Skip to content
Snippets Groups Projects
Commit 375ed272 authored by Sam Calisch's avatar Sam Calisch
Browse files

added initial hex spiral cut files

parent e7e5a9e4
No related branches found
No related tags found
No related merge requests found
File added
This diff is collapsed.
#!/usr/bin/env python
from __future__ import division,absolute_import
import rhinoscriptsyntax as rs
from math import *
import sys
#simple class for vec2
class V2(object):
def __init__(self,*args):
if len(args)>1:
self.x = args[0]
self.y = args[1]
else:
self.x = args[0][0]
self.y = args[0][1]
self.p3l = [self.x,self.y,0]
def __add__(self,other):
return V2(self.x+other.x,self.y+other.y)
def __sub__(self,other):
return V2(self.x-other.x,self.y-other.y)
def __mul__(self,other):
try:
return V2(self.x*other.x,self.y*other.y)
except(AttributeError):
return V2(self.x*other,self.y*other)
def __rmul__(self,other):
try:
return V2(self.x*other.x, self.y*other.y)
except(AttributeError):
return V2(self.x*other,self.y*other)
def __getitem__(self,index):
return [self.x,self.y][index]
def __repr__(self):
return "V2(%.6f,%.6f)"%(self.x,self.y)
def rotate(self,th):
return V2(self.x*cos(th)-self.y*sin(th), self.x*sin(th)+self.y*cos(th))
def rotate90(self):
return V2(-self.y,self.x)
def rotate_p(self,b,th):
return b + (self-b).rotate(th)
def magnitude(self):
return sqrt(self.x*self.x + self.y*self.y)
def normalized(self):
return self*(1./self.magnitude())
def dot(self,other):
return self.x*other.x + self.y*other.y
def cross(self,other):
return self.x*other.y - self.y*other.x
def angle_between(self,other):
#unsigned angle between two vectors
c = self.cross(other)
return atan2(c,self.dot(other))
def projected_onto(self,other):
return ((self.dot(other))/(other.dot(other)))*other
def projected_orthogonal_to(self,other):
return self - self.projected_onto(other)
def close(self,other,tol=1e-6):
return (abs(self.x-other.x)<tol) and (abs(self.y-other.y)<tol)
def p3lz(self,z):
return [self.x,self.y,z]
# a few helper functions
def line(p1,p2,layer,bridge_w=0,cut_w=0):
d = p2-p1; dl = d.magnitude()
if dl==0:
return None
dn = d.normalized()
if bridge_w==0 or cut_w==0:
rs.CurrentLayer(layer)
return rs.AddLine(p1.p3l, p2.p3l)
else:
rs.CurrentLayer(layer)
output = []; dist = bridge_w
ds = []
while dist < dl-2*bridge_w:#-cut_w:
ds.append((dist, dist+cut_w))
#print bridge_w, (p1+dist*dn).p3l , (p1+(dist+bridge_w)*dn).p3l
dist += cut_w+bridge_w
#leftover = dl-bridge_w-cut_w - dist + cut_w+bridge_w
leftover = dl-bridge_w - dist + cut_w+bridge_w
for pair in ds:
output.append(rs.AddLine( (p1+(pair[0] + leftover/2)*dn).p3l , (p1+(pair[1]+ leftover/2)*dn).p3l) )
return output
def circle(c,d,layer):
rs.CurrentLayer(layer)
return rs.AddCircle(c.p3l, .5*d)
def arc(c,d,th1,th2,layer):
rs.CurrentLayer(layer)
p1 = c + d/2*V2(cos(pi/180.*th1),sin(pi/180.*th1))
p2 = c + d/2*V2(cos(pi/180.*th2),sin(pi/180.*th2))
pm = c + d/2*V2(cos(pi/180.*(th1+th2)/2),sin(pi/180.*(th1+th2)/2))
return rs.AddArc3Pt(p1.p3l,p2.p3l,pm.p3l)
def filleted_hex(c,R,r,layer):
crvs = []
x = r/sqrt(3)
for i in range(6):
v0 = R*V2(cos(i*2*pi/6),sin(i*2*pi/6))
v1 = R*V2(cos((i+1)*2*pi/6),sin((i+1)*2*pi/6))
d = (v1 - v0).normalized()
crvs.append( line( c+v0 + x*d, c+v1 - x*d, layer) )
crvs.append( arc( c+v0-2*x*v0.normalized(),2*r,-30+i*60,30+i*60, layer) )
return crvs
#main
def main():
rs.AddLayer('magnets_a',(255,0,0))
rs.AddLayer('magnets_b',(0,255,255))
rs.AddLayer('holes',(0,255,0))
rs.AddLayer('coils',(0,0,255))
rs.AddLayer('frame',(255,0,255))
mag_d = 3.12 #mm, diameter of magnets, as cut by laser
hole_d = 6 #mm, diameter of air hole
s = 6 #mm, hex lattice side length (2xmag_d?)
s32 = s*sqrt(3)/2.
frame_inner = 60 #mm, radius / side length of inner hex of frame
frame_inner_fillet = 10 #mm, fillet radius
frame_outer = 80 #mm, radius / side length of outer hex of frame
frame_outer_fillet = 20 #mm, fillet radius
frame_bolt_d = 4.1 #mm, diameter of bolt holes
wire_pitch = 2*.088 #mm, pitch, .088 = measured diameter (.080) + .008 mm slop (10% applied)
N = 11 #number of turns
Nr = 4 #number of radial layers in the hex lattice
#make frame
frame = []
frame += filleted_hex(V2(0,0), frame_inner, frame_inner_fillet, 'frame')
frame += filleted_hex(V2(0,0), frame_outer, frame_outer_fillet, 'frame')
for i in range(6):
v0 = .5*(frame_inner+frame_outer)*V2(cos(i*2*pi/6),sin(i*2*pi/6))
v1 = .5*(frame_inner+frame_outer)*V2(cos((i+1)*2*pi/6),sin((i+1)*2*pi/6))
frame += [
circle(v0, frame_bolt_d, 'frame'),
circle(.5*(v0+v1), frame_bolt_d, 'frame'),
]
#make magnet grid and air hole grid
magnets = [];
magnets += [circle(V2(0,0),mag_d,'magnets_a')]
for i in range(3): #3-fold angular symmetry
vr = V2(cos(i*2*pi/3),sin(i*2*pi/3))
vth = V2(cos(i*2*pi/3+pi/2),sin(i*2*pi/3+pi/2))
vk = V2(cos((i+1)*2*pi/3),sin((i+1)*2*pi/3))
for j in range(Nr):
for k in range(Nr+1):
magnets += [circle(2*s32*vr*(j+1) + 2*s32*vk*k, mag_d, 'magnets_a')]
if k<Nr:
magnets += [
circle(2*s32*vr*(j+.5) + 2*s32*vk*k + .5*s*vth, mag_d, 'magnets_b'),
circle(2*s32*vr*j + 2*s32*vk*k + s*vth, hole_d, 'holes'),
]
if __name__ == '__main__':
main()
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment