( light, size ) {
    
    		Object3D.call( this );
    
    		this.light = light;
    		this.light.updateMatrixWorld();
    
    		this.matrix = light.matrixWorld;
    		this.matrixAutoUpdate = false;
    
    		if ( size === undefined ) size = 1;
    
    		var geometry = new BufferGeometry();
    		geometry.addAttribute( 'position', new Float32BufferAttribute( [
    			- size,   size, 0,
    			  size,   size, 0,
    			  size, - size, 0,
    			- size, - size, 0,
    			- size,   size, 0
    		], 3 ) );
    
    		var material = new LineBasicMaterial( { fog: false } );
    
    		this.add( new Line( geometry, material ) );
    
    		geometry = new BufferGeometry();
    		geometry.addAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) );
    
    		this.add( new Line( geometry, material ));
    
    		this.update();
    
    	}
    
    	DirectionalLightHelper.prototype = Object.create( Object3D.prototype );
    	DirectionalLightHelper.prototype.constructor = DirectionalLightHelper;
    
    	DirectionalLightHelper.prototype.dispose = function () {
    
    		var lightPlane = this.children[ 0 ];
    		var targetLine = this.children[ 1 ];
    
    		lightPlane.geometry.dispose();
    		lightPlane.material.dispose();
    		targetLine.geometry.dispose();
    		targetLine.material.dispose();
    
    	};
    
    	DirectionalLightHelper.prototype.update = function () {
    
    		var v1 = new Vector3();
    		var v2 = new Vector3();
    		var v3 = new Vector3();
    
    		return function update() {
    
    			v1.setFromMatrixPosition( this.light.matrixWorld );
    			v2.setFromMatrixPosition( this.light.target.matrixWorld );
    			v3.subVectors( v2, v1 );
    
    			var lightPlane = this.children[ 0 ];
    			var targetLine = this.children[ 1 ];
    
    			lightPlane.lookAt( v3 );
    			lightPlane.material.color.copy( this.light.color );
    
    			targetLine.lookAt( v3 );
    			targetLine.scale.z = v3.length();
    
    		};
    
    	}();
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 * @author Mugen87 / https://github.com/Mugen87
    	 *
    	 *	- shows frustum, line of sight and up of the camera
    	 *	- suitable for fast updates
    	 * 	- based on frustum visualization in lightgl.js shadowmap example
    	 *		http://evanw.github.com/lightgl.js/tests/shadowmap.html
    	 */
    
    	function CameraHelper( camera ) {
    
    		var geometry = new BufferGeometry();
    		var material = new LineBasicMaterial( { color: 0xffffff, vertexColors: FaceColors } );
    
    		var vertices = [];
    		var colors = [];
    
    		var pointMap = {};
    
    		// colors
    
    		var colorFrustum = new Color( 0xffaa00 );
    		var colorCone = new Color( 0xff0000 );
    		var colorUp = new Color( 0x00aaff );
    		var colorTarget = new Color( 0xffffff );
    		var colorCross = new Color( 0x333333 );
    
    		// near
    
    		addLine( "n1", "n2", colorFrustum );
    		addLine( "n2", "n4", colorFrustum );
    		addLine( "n4", "n3", colorFrustum );
    		addLine( "n3", "n1", colorFrustum );
    
    		// far
    
    		addLine( "f1", "f2", colorFrustum );
    		addLine( "f2", "f4", colorFrustum );
    		addLine( "f4", "f3", colorFrustum );
    		addLine( "f3", "f1", colorFrustum );
    
    		// sides
    
    		addLine( "n1", "f1", colorFrustum );
    		addLine( "n2", "f2", colorFrustum );
    		addLine( "n3", "f3", colorFrustum );
    		addLine( "n4", "f4", colorFrustum );
    
    		// cone
    
    		addLine( "p", "n1", colorCone );
    		addLine( "p", "n2", colorCone );
    		addLine( "p", "n3", colorCone );
    		addLine( "p", "n4", colorCone );
    
    		// up
    
    		addLine( "u1", "u2", colorUp );
    		addLine( "u2", "u3", colorUp );
    		addLine( "u3", "u1", colorUp );
    
    		// target
    
    		addLine( "c", "t", colorTarget );
    		addLine( "p", "c", colorCross );
    
    		// cross
    
    		addLine( "cn1", "cn2", colorCross );
    		addLine( "cn3", "cn4", colorCross );
    
    		addLine( "cf1", "cf2", colorCross );
    		addLine( "cf3", "cf4", colorCross );
    
    		function addLine( a, b, color ) {
    
    			addPoint( a, color );
    			addPoint( b, color );
    
    		}
    
    		function addPoint( id, color ) {
    
    			vertices.push( 0, 0, 0 );
    			colors.push( color.r, color.g, color.b );
    
    			if ( pointMap[ id ] === undefined ) {
    
    				pointMap[ id ] = [];
    
    			}
    
    			pointMap[ id ].push( ( vertices.length / 3 ) - 1 );
    
    		}
    
    		geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
    
    		LineSegments.call( this, geometry, material );
    
    		this.camera = camera;
    		if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix();
    
    		this.matrix = camera.matrixWorld;
    		this.matrixAutoUpdate = false;
    
    		this.pointMap = pointMap;
    
    		this.update();
    
    	}
    
    	CameraHelper.prototype = Object.create( LineSegments.prototype );
    	CameraHelper.prototype.constructor = CameraHelper;
    
    	CameraHelper.prototype.update = function () {
    
    		var geometry, pointMap;
    
    		var vector = new Vector3();
    		var camera = new Camera();
    
    		function setPoint( point, x, y, z ) {
    
    			vector.set( x, y, z ).unproject( camera );
    
    			var points = pointMap[ point ];
    
    			if ( points !== undefined ) {
    
    				var position = geometry.getAttribute( 'position' );
    
    				for ( var i = 0, l = points.length; i < l; i ++ ) {
    
    					position.setXYZ( points[ i ], vector.x, vector.y, vector.z );
    
    				}
    
    			}
    
    		}
    
    		return function update() {
    
    			geometry = this.geometry;
    			pointMap = this.pointMap;
    
    			var w = 1, h = 1;
    
    			// we need just camera projection matrix
    			// world matrix must be identity
    
    			camera.projectionMatrix.copy( this.camera.projectionMatrix );
    
    			// center / target
    
    			setPoint( "c", 0, 0, - 1 );
    			setPoint( "t", 0, 0,  1 );
    
    			// near
    
    			setPoint( "n1", - w, - h, - 1 );
    			setPoint( "n2",   w, - h, - 1 );
    			setPoint( "n3", - w,   h, - 1 );
    			setPoint( "n4",   w,   h, - 1 );
    
    			// far
    
    			setPoint( "f1", - w, - h, 1 );
    			setPoint( "f2",   w, - h, 1 );
    			setPoint( "f3", - w,   h, 1 );
    			setPoint( "f4",   w,   h, 1 );
    
    			// up
    
    			setPoint( "u1",   w * 0.7, h * 1.1, - 1 );
    			setPoint( "u2", - w * 0.7, h * 1.1, - 1 );
    			setPoint( "u3",         0, h * 2,   - 1 );
    
    			// cross
    
    			setPoint( "cf1", - w,   0, 1 );
    			setPoint( "cf2",   w,   0, 1 );
    			setPoint( "cf3",   0, - h, 1 );
    			setPoint( "cf4",   0,   h, 1 );
    
    			setPoint( "cn1", - w,   0, - 1 );
    			setPoint( "cn2",   w,   0, - 1 );
    			setPoint( "cn3",   0, - h, - 1 );
    			setPoint( "cn4",   0,   h, - 1 );
    
    			geometry.getAttribute( 'position' ).needsUpdate = true;
    
    		};
    
    	}();
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 * @author Mugen87 / http://github.com/Mugen87
    	 */
    
    	function BoxHelper( object, color ) {
    
    		this.object = object;
    
    		if ( color === undefined ) color = 0xffff00;
    
    		var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
    		var positions = new Float32Array( 8 * 3 );
    
    		var geometry = new BufferGeometry();
    		geometry.setIndex( new BufferAttribute( indices, 1 ) );
    		geometry.addAttribute( 'position', new BufferAttribute( positions, 3 ) );
    
    		LineSegments.call( this, geometry, new LineBasicMaterial( { color: color } ) );
    
    		this.matrixAutoUpdate = false;
    
    		this.update();
    
    	}
    
    	BoxHelper.prototype = Object.create( LineSegments.prototype );
    	BoxHelper.prototype.constructor = BoxHelper;
    
    	BoxHelper.prototype.update = ( function () {
    
    		var box = new Box3();
    
    		return function update( object ) {
    
    			if ( object !== undefined ) {
    
    				console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' );
    
    			}
    
    			if ( this.object !== undefined ) {
    
    				box.setFromObject( this.object );
    
    			}
    
    			if ( box.isEmpty() ) return;
    
    			var min = box.min;
    			var max = box.max;
    
    			/*
    			  5____4
    			1/___0/|
    			| 6__|_7
    			2/___3/
    
    			0: max.x, max.y, max.z
    			1: min.x, max.y, max.z
    			2: min.x, min.y, max.z
    			3: max.x, min.y, max.z
    			4: max.x, max.y, min.z
    			5: min.x, max.y, min.z
    			6: min.x, min.y, min.z
    			7: max.x, min.y, min.z
    			*/
    
    			var position = this.geometry.attributes.position;
    			var array = position.array;
    
    			array[  0 ] = max.x; array[  1 ] = max.y; array[  2 ] = max.z;
    			array[  3 ] = min.x; array[  4 ] = max.y; array[  5 ] = max.z;
    			array[  6 ] = min.x; array[  7 ] = min.y; array[  8 ] = max.z;
    			array[  9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z;
    			array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z;
    			array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z;
    			array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z;
    			array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;
    
    			position.needsUpdate = true;
    
    			this.geometry.computeBoundingSphere();
    
    		};
    
    	} )();
    
    	BoxHelper.prototype.setFromObject = function ( object ) {
    
    		this.object = object;
    		this.update();
    
    		return this;
    
    	};
    
    	/**
    	 * @author WestLangley / http://github.com/WestLangley
    	 * @author zz85 / http://github.com/zz85
    	 * @author bhouston / http://clara.io
    	 *
    	 * Creates an arrow for visualizing directions
    	 *
    	 * Parameters:
    	 *  dir - Vector3
    	 *  origin - Vector3
    	 *  length - Number
    	 *  color - color in hex value
    	 *  headLength - Number
    	 *  headWidth - Number
    	 */
    
    	var lineGeometry;
    	var coneGeometry;
    
    	function ArrowHelper( dir, origin, length, color, headLength, headWidth ) {
    
    		// dir is assumed to be normalized
    
    		Object3D.call( this );
    
    		if ( color === undefined ) color = 0xffff00;
    		if ( length === undefined ) length = 1;
    		if ( headLength === undefined ) headLength = 0.2 * length;
    		if ( headWidth === undefined ) headWidth = 0.2 * headLength;
    
    		if ( lineGeometry === undefined ) {
    
    			lineGeometry = new BufferGeometry();
    			lineGeometry.addAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) );
    
    			coneGeometry = new CylinderBufferGeometry( 0, 0.5, 1, 5, 1 );
    			coneGeometry.translate( 0, - 0.5, 0 );
    
    		}
    
    		this.position.copy( origin );
    
    		this.line = new Line( lineGeometry, new LineBasicMaterial( { color: color } ) );
    		this.line.matrixAutoUpdate = false;
    		this.add( this.line );
    
    		this.cone = new Mesh( coneGeometry, new MeshBasicMaterial( { color: color } ) );
    		this.cone.matrixAutoUpdate = false;
    		this.add( this.cone );
    
    		this.setDirection( dir );
    		this.setLength( length, headLength, headWidth );
    
    	}
    
    	ArrowHelper.prototype = Object.create( Object3D.prototype );
    	ArrowHelper.prototype.constructor = ArrowHelper;
    
    	ArrowHelper.prototype.setDirection = ( function () {
    
    		var axis = new Vector3();
    		var radians;
    
    		return function setDirection( dir ) {
    
    			// dir is assumed to be normalized
    
    			if ( dir.y > 0.99999 ) {
    
    				this.quaternion.set( 0, 0, 0, 1 );
    
    			} else if ( dir.y < - 0.99999 ) {
    
    				this.quaternion.set( 1, 0, 0, 0 );
    
    			} else {
    
    				axis.set( dir.z, 0, - dir.x ).normalize();
    
    				radians = Math.acos( dir.y );
    
    				this.quaternion.setFromAxisAngle( axis, radians );
    
    			}
    
    		};
    
    	}() );
    
    	ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) {
    
    		if ( headLength === undefined ) headLength = 0.2 * length;
    		if ( headWidth === undefined ) headWidth = 0.2 * headLength;
    
    		this.line.scale.set( 1, Math.max( 0, length - headLength ), 1 );
    		this.line.updateMatrix();
    
    		this.cone.scale.set( headWidth, headLength, headWidth );
    		this.cone.position.y = length;
    		this.cone.updateMatrix();
    
    	};
    
    	ArrowHelper.prototype.setColor = function ( color ) {
    
    		this.line.material.color.copy( color );
    		this.cone.material.color.copy( color );
    
    	};
    
    	/**
    	 * @author sroucheray / http://sroucheray.org/
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function AxisHelper( size ) {
    
    		size = size || 1;
    
    		var vertices = [
    			0, 0, 0,  size, 0, 0,
    			0, 0, 0,  0, size, 0,
    			0, 0, 0,  0, 0, size
    		];
    
    		var colors = [
    			1, 0, 0,  1, 0.6, 0,
    			0, 1, 0,  0.6, 1, 0,
    			0, 0, 1,  0, 0.6, 1
    		];
    
    		var geometry = new BufferGeometry();
    		geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
    		geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
    
    		var material = new LineBasicMaterial( { vertexColors: VertexColors } );
    
    		LineSegments.call( this, geometry, material );
    
    	}
    
    	AxisHelper.prototype = Object.create( LineSegments.prototype );
    	AxisHelper.prototype.constructor = AxisHelper;
    
    	/**
    	 * @author zz85 https://github.com/zz85
    	 *
    	 * Centripetal CatmullRom Curve - which is useful for avoiding
    	 * cusps and self-intersections in non-uniform catmull rom curves.
    	 * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
    	 *
    	 * curve.type accepts centripetal(default), chordal and catmullrom
    	 * curve.tension is used for catmullrom which defaults to 0.5
    	 */
    
    
    	/*
    	Based on an optimized c++ solution in
    	 - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
    	 - http://ideone.com/NoEbVM
    
    	This CubicPoly class could be used for reusing some variables and calculations,
    	but for three.js curve use, it could be possible inlined and flatten into a single function call
    	which can be placed in CurveUtils.
    	*/
    
    	function CubicPoly() {
    
    		var c0 = 0, c1 = 0, c2 = 0, c3 = 0;
    
    		/*
    		 * Compute coefficients for a cubic polynomial
    		 *   p(s) = c0 + c1*s + c2*s^2 + c3*s^3
    		 * such that
    		 *   p(0) = x0, p(1) = x1
    		 *  and
    		 *   p'(0) = t0, p'(1) = t1.
    		 */
    		function init( x0, x1, t0, t1 ) {
    
    			c0 = x0;
    			c1 = t0;
    			c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
    			c3 = 2 * x0 - 2 * x1 + t0 + t1;
    
    		}
    
    		return {
    
    			initCatmullRom: function ( x0, x1, x2, x3, tension ) {
    
    				init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );
    
    			},
    
    			initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) {
    
    				// compute tangents when parameterized in [t1,t2]
    				var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
    				var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;
    
    				// rescale tangents for parametrization in [0,1]
    				t1 *= dt1;
    				t2 *= dt1;
    
    				init( x1, x2, t1, t2 );
    
    			},
    
    			calc: function ( t ) {
    
    				var t2 = t * t;
    				var t3 = t2 * t;
    				return c0 + c1 * t + c2 * t2 + c3 * t3;
    
    			}
    
    		};
    
    	}
    
    	//
    
    	var tmp = new Vector3();
    	var px = new CubicPoly();
    	var py = new CubicPoly();
    	var pz = new CubicPoly();
    
    	function CatmullRomCurve3( p /* array of Vector3 */ ) {
    
    		Curve.call( this );
    
    		this.points = p || [];
    		this.closed = false;
    
    	}
    
    	CatmullRomCurve3.prototype = Object.create( Curve.prototype );
    	CatmullRomCurve3.prototype.constructor = CatmullRomCurve3;
    
    	CatmullRomCurve3.prototype.getPoint = function ( t ) {
    
    		var points = this.points;
    		var l = points.length;
    
    		if ( l < 2 ) console.log( 'duh, you need at least 2 points' );
    
    		var point = ( l - ( this.closed ? 0 : 1 ) ) * t;
    		var intPoint = Math.floor( point );
    		var weight = point - intPoint;
    
    		if ( this.closed ) {
    
    			intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length;
    
    		} else if ( weight === 0 && intPoint === l - 1 ) {
    
    			intPoint = l - 2;
    			weight = 1;
    
    		}
    
    		var p0, p1, p2, p3; // 4 points
    
    		if ( this.closed || intPoint > 0 ) {
    
    			p0 = points[ ( intPoint - 1 ) % l ];
    
    		} else {
    
    			// extrapolate first point
    			tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
    			p0 = tmp;
    
    		}
    
    		p1 = points[ intPoint % l ];
    		p2 = points[ ( intPoint + 1 ) % l ];
    
    		if ( this.closed || intPoint + 2 < l ) {
    
    			p3 = points[ ( intPoint + 2 ) % l ];
    
    		} else {
    
    			// extrapolate last point
    			tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] );
    			p3 = tmp;
    
    		}
    
    		if ( this.type === undefined || this.type === 'centripetal' || this.type === 'chordal' ) {
    
    			// init Centripetal / Chordal Catmull-Rom
    			var pow = this.type === 'chordal' ? 0.5 : 0.25;
    			var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
    			var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
    			var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );
    
    			// safety check for repeated points
    			if ( dt1 < 1e-4 ) dt1 = 1.0;
    			if ( dt0 < 1e-4 ) dt0 = dt1;
    			if ( dt2 < 1e-4 ) dt2 = dt1;
    
    			px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
    			py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
    			pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );
    
    		} else if ( this.type === 'catmullrom' ) {
    
    			var tension = this.tension !== undefined ? this.tension : 0.5;
    			px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, tension );
    			py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, tension );
    			pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, tension );
    
    		}
    
    		return new Vector3( px.calc( weight ), py.calc( weight ), pz.calc( weight ) );
    
    	};
    
    	function CubicBezierCurve3( v0, v1, v2, v3 ) {
    
    		Curve.call( this );
    
    		this.v0 = v0;
    		this.v1 = v1;
    		this.v2 = v2;
    		this.v3 = v3;
    
    	}
    
    	CubicBezierCurve3.prototype = Object.create( Curve.prototype );
    	CubicBezierCurve3.prototype.constructor = CubicBezierCurve3;
    
    	CubicBezierCurve3.prototype.getPoint = function ( t ) {
    
    		var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;
    
    		return new Vector3(
    			CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
    			CubicBezier( t, v0.y, v1.y, v2.y, v3.y ),
    			CubicBezier( t, v0.z, v1.z, v2.z, v3.z )
    		);
    
    	};
    
    	function QuadraticBezierCurve3( v0, v1, v2 ) {
    
    		Curve.call( this );
    
    		this.v0 = v0;
    		this.v1 = v1;
    		this.v2 = v2;
    
    	}
    
    	QuadraticBezierCurve3.prototype = Object.create( Curve.prototype );
    	QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3;
    
    	QuadraticBezierCurve3.prototype.getPoint = function ( t ) {
    
    		var v0 = this.v0, v1 = this.v1, v2 = this.v2;
    
    		return new Vector3(
    			QuadraticBezier( t, v0.x, v1.x, v2.x ),
    			QuadraticBezier( t, v0.y, v1.y, v2.y ),
    			QuadraticBezier( t, v0.z, v1.z, v2.z )
    		);
    
    	};
    
    	function LineCurve3( v1, v2 ) {
    
    		Curve.call( this );
    
    		this.v1 = v1;
    		this.v2 = v2;
    
    	}
    
    	LineCurve3.prototype = Object.create( Curve.prototype );
    	LineCurve3.prototype.constructor = LineCurve3;
    
    	LineCurve3.prototype.getPoint = function ( t ) {
    
    		if ( t === 1 ) {
    
    			return this.v2.clone();
    
    		}
    
    		var vector = new Vector3();
    
    		vector.subVectors( this.v2, this.v1 ); // diff
    		vector.multiplyScalar( t );
    		vector.add( this.v1 );
    
    		return vector;
    
    	};
    
    	function ArcCurve( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
    
    		EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
    
    	}
    
    	ArcCurve.prototype = Object.create( EllipseCurve.prototype );
    	ArcCurve.prototype.constructor = ArcCurve;
    
    	/**
    	 * @author alteredq / http://alteredqualia.com/
    	 */
    
    	var SceneUtils = {
    
    		createMultiMaterialObject: function ( geometry, materials ) {
    
    			var group = new Group();
    
    			for ( var i = 0, l = materials.length; i < l; i ++ ) {
    
    				group.add( new Mesh( geometry, materials[ i ] ) );
    
    			}
    
    			return group;
    
    		},
    
    		detach: function ( child, parent, scene ) {
    
    			child.applyMatrix( parent.matrixWorld );
    			parent.remove( child );
    			scene.add( child );
    
    		},
    
    		attach: function ( child, scene, parent ) {
    
    			var matrixWorldInverse = new Matrix4();
    			matrixWorldInverse.getInverse( parent.matrixWorld );
    			child.applyMatrix( matrixWorldInverse );
    
    			scene.remove( child );
    			parent.add( child );
    
    		}
    
    	};
    
    	/**
    	 * @author mrdoob / http://mrdoob.com/
    	 */
    
    	function Face4( a, b, c, d, normal, color, materialIndex ) {
    
    		console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' );
    		return new Face3( a, b, c, normal, color, materialIndex );
    
    	}
    
    	var LineStrip = 0;
    
    	var LinePieces = 1;
    
    	function MeshFaceMaterial( materials ) {
    
    		console.warn( 'THREE.MeshFaceMaterial has been removed. Use an Array instead.' );
    		return materials;
    
    	}
    
    	function MultiMaterial( materials ) {
    
    		if ( materials === undefined ) materials = [];
    
    		console.warn( 'THREE.MultiMaterial has been removed. Use an Array instead.' );
    		materials.isMultiMaterial = true;
    		materials.materials = materials;
    		materials.clone = function () {
    
    			return materials.slice();
    
    		};
    		return materials;
    
    	}
    
    	function PointCloud( geometry, material ) {
    
    		console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' );
    		return new Points( geometry, material );
    
    	}
    
    	function Particle( material ) {
    
    		console.warn( 'THREE.Particle has been renamed to THREE.Sprite.' );
    		return new Sprite( material );
    
    	}
    
    	function ParticleSystem( geometry, material ) {
    
    		console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' );
    		return new Points( geometry, material );
    
    	}
    
    	function PointCloudMaterial( parameters ) {
    
    		console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' );
    		return new PointsMaterial( parameters );
    
    	}
    
    	function ParticleBasicMaterial( parameters ) {
    
    		console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' );
    		return new PointsMaterial( parameters );
    
    	}
    
    	function ParticleSystemMaterial( parameters ) {
    
    		console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' );
    		return new PointsMaterial( parameters );
    
    	}
    
    	function Vertex( x, y, z ) {
    
    		console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' );
    		return new Vector3( x, y, z );
    
    	}
    
    	//
    
    	function DynamicBufferAttribute( array, itemSize ) {
    
    		console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setDynamic( true ) instead.' );
    		return new BufferAttribute( array, itemSize ).setDynamic( true );
    
    	}
    
    	function Int8Attribute( array, itemSize ) {
    
    		console.warn( 'THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.' );
    		return new Int8BufferAttribute( array, itemSize );
    
    	}
    
    	function Uint8Attribute( array, itemSize ) {
    
    		console.warn( 'THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.' );
    		return new Uint8BufferAttribute( array, itemSize );
    
    	}
    
    	function Uint8ClampedAttribute( array, itemSize ) {
    
    		console.warn( 'THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.' );
    		return new Uint8ClampedBufferAttribute( array, itemSize );
    
    	}
    
    	function Int16Attribute( array, itemSize ) {
    
    		console.warn( 'THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.' );
    		return new Int16BufferAttribute( array, itemSize );
    
    	}
    
    	function Uint16Attribute( array, itemSize ) {
    
    		console.warn( 'THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.' );
    		return new Uint16BufferAttribute( array, itemSize );
    
    	}
    
    	function Int32Attribute( array, itemSize ) {
    
    		console.warn( 'THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.' );
    		return new Int32BufferAttribute( array, itemSize );
    
    	}
    
    	function Uint32Attribute( array, itemSize ) {
    
    		console.warn( 'THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.' );
    		return new Uint32BufferAttribute( array, itemSize );
    
    	}
    
    	function Float32Attribute( array, itemSize ) {
    
    		console.warn( 'THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.' );
    		return new Float32BufferAttribute( array, itemSize );
    
    	}
    
    	function Float64Attribute( array, itemSize ) {
    
    		console.warn( 'THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.' );
    		return new Float64BufferAttribute( array, itemSize );
    
    	}
    
    	//
    
    	Curve.create = function ( construct, getPoint ) {
    
    		console.log( 'THREE.Curve.create() has been deprecated' );
    
    		construct.prototype = Object.create( Curve.prototype );
    		construct.prototype.constructor = construct;
    		construct.prototype.getPoint = getPoint;
    
    		return construct;
    
    	};
    
    	//
    
    	function ClosedSplineCurve3( points ) {
    
    		console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' );
    
    		CatmullRomCurve3.call( this, points );
    		this.type = 'catmullrom';
    		this.closed = true;
    
    	}
    
    	ClosedSplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype );
    
    	//
    
    	function SplineCurve3( points ) {
    
    		console.warn( 'THREE.SplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' );
    
    		CatmullRomCurve3.call( this, points );
    		this.type = 'catmullrom';
    
    	}
    
    	SplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype );
    
    	//
    
    	function Spline( points ) {
    
    		console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' );
    
    		CatmullRomCurve3.call( this, points );
    		this.type = 'catmullrom';
    
    	}
    
    	Spline.prototype = Object.create( CatmullRomCurve3.prototype );
    
    	Object.assign( Spline.prototype, {
    
    		initFromArray: function ( a ) {
    
    			console.error( 'THREE.Spline: .initFromArray() has been removed.' );
    
    		},
    		getControlPointsArray: function ( optionalTarget ) {
    
    			console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' );
    
    		},
    		reparametrizeByArcLength: function ( samplingCoef ) {
    
    			console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' );
    
    		}
    
    	} );
    
    	//
    	function BoundingBoxHelper( object, color ) {
    
    		console.warn( 'THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.' );
    		return new BoxHelper( object, color );
    
    	}
    
    	function EdgesHelper( object, hex ) {
    
    		console.warn( 'THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.' );
    		return new LineSegments( new EdgesGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) );
    
    	}
    
    	GridHelper.prototype.setColors = function () {
    
    		console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' );
    
    	};
    
    	function WireframeHelper( object, hex ) {
    
    		console.warn( 'THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.' );
    		return new LineSegments( new WireframeGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) );
    
    	}
    
    	//
    
    	function XHRLoader( manager ) {
    
    		console.warn( 'THREE.XHRLoader has been renamed to THREE.FileLoader.' );
    		return new FileLoader( manager );
    
    	}
    
    	function BinaryTextureLoader( manager ) {
    
    		console.warn( 'THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.' );
    		return new DataTextureLoader( manager );
    
    	}
    
    	//
    
    	Object.assign( Box2.prototype, {
    
    		center: function ( optionalTarget ) {
    
    			console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' );
    			return this.getCenter( optionalTarget );
    
    		},
    		empty: function () {
    
    			console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' );
    			return this.isEmpty();
    
    		},
    		isIntersectionBox: function ( box ) {
    
    			console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' );
    			return this.intersectsBox( box );
    
    		},
    		size: function ( optionalTarget ) {
    
    			console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' );
    			return this.getSize( optionalTarget );
    
    		}
    	} );
    
    	Object.assign( Box3.prototype, {
    
    		center: function ( optionalTarget ) {
    
    			console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' );
    			return this.getCenter( optionalTarget );
    
    		},
    		empty: function () {
    
    			console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' );
    			return this.isEmpty();
    
    		},
    		isIntersectionBox: function ( box ) {
    
    			console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' );
    			return this.intersectsBox( box );
    
    		},
    		isIntersectionSphere: function ( sphere ) {
    
    			console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
    			return this.intersectsSphere( sphere );
    
    		},
    		size: function ( optionalTarget ) {
    
    			console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' );
    			return this.getSize( optionalTarget );
    
    		}
    	} );
    
    	Line3.prototype.center = function ( optionalTarget ) {
    
    		console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' );
    		return this.getCenter( optionalTarget );
    
    	};
    
    	_Math.random16 = function () {
    
    		console.warn( 'THREE.Math.random16() has been deprecated. Use Math.random() instead.' );
    		return Math.random();
    
    	};
    
    	Object.assign( Matrix3.prototype, {
    
    		flattenToArrayOffset: function ( array, offset ) {
    
    			console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
    			return this.toArray( array, offset );
    
    		},
    		multiplyVector3: function ( vector ) {
    
    			console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' );
    			return vector.applyMatrix3( this );
    
    		},
    		multiplyVector3Array: function ( a ) {
    
    			console.warn( 'THREE.Matrix3: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' );
    			return this.applyToVector3Array( a );
    
    		},
    		applyToBuffer: function( buffer, offset, length ) {
    
    			console.warn( 'THREE.Matrix3: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' );
    			return this.applyToBufferAttribute( buffer );
    
    		},
    		applyToVector3Array: function( array, offset, length ) {
    
    			console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' );
    
    		}
    
    	} );
    
    	Object.assign( Matrix4.prototype, {
    
    		extractPosition: function ( m ) {
    
    			console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' );
    			return this.copyPosition( m );
    
    		},
    		flattenToArrayOffset: function ( array, offset ) {
    
    			console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
    			return this.toArray( array, offset );
    
    		},
    		getPosition: function () {
    
    			var v1;
    
    			return function getPosition() {
    
    				if ( v1 === undefined ) v1 = new Vector3();
    				console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
    				return v1.setFromMatrixColumn( this, 3 );
    
    			};
    
    		}(),
    		setRotationFromQuaternion: function ( q ) {
    
    			console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' );
    			return this.makeRotationFromQuaternion( q );
    
    		},
    		multiplyToArray: function () {
    
    			console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' );
    
    		},
    		multiplyVector3: function ( vector ) {
    
    			console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
    			return vector.applyMatrix4( this );
    
    		},
    		multiplyVector4: function ( vector ) {
    
    			console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
    			return vector.applyMatrix4( this );
    
    		},
    		multiplyVector3Array: function ( a ) {
    
    			console.warn( 'THREE.Matrix4: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' );
    			return this.applyToVector3Array( a );
    
    		},
    		rotateAxis: function ( v ) {
    
    			console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' );
    			v.transformDirection( this );
    
    		},
    		crossVector: function ( vector ) {
    
    			console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
    			return vector.applyMatrix4( this );
    
    		},
    		translate: function () {
    
    			console.error( 'THREE.Matrix4: .translate() has been removed.' );
    
    		},
    		rotateX: function () {
    
    			console.error( 'THREE.Matrix4: .rotateX() has been removed.' );
    
    		},
    		rotateY: function () {
    
    			console.error( 'THREE.Matrix4: .rotateY() has been removed.' );
    
    		},
    		rotateZ: function () {
    
    			console.error( 'THREE.Matrix4: .rotateZ() has been removed.' );
    
    		},
    		rotateByAxis: function () {
    
    			console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' );
    
    		},
    		applyToBuffer: function( buffer, offset, length ) {
    
    			console.warn( 'THREE.Matrix4: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' );
    			return this.applyToBufferAttribute( buffer );
    
    		},
    		applyToVector3Array: function( array, offset, length ) {
    
    			console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' );
    
    		},
    		makeFrustum: function( left, right, bottom, top, near, far ) {
    
    			console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' );
    			return this.makePerspective( left, right, top, bottom, near, far );
    
    		}
    
    	} );
    
    	Plane.prototype.isIntersectionLine = function ( line ) {
    
    		console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' );
    		return this.intersectsLine( line );
    
    	};
    
    	Quaternion.prototype.multiplyVector3 = function ( vector ) {
    
    		console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' );
    		return vector.applyQuaternion( this );
    
    	};
    
    	Object.assign( Ray.prototype, {
    
    		isIntersectionBox: function ( box ) {
    
    			console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' );
    			return this.intersectsBox( box );
    
    		},
    		isIntersectionPlane: function ( plane ) {
    
    			console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' );
    			return this.intersectsPlane( plane );
    
    		},
    		isIntersectionSphere: function ( sphere ) {
    
    			console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
    			return this.intersectsSphere( sphere );
    
    		}
    
    	} );
    
    	Object.assign( Shape.prototype, {
    
    		extrude: function ( options ) {
    
    			console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' );
    			return new ExtrudeGeometry( this, options );
    
    		},
    		makeGeometry: function ( options ) {
    
    			console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' );
    			return new ShapeGeometry( this, options );
    
    		}
    
    	} );
    
    	Object.assign( Vector2.prototype, {
    
    		fromAttribute: function ( attribute, index, offset ) {
    
    			console.error( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' );
    			return this.fromBufferAttribute( attribute, index, offset );
    
    		}
    
    	} );
    
    	Object.assign( Vector3.prototype, {
    
    		setEulerFromRotationMatrix: function () {
    
    			console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' );
    
    		},
    		setEulerFromQuaternion: function () {
    
    			console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' );
    
    		},
    		getPositionFromMatrix: function ( m ) {
    
    			console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' );
    			return this.setFromMatrixPosition( m );
    
    		},
    		getScaleFromMatrix: function ( m ) {
    
    			console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' );
    			return this.setFromMatrixScale( m );
    
    		},
    		getColumnFromMatrix: function ( index, matrix ) {
    
    			console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' );
    			return this.setFromMatrixColumn( matrix, index );
    
    		},
    		applyProjection: function ( m ) {
    
    			console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' );
    			return this.applyMatrix4( m );
    
    		},
    		fromAttribute: function ( attribute, index, offset ) {
    
    			console.error( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' );
    			return this.fromBufferAttribute( attribute, index, offset );
    
    		}
    
    	} );
    
    	Object.assign( Vector4.prototype, {
    
    		fromAttribute: function ( attribute, index, offset ) {
    
    			console.error( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' );
    			return this.fromBufferAttribute( attribute, index, offset );
    
    		}
    
    	} );
    
    	//
    
    	Geometry.prototype.computeTangents = function () {
    
    		console.warn( 'THREE.Geometry: .computeTangents() has been removed.' );
    
    	};
    
    	Object.assign( Object3D.prototype, {
    
    		getChildByName: function ( name ) {
    
    			console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' );
    			return this.getObjectByName( name );
    
    		},
    		renderDepth: function () {
    
    			console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' );
    
    		},
    		translate: function ( distance, axis ) {
    
    			console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' );
    			return this.translateOnAxis( axis, distance );
    
    		}
    
    	} );
    
    	Object.defineProperties( Object3D.prototype, {
    
    		eulerOrder: {
    			get: function () {
    
    				console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
    				return this.rotation.order;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
    				this.rotation.order = value;
    
    			}
    		},
    		useQuaternion: {
    			get: function () {
    
    				console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );
    
    			},
    			set: function () {
    
    				console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );
    
    			}
    		}
    
    	} );
    
    	Object.defineProperties( LOD.prototype, {
    
    		objects: {
    			get: function () {
    
    				console.warn( 'THREE.LOD: .objects has been renamed to .levels.' );
    				return this.levels;
    
    			}
    		}
    
    	} );
    
    	Object.defineProperty( Skeleton.prototype, 'useVertexTexture', {
    
    		get: function () {
    
    			console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );
    
    		},
    		set: function () {
    
    			console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );
    
    		}
    
    	} );
    
    	Object.defineProperty( Curve.prototype, '__arcLengthDivisions', {
    
    		get: function () {
    
    			console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
    			return this.arcLengthDivisions;
    
    		},
    		set: function ( value ) {
    
    			console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
    			this.arcLengthDivisions = value;
    
    		}
    
    	} );
    
    	//
    
    	PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) {
    
    		console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " +
    				"Use .setFocalLength and .filmGauge for a photographic setup." );
    
    		if ( filmGauge !== undefined ) this.filmGauge = filmGauge;
    		this.setFocalLength( focalLength );
    
    	};
    
    	//
    
    	Object.defineProperties( Light.prototype, {
    		onlyShadow: {
    			set: function () {
    
    				console.warn( 'THREE.Light: .onlyShadow has been removed.' );
    
    			}
    		},
    		shadowCameraFov: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' );
    				this.shadow.camera.fov = value;
    
    			}
    		},
    		shadowCameraLeft: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' );
    				this.shadow.camera.left = value;
    
    			}
    		},
    		shadowCameraRight: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' );
    				this.shadow.camera.right = value;
    
    			}
    		},
    		shadowCameraTop: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' );
    				this.shadow.camera.top = value;
    
    			}
    		},
    		shadowCameraBottom: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' );
    				this.shadow.camera.bottom = value;
    
    			}
    		},
    		shadowCameraNear: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' );
    				this.shadow.camera.near = value;
    
    			}
    		},
    		shadowCameraFar: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' );
    				this.shadow.camera.far = value;
    
    			}
    		},
    		shadowCameraVisible: {
    			set: function () {
    
    				console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' );
    
    			}
    		},
    		shadowBias: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' );
    				this.shadow.bias = value;
    
    			}
    		},
    		shadowDarkness: {
    			set: function () {
    
    				console.warn( 'THREE.Light: .shadowDarkness has been removed.' );
    
    			}
    		},
    		shadowMapWidth: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' );
    				this.shadow.mapSize.width = value;
    
    			}
    		},
    		shadowMapHeight: {
    			set: function ( value ) {
    
    				console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' );
    				this.shadow.mapSize.height = value;
    
    			}
    		}
    	} );
    
    	//
    
    	Object.defineProperties( BufferAttribute.prototype, {
    
    		length: {
    			get: function () {
    
    				console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' );
    				return this.array.length;
    
    			}
    		}
    
    	} );
    
    	Object.assign( BufferGeometry.prototype, {
    
    		addIndex: function ( index ) {
    
    			console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' );
    			this.setIndex( index );
    
    		},
    		addDrawCall: function ( start, count, indexOffset ) {
    
    			if ( indexOffset !== undefined ) {
    
    				console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' );
    
    			}
    			console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' );
    			this.addGroup( start, count );
    
    		},
    		clearDrawCalls: function () {
    
    			console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' );
    			this.clearGroups();
    
    		},
    		computeTangents: function () {
    
    			console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' );
    
    		},
    		computeOffsets: function () {
    
    			console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' );
    
    		}
    
    	} );
    
    	Object.defineProperties( BufferGeometry.prototype, {
    
    		drawcalls: {
    			get: function () {
    
    				console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' );
    				return this.groups;
    
    			}
    		},
    		offsets: {
    			get: function () {
    
    				console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' );
    				return this.groups;
    
    			}
    		}
    
    	} );
    
    	//
    
    	Object.defineProperties( Uniform.prototype, {
    
    		dynamic: {
    			set: function () {
    
    				console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' );
    
    			}
    		},
    		onUpdate: {
    			value: function () {
    
    				console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' );
    				return this;
    
    			}
    		}
    
    	} );
    
    	//
    
    	Object.defineProperties( Material.prototype, {
    
    		wrapAround: {
    			get: function () {
    
    				console.warn( 'THREE.Material: .wrapAround has been removed.' );
    
    			},
    			set: function () {
    
    				console.warn( 'THREE.Material: .wrapAround has been removed.' );
    
    			}
    		},
    		wrapRGB: {
    			get: function () {
    
    				console.warn( 'THREE.Material: .wrapRGB has been removed.' );
    				return new Color();
    
    			}
    		}
    
    	} );
    
    	Object.defineProperties( MeshPhongMaterial.prototype, {
    
    		metal: {
    			get: function () {
    
    				console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' );
    				return false;
    
    			},
    			set: function () {
    
    				console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' );
    
    			}
    		}
    
    	} );
    
    	Object.defineProperties( ShaderMaterial.prototype, {
    
    		derivatives: {
    			get: function () {
    
    				console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
    				return this.extensions.derivatives;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
    				this.extensions.derivatives = value;
    
    			}
    		}
    
    	} );
    
    	//
    
    	Object.assign( WebGLRenderer.prototype, {
    
    		getCurrentRenderTarget: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' );
    			return this.getRenderTarget();
    
    		},
    
    		supportsFloatTextures: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' );
    			return this.extensions.get( 'OES_texture_float' );
    
    		},
    		supportsHalfFloatTextures: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' );
    			return this.extensions.get( 'OES_texture_half_float' );
    
    		},
    		supportsStandardDerivatives: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' );
    			return this.extensions.get( 'OES_standard_derivatives' );
    
    		},
    		supportsCompressedTextureS3TC: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' );
    			return this.extensions.get( 'WEBGL_compressed_texture_s3tc' );
    
    		},
    		supportsCompressedTexturePVRTC: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' );
    			return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' );
    
    		},
    		supportsBlendMinMax: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' );
    			return this.extensions.get( 'EXT_blend_minmax' );
    
    		},
    		supportsVertexTextures: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' );
    			return this.capabilities.vertexTextures;
    
    		},
    		supportsInstancedArrays: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' );
    			return this.extensions.get( 'ANGLE_instanced_arrays' );
    
    		},
    		enableScissorTest: function ( boolean ) {
    
    			console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' );
    			this.setScissorTest( boolean );
    
    		},
    		initMaterial: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' );
    
    		},
    		addPrePlugin: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' );
    
    		},
    		addPostPlugin: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' );
    
    		},
    		updateShadowMap: function () {
    
    			console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' );
    
    		}
    
    	} );
    
    	Object.defineProperties( WebGLRenderer.prototype, {
    
    		shadowMapEnabled: {
    			get: function () {
    
    				return this.shadowMap.enabled;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' );
    				this.shadowMap.enabled = value;
    
    			}
    		},
    		shadowMapType: {
    			get: function () {
    
    				return this.shadowMap.type;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' );
    				this.shadowMap.type = value;
    
    			}
    		},
    		shadowMapCullFace: {
    			get: function () {
    
    				return this.shadowMap.cullFace;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace is now .shadowMap.cullFace.' );
    				this.shadowMap.cullFace = value;
    
    			}
    		}
    	} );
    
    	Object.defineProperties( WebGLShadowMap.prototype, {
    
    		cullFace: {
    			get: function () {
    
    				return this.renderReverseSided ? CullFaceFront : CullFaceBack;
    
    			},
    			set: function ( cullFace ) {
    
    				var value = ( cullFace !== CullFaceBack );
    				console.warn( "WebGLRenderer: .shadowMap.cullFace is deprecated. Set .shadowMap.renderReverseSided to " + value + "." );
    				this.renderReverseSided = value;
    
    			}
    		}
    
    	} );
    
    	//
    
    	Object.defineProperties( WebGLRenderTarget.prototype, {
    
    		wrapS: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
    				return this.texture.wrapS;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
    				this.texture.wrapS = value;
    
    			}
    		},
    		wrapT: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
    				return this.texture.wrapT;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
    				this.texture.wrapT = value;
    
    			}
    		},
    		magFilter: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
    				return this.texture.magFilter;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
    				this.texture.magFilter = value;
    
    			}
    		},
    		minFilter: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
    				return this.texture.minFilter;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
    				this.texture.minFilter = value;
    
    			}
    		},
    		anisotropy: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
    				return this.texture.anisotropy;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
    				this.texture.anisotropy = value;
    
    			}
    		},
    		offset: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
    				return this.texture.offset;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
    				this.texture.offset = value;
    
    			}
    		},
    		repeat: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
    				return this.texture.repeat;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
    				this.texture.repeat = value;
    
    			}
    		},
    		format: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
    				return this.texture.format;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
    				this.texture.format = value;
    
    			}
    		},
    		type: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
    				return this.texture.type;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
    				this.texture.type = value;
    
    			}
    		},
    		generateMipmaps: {
    			get: function () {
    
    				console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
    				return this.texture.generateMipmaps;
    
    			},
    			set: function ( value ) {
    
    				console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
    				this.texture.generateMipmaps = value;
    
    			}
    		}
    
    	} );
    
    	//
    
    	Audio.prototype.load = function ( file ) {
    
    		console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' );
    		var scope = this;
    		var audioLoader = new AudioLoader();
    		audioLoader.load( file, function ( buffer ) {
    
    			scope.setBuffer( buffer );
    
    		} );
    		return this;
    
    	};
    
    	AudioAnalyser.prototype.getData = function () {
    
    		console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' );
    		return this.getFrequencyData();
    
    	};
    
    	//
    
    	var GeometryUtils = {
    
    		merge: function ( geometry1, geometry2, materialIndexOffset ) {
    
    			console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' );
    			var matrix;
    
    			if ( geometry2.isMesh ) {
    
    				geometry2.matrixAutoUpdate && geometry2.updateMatrix();
    
    				matrix = geometry2.matrix;
    				geometry2 = geometry2.geometry;
    
    			}
    
    			geometry1.merge( geometry2, matrix, materialIndexOffset );
    
    		},
    
    		center: function ( geometry ) {
    
    			console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' );
    			return geometry.center();
    
    		}
    
    	};
    
    	var ImageUtils = {
    
    		crossOrigin: undefined,
    
    		loadTexture: function ( url, mapping, onLoad, onError ) {
    
    			console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' );
    
    			var loader = new TextureLoader();
    			loader.setCrossOrigin( this.crossOrigin );
    
    			var texture = loader.load( url, onLoad, undefined, onError );
    
    			if ( mapping ) texture.mapping = mapping;
    
    			return texture;
    
    		},
    
    		loadTextureCube: function ( urls, mapping, onLoad, onError ) {
    
    			console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' );
    
    			var loader = new CubeTextureLoader();
    			loader.setCrossOrigin( this.crossOrigin );
    
    			var texture = loader.load( urls, onLoad, undefined, onError );
    
    			if ( mapping ) texture.mapping = mapping;
    
    			return texture;
    
    		},
    
    		loadCompressedTexture: function () {
    
    			console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' );
    
    		},
    
    		loadCompressedTextureCube: function () {
    
    			console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' );
    
    		}
    
    	};
    
    	//
    
    	function Projector() {
    
    		console.error( 'THREE.Projector has been moved to /examples/js/renderers/Projector.js.' );
    
    		this.projectVector = function ( vector, camera ) {
    
    			console.warn( 'THREE.Projector: .projectVector() is now vector.project().' );
    			vector.project( camera );
    
    		};
    
    		this.unprojectVector = function ( vector, camera ) {
    
    			console.warn( 'THREE.Projector: .unprojectVector() is now vector.unproject().' );
    			vector.unproject( camera );
    
    		};
    
    		this.pickingRay = function () {
    
    			console.error( 'THREE.Projector: .pickingRay() is now raycaster.setFromCamera().' );
    
    		};
    
    	}
    
    	//
    
    	function CanvasRenderer() {
    
    		console.error( 'THREE.CanvasRenderer has been moved to /examples/js/renderers/CanvasRenderer.js' );
    
    		this.domElement = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
    		this.clear = function () {};
    		this.render = function () {};
    		this.setClearColor = function () {};
    		this.setSize = function () {};
    
    	}
    
    	exports.WebGLRenderTargetCube = WebGLRenderTargetCube;
    	exports.WebGLRenderTarget = WebGLRenderTarget;
    	exports.WebGLRenderer = WebGLRenderer;
    	exports.ShaderLib = ShaderLib;
    	exports.UniformsLib = UniformsLib;
    	exports.UniformsUtils = UniformsUtils;
    	exports.ShaderChunk = ShaderChunk;
    	exports.FogExp2 = FogExp2;
    	exports.Fog = Fog;
    	exports.Scene = Scene;
    	exports.LensFlare = LensFlare;
    	exports.Sprite = Sprite;
    	exports.LOD = LOD;
    	exports.SkinnedMesh = SkinnedMesh;
    	exports.Skeleton = Skeleton;
    	exports.Bone = Bone;
    	exports.Mesh = Mesh;
    	exports.LineSegments = LineSegments;
    	exports.LineLoop = LineLoop;
    	exports.Line = Line;
    	exports.Points = Points;
    	exports.Group = Group;
    	exports.VideoTexture = VideoTexture;
    	exports.DataTexture = DataTexture;
    	exports.CompressedTexture = CompressedTexture;
    	exports.CubeTexture = CubeTexture;
    	exports.CanvasTexture = CanvasTexture;
    	exports.DepthTexture = DepthTexture;
    	exports.Texture = Texture;
    	exports.CompressedTextureLoader = CompressedTextureLoader;
    	exports.DataTextureLoader = DataTextureLoader;
    	exports.CubeTextureLoader = CubeTextureLoader;
    	exports.TextureLoader = TextureLoader;
    	exports.ObjectLoader = ObjectLoader;
    	exports.MaterialLoader = MaterialLoader;
    	exports.BufferGeometryLoader = BufferGeometryLoader;
    	exports.DefaultLoadingManager = DefaultLoadingManager;
    	exports.LoadingManager = LoadingManager;
    	exports.JSONLoader = JSONLoader;
    	exports.ImageLoader = ImageLoader;
    	exports.FontLoader = FontLoader;
    	exports.FileLoader = FileLoader;
    	exports.Loader = Loader;
    	exports.Cache = Cache;
    	exports.AudioLoader = AudioLoader;
    	exports.SpotLightShadow = SpotLightShadow;
    	exports.SpotLight = SpotLight;
    	exports.PointLight = PointLight;
    	exports.RectAreaLight = RectAreaLight;
    	exports.HemisphereLight = HemisphereLight;
    	exports.DirectionalLightShadow = DirectionalLightShadow;
    	exports.DirectionalLight = DirectionalLight;
    	exports.AmbientLight = AmbientLight;
    	exports.LightShadow = LightShadow;
    	exports.Light = Light;
    	exports.StereoCamera = StereoCamera;
    	exports.PerspectiveCamera = PerspectiveCamera;
    	exports.OrthographicCamera = OrthographicCamera;
    	exports.CubeCamera = CubeCamera;
    	exports.ArrayCamera = ArrayCamera;
    	exports.Camera = Camera;
    	exports.AudioListener = AudioListener;
    	exports.PositionalAudio = PositionalAudio;
    	exports.AudioContext = AudioContext;
    	exports.AudioAnalyser = AudioAnalyser;
    	exports.Audio = Audio;
    	exports.VectorKeyframeTrack = VectorKeyframeTrack;
    	exports.StringKeyframeTrack = StringKeyframeTrack;
    	exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack;
    	exports.NumberKeyframeTrack = NumberKeyframeTrack;
    	exports.ColorKeyframeTrack = ColorKeyframeTrack;
    	exports.BooleanKeyframeTrack = BooleanKeyframeTrack;
    	exports.PropertyMixer = PropertyMixer;
    	exports.PropertyBinding = PropertyBinding;
    	exports.KeyframeTrack = KeyframeTrack;
    	exports.AnimationUtils = AnimationUtils;
    	exports.AnimationObjectGroup = AnimationObjectGroup;
    	exports.AnimationMixer = AnimationMixer;
    	exports.AnimationClip = AnimationClip;
    	exports.Uniform = Uniform;
    	exports.InstancedBufferGeometry = InstancedBufferGeometry;
    	exports.BufferGeometry = BufferGeometry;
    	exports.GeometryIdCount = GeometryIdCount;
    	exports.Geometry = Geometry;
    	exports.InterleavedBufferAttribute = InterleavedBufferAttribute;
    	exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer;
    	exports.InterleavedBuffer = InterleavedBuffer;
    	exports.InstancedBufferAttribute = InstancedBufferAttribute;
    	exports.Face3 = Face3;
    	exports.Object3D = Object3D;
    	exports.Raycaster = Raycaster;
    	exports.Layers = Layers;
    	exports.EventDispatcher = EventDispatcher;
    	exports.Clock = Clock;
    	exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant;
    	exports.LinearInterpolant = LinearInterpolant;
    	exports.DiscreteInterpolant = DiscreteInterpolant;
    	exports.CubicInterpolant = CubicInterpolant;
    	exports.Interpolant = Interpolant;
    	exports.Triangle = Triangle;
    	exports.Math = _Math;
    	exports.Spherical = Spherical;
    	exports.Cylindrical = Cylindrical;
    	exports.Plane = Plane;
    	exports.Frustum = Frustum;
    	exports.Sphere = Sphere;
    	exports.Ray = Ray;
    	exports.Matrix4 = Matrix4;
    	exports.Matrix3 = Matrix3;
    	exports.Box3 = Box3;
    	exports.Box2 = Box2;
    	exports.Line3 = Line3;
    	exports.Euler = Euler;
    	exports.Vector4 = Vector4;
    	exports.Vector3 = Vector3;
    	exports.Vector2 = Vector2;
    	exports.Quaternion = Quaternion;
    	exports.Color = Color;
    	exports.MorphBlendMesh = MorphBlendMesh;
    	exports.ImmediateRenderObject = ImmediateRenderObject;
    	exports.VertexNormalsHelper = VertexNormalsHelper;
    	exports.SpotLightHelper = SpotLightHelper;
    	exports.SkeletonHelper = SkeletonHelper;
    	exports.PointLightHelper = PointLightHelper;
    	exports.RectAreaLightHelper = RectAreaLightHelper;
    	exports.HemisphereLightHelper = HemisphereLightHelper;
    	exports.GridHelper = GridHelper;
    	exports.PolarGridHelper = PolarGridHelper;
    	exports.FaceNormalsHelper = FaceNormalsHelper;
    	exports.DirectionalLightHelper = DirectionalLightHelper;
    	exports.CameraHelper = CameraHelper;
    	exports.BoxHelper = BoxHelper;
    	exports.ArrowHelper = ArrowHelper;
    	exports.AxisHelper = AxisHelper;
    	exports.CatmullRomCurve3 = CatmullRomCurve3;
    	exports.CubicBezierCurve3 = CubicBezierCurve3;
    	exports.QuadraticBezierCurve3 = QuadraticBezierCurve3;
    	exports.LineCurve3 = LineCurve3;
    	exports.ArcCurve = ArcCurve;
    	exports.EllipseCurve = EllipseCurve;
    	exports.SplineCurve = SplineCurve;
    	exports.CubicBezierCurve = CubicBezierCurve;
    	exports.QuadraticBezierCurve = QuadraticBezierCurve;
    	exports.LineCurve = LineCurve;
    	exports.Shape = Shape;
    	exports.Path = Path;
    	exports.ShapePath = ShapePath;
    	exports.Font = Font;
    	exports.CurvePath = CurvePath;
    	exports.Curve = Curve;
    	exports.ShapeUtils = ShapeUtils;
    	exports.SceneUtils = SceneUtils;
    	exports.WireframeGeometry = WireframeGeometry;
    	exports.ParametricGeometry = ParametricGeometry;
    	exports.ParametricBufferGeometry = ParametricBufferGeometry;
    	exports.TetrahedronGeometry = TetrahedronGeometry;
    	exports.TetrahedronBufferGeometry = TetrahedronBufferGeometry;
    	exports.OctahedronGeometry = OctahedronGeometry;
    	exports.OctahedronBufferGeometry = OctahedronBufferGeometry;
    	exports.IcosahedronGeometry = IcosahedronGeometry;
    	exports.IcosahedronBufferGeometry = IcosahedronBufferGeometry;
    	exports.DodecahedronGeometry = DodecahedronGeometry;
    	exports.DodecahedronBufferGeometry = DodecahedronBufferGeometry;
    	exports.PolyhedronGeometry = PolyhedronGeometry;
    	exports.PolyhedronBufferGeometry = PolyhedronBufferGeometry;
    	exports.TubeGeometry = TubeGeometry;
    	exports.TubeBufferGeometry = TubeBufferGeometry;
    	exports.TorusKnotGeometry = TorusKnotGeometry;
    	exports.TorusKnotBufferGeometry = TorusKnotBufferGeometry;
    	exports.TorusGeometry = TorusGeometry;
    	exports.TorusBufferGeometry = TorusBufferGeometry;
    	exports.TextGeometry = TextGeometry;
    	exports.TextBufferGeometry = TextBufferGeometry;
    	exports.SphereGeometry = SphereGeometry;
    	exports.SphereBufferGeometry = SphereBufferGeometry;
    	exports.RingGeometry = RingGeometry;
    	exports.RingBufferGeometry = RingBufferGeometry;
    	exports.PlaneGeometry = PlaneGeometry;
    	exports.PlaneBufferGeometry = PlaneBufferGeometry;
    	exports.LatheGeometry = LatheGeometry;
    	exports.LatheBufferGeometry = LatheBufferGeometry;
    	exports.ShapeGeometry = ShapeGeometry;
    	exports.ShapeBufferGeometry = ShapeBufferGeometry;
    	exports.ExtrudeGeometry = ExtrudeGeometry;
    	exports.ExtrudeBufferGeometry = ExtrudeBufferGeometry;
    	exports.EdgesGeometry = EdgesGeometry;
    	exports.ConeGeometry = ConeGeometry;
    	exports.ConeBufferGeometry = ConeBufferGeometry;
    	exports.CylinderGeometry = CylinderGeometry;
    	exports.CylinderBufferGeometry = CylinderBufferGeometry;
    	exports.CircleGeometry = CircleGeometry;
    	exports.CircleBufferGeometry = CircleBufferGeometry;
    	exports.BoxGeometry = BoxGeometry;
    	exports.BoxBufferGeometry = BoxBufferGeometry;
    	exports.ShadowMaterial = ShadowMaterial;
    	exports.SpriteMaterial = SpriteMaterial;
    	exports.RawShaderMaterial = RawShaderMaterial;
    	exports.ShaderMaterial = ShaderMaterial;
    	exports.PointsMaterial = PointsMaterial;
    	exports.MeshPhysicalMaterial = MeshPhysicalMaterial;
    	exports.MeshStandardMaterial = MeshStandardMaterial;
    	exports.MeshPhongMaterial = MeshPhongMaterial;
    	exports.MeshToonMaterial = MeshToonMaterial;
    	exports.MeshNormalMaterial = MeshNormalMaterial;
    	exports.MeshLambertMaterial = MeshLambertMaterial;
    	exports.MeshDepthMaterial = MeshDepthMaterial;
    	exports.MeshBasicMaterial = MeshBasicMaterial;
    	exports.LineDashedMaterial = LineDashedMaterial;
    	exports.LineBasicMaterial = LineBasicMaterial;
    	exports.Material = Material;
    	exports.Float64BufferAttribute = Float64BufferAttribute;
    	exports.Float32BufferAttribute = Float32BufferAttribute;
    	exports.Uint32BufferAttribute = Uint32BufferAttribute;
    	exports.Int32BufferAttribute = Int32BufferAttribute;
    	exports.Uint16BufferAttribute = Uint16BufferAttribute;
    	exports.Int16BufferAttribute = Int16BufferAttribute;
    	exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute;
    	exports.Uint8BufferAttribute = Uint8BufferAttribute;
    	exports.Int8BufferAttribute = Int8BufferAttribute;
    	exports.BufferAttribute = BufferAttribute;
    	exports.REVISION = REVISION;
    	exports.MOUSE = MOUSE;
    	exports.CullFaceNone = CullFaceNone;
    	exports.CullFaceBack = CullFaceBack;
    	exports.CullFaceFront = CullFaceFront;
    	exports.CullFaceFrontBack = CullFaceFrontBack;
    	exports.FrontFaceDirectionCW = FrontFaceDirectionCW;
    	exports.FrontFaceDirectionCCW = FrontFaceDirectionCCW;
    	exports.BasicShadowMap = BasicShadowMap;
    	exports.PCFShadowMap = PCFShadowMap;
    	exports.PCFSoftShadowMap = PCFSoftShadowMap;
    	exports.FrontSide = FrontSide;
    	exports.BackSide = BackSide;
    	exports.DoubleSide = DoubleSide;
    	exports.FlatShading = FlatShading;
    	exports.SmoothShading = SmoothShading;
    	exports.NoColors = NoColors;
    	exports.FaceColors = FaceColors;
    	exports.VertexColors = VertexColors;
    	exports.NoBlending = NoBlending;
    	exports.NormalBlending = NormalBlending;
    	exports.AdditiveBlending = AdditiveBlending;
    	exports.SubtractiveBlending = SubtractiveBlending;
    	exports.MultiplyBlending = MultiplyBlending;
    	exports.CustomBlending = CustomBlending;
    	exports.AddEquation = AddEquation;
    	exports.SubtractEquation = SubtractEquation;
    	exports.ReverseSubtractEquation = ReverseSubtractEquation;
    	exports.MinEquation = MinEquation;
    	exports.MaxEquation = MaxEquation;
    	exports.ZeroFactor = ZeroFactor;
    	exports.OneFactor = OneFactor;
    	exports.SrcColorFactor = SrcColorFactor;
    	exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor;
    	exports.SrcAlphaFactor = SrcAlphaFactor;
    	exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor;
    	exports.DstAlphaFactor = DstAlphaFactor;
    	exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor;
    	exports.DstColorFactor = DstColorFactor;
    	exports.OneMinusDstColorFactor = OneMinusDstColorFactor;
    	exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor;
    	exports.NeverDepth = NeverDepth;
    	exports.AlwaysDepth = AlwaysDepth;
    	exports.LessDepth = LessDepth;
    	exports.LessEqualDepth = LessEqualDepth;
    	exports.EqualDepth = EqualDepth;
    	exports.GreaterEqualDepth = GreaterEqualDepth;
    	exports.GreaterDepth = GreaterDepth;
    	exports.NotEqualDepth = NotEqualDepth;
    	exports.MultiplyOperation = MultiplyOperation;
    	exports.MixOperation = MixOperation;
    	exports.AddOperation = AddOperation;
    	exports.NoToneMapping = NoToneMapping;
    	exports.LinearToneMapping = LinearToneMapping;
    	exports.ReinhardToneMapping = ReinhardToneMapping;
    	exports.Uncharted2ToneMapping = Uncharted2ToneMapping;
    	exports.CineonToneMapping = CineonToneMapping;
    	exports.UVMapping = UVMapping;
    	exports.CubeReflectionMapping = CubeReflectionMapping;
    	exports.CubeRefractionMapping = CubeRefractionMapping;
    	exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping;
    	exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping;
    	exports.SphericalReflectionMapping = SphericalReflectionMapping;
    	exports.CubeUVReflectionMapping = CubeUVReflectionMapping;
    	exports.CubeUVRefractionMapping = CubeUVRefractionMapping;
    	exports.RepeatWrapping = RepeatWrapping;
    	exports.ClampToEdgeWrapping = ClampToEdgeWrapping;
    	exports.MirroredRepeatWrapping = MirroredRepeatWrapping;
    	exports.NearestFilter = NearestFilter;
    	exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter;
    	exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter;
    	exports.LinearFilter = LinearFilter;
    	exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter;
    	exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter;
    	exports.UnsignedByteType = UnsignedByteType;
    	exports.ByteType = ByteType;
    	exports.ShortType = ShortType;
    	exports.UnsignedShortType = UnsignedShortType;
    	exports.IntType = IntType;
    	exports.UnsignedIntType = UnsignedIntType;
    	exports.FloatType = FloatType;
    	exports.HalfFloatType = HalfFloatType;
    	exports.UnsignedShort4444Type = UnsignedShort4444Type;
    	exports.UnsignedShort5551Type = UnsignedShort5551Type;
    	exports.UnsignedShort565Type = UnsignedShort565Type;
    	exports.UnsignedInt248Type = UnsignedInt248Type;
    	exports.AlphaFormat = AlphaFormat;
    	exports.RGBFormat = RGBFormat;
    	exports.RGBAFormat = RGBAFormat;
    	exports.LuminanceFormat = LuminanceFormat;
    	exports.LuminanceAlphaFormat = LuminanceAlphaFormat;
    	exports.RGBEFormat = RGBEFormat;
    	exports.DepthFormat = DepthFormat;
    	exports.DepthStencilFormat = DepthStencilFormat;
    	exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format;
    	exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format;
    	exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format;
    	exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format;
    	exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format;
    	exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format;
    	exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format;
    	exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format;
    	exports.RGB_ETC1_Format = RGB_ETC1_Format;
    	exports.LoopOnce = LoopOnce;
    	exports.LoopRepeat = LoopRepeat;
    	exports.LoopPingPong = LoopPingPong;
    	exports.InterpolateDiscrete = InterpolateDiscrete;
    	exports.InterpolateLinear = InterpolateLinear;
    	exports.InterpolateSmooth = InterpolateSmooth;
    	exports.ZeroCurvatureEnding = ZeroCurvatureEnding;
    	exports.ZeroSlopeEnding = ZeroSlopeEnding;
    	exports.WrapAroundEnding = WrapAroundEnding;
    	exports.TrianglesDrawMode = TrianglesDrawMode;
    	exports.TriangleStripDrawMode = TriangleStripDrawMode;
    	exports.TriangleFanDrawMode = TriangleFanDrawMode;
    	exports.LinearEncoding = LinearEncoding;
    	exports.sRGBEncoding = sRGBEncoding;
    	exports.GammaEncoding = GammaEncoding;
    	exports.RGBEEncoding = RGBEEncoding;
    	exports.LogLuvEncoding = LogLuvEncoding;
    	exports.RGBM7Encoding = RGBM7Encoding;
    	exports.RGBM16Encoding = RGBM16Encoding;
    	exports.RGBDEncoding = RGBDEncoding;
    	exports.BasicDepthPacking = BasicDepthPacking;
    	exports.RGBADepthPacking = RGBADepthPacking;
    	exports.CubeGeometry = BoxGeometry;
    	exports.Face4 = Face4;
    	exports.LineStrip = LineStrip;
    	exports.LinePieces = LinePieces;
    	exports.MeshFaceMaterial = MeshFaceMaterial;
    	exports.MultiMaterial = MultiMaterial;
    	exports.PointCloud = PointCloud;
    	exports.Particle = Particle;
    	exports.ParticleSystem = ParticleSystem;
    	exports.PointCloudMaterial = PointCloudMaterial;
    	exports.ParticleBasicMaterial = ParticleBasicMaterial;
    	exports.ParticleSystemMaterial = ParticleSystemMaterial;
    	exports.Vertex = Vertex;
    	exports.DynamicBufferAttribute = DynamicBufferAttribute;
    	exports.Int8Attribute = Int8Attribute;
    	exports.Uint8Attribute = Uint8Attribute;
    	exports.Uint8ClampedAttribute = Uint8ClampedAttribute;
    	exports.Int16Attribute = Int16Attribute;
    	exports.Uint16Attribute = Uint16Attribute;
    	exports.Int32Attribute = Int32Attribute;
    	exports.Uint32Attribute = Uint32Attribute;
    	exports.Float32Attribute = Float32Attribute;
    	exports.Float64Attribute = Float64Attribute;
    	exports.ClosedSplineCurve3 = ClosedSplineCurve3;
    	exports.SplineCurve3 = SplineCurve3;
    	exports.Spline = Spline;
    	exports.BoundingBoxHelper = BoundingBoxHelper;
    	exports.EdgesHelper = EdgesHelper;
    	exports.WireframeHelper = WireframeHelper;
    	exports.XHRLoader = XHRLoader;
    	exports.BinaryTextureLoader = BinaryTextureLoader;
    	exports.GeometryUtils = GeometryUtils;
    	exports.ImageUtils = ImageUtils;
    	exports.Projector = Projector;
    	exports.CanvasRenderer = CanvasRenderer;
    
    	Object.defineProperty(exports, '__esModule', { value: true });
    
    })));