@@ -14,14 +14,12 @@ My group's collective documentation lives [here](../../../mechanical-machine-des
...
@@ -14,14 +14,12 @@ My group's collective documentation lives [here](../../../mechanical-machine-des
### Mechanical Design
### Mechanical Design
Having the most Fusion 360 experience in the group, I did most of the modeling work. This was largely an exercise in arranging Jake's parametric axes. However we did have to fix a few sketches in the axes after modifying parameters (since they would rebuild with errors). I also changed Jake's parametric angle bracket into a box bracket. The original purpose of this part was to lift the X axis above the Y axes (to gain additional Z travel), but we ended up leaving it out in order to increase stiffness. Design files are linked on the group page.
Having the most Fusion 360 experience in the group, I did most of the modeling work. This was largely an exercise in arranging Jake's parametric axes. However we did have to fix a few sketches in the axes after modifying parameters (since they would rebuild with errors). I also changed Jake's parametric angle bracket into a box bracket. The original purpose of this part was to lift the X axis above the Y axes (to gain additional Z travel), but we ended up leaving it out in order to increase stiffness. Design files are linked on the group page. The video below is from our late-night design session.
The main flaw in our design is that the end effector is much more massive than our axes can reasonably support. This was mostly due to our aggressive design timeline: we wanted to finish our design in the first day, so the end effector and gantry system were designed completely in parallel. So by the time we combined them, there wasn't time to go back and stiffen up our axes. Though clearly we would have benefited from some additional communication between Filippos and I during the design process.
Shout-out to the ACT crew for letting us use their awesome space.
The main flaw in our design is that the end effector is much more massive than our axes can reasonably support. This was mostly due to our aggressive design timeline: we wanted to finish our design in the first day, so the end effector and gantry system were designed completely in parallel. So by the time we combined them, there wasn't time to go back and stiffen up our axes. Though clearly we would have benefited from some additional communication between Filippos and I during the design process.