Commit f9fb44b0 authored by Dean Camera's avatar Dean Camera
Browse files

AppConfigHeaders: Remove outdated incomplete BluetoothHost demo - updated...

AppConfigHeaders: Remove outdated incomplete BluetoothHost demo - updated Bluetooth stack code is in the ExplorerBot project (http://www.fourwalledcubicle.com/ExplorerBot.php).
parent 5cba3ce3
/*
LUFA Library
Copyright (C) Dean Camera, 2012.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Bluetooth stack event callback handlers. This module handles the callback events that are
* thrown from the Bluetooth stack in response to changes in the connection and channel
* states.
*/
#include "BluetoothEvents.h"
/** Pointer to the opened Bluetooth ACL channel structure for RFCOMM, used to send and receive data between the
* local and remote device once a RFCOMM channel has been opened.
*/
Bluetooth_Channel_t* SerialChannel_ACL = NULL;
/** Pointer to the opened RFCOMM logical channel between local and remote device, once a RFCOMM ACL channel has been
* negotiated and a logical RFCOMM channel requested.
*/
RFCOMM_Channel_t* SerialChannel_RFCOMM = NULL;
/** Bluetooth stack callback event for when the Bluetooth stack has fully initialized using the attached
* Bluetooth dongle.
*/
void Bluetooth_StackInitialized(void)
{
printf_P(PSTR("Stack initialized with local address %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
Bluetooth_State.LocalBDADDR[5], Bluetooth_State.LocalBDADDR[4], Bluetooth_State.LocalBDADDR[3],
Bluetooth_State.LocalBDADDR[2], Bluetooth_State.LocalBDADDR[1], Bluetooth_State.LocalBDADDR[0]);
/* Reinitialize the services placed on top of the Bluetooth stack ready for new connections */
RFCOMM_Initialize();
}
/** Bluetooth stack callback event for a Bluetooth connection request. When this callback fires, the
* user application must indicate if the connection is to be allowed or rejected.
*
* \param[in] RemoteAddress Bluetooth address of the remote device attempting the connection
*
* \return Boolean true to accept the connection, false to reject it
*/
bool Bluetooth_ConnectionRequest(const uint8_t* RemoteAddress)
{
printf_P(PSTR("Connection Request from Device %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
RemoteAddress[5], RemoteAddress[4], RemoteAddress[3], RemoteAddress[2],
RemoteAddress[1], RemoteAddress[0]);
/* Always accept connections from remote devices */
return true;
}
/** Bluetooth stack callback event for a completed Bluetooth connection. When this callback is made,
* the connection information can be accessed through the global \ref Bluetooth_Connection structure.
*/
void Bluetooth_ConnectionComplete(void)
{
printf_P(PSTR("Connection Complete to Device %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
Bluetooth_Connection.RemoteAddress[5], Bluetooth_Connection.RemoteAddress[4],
Bluetooth_Connection.RemoteAddress[3], Bluetooth_Connection.RemoteAddress[2],
Bluetooth_Connection.RemoteAddress[1], Bluetooth_Connection.RemoteAddress[0]);
LEDs_SetAllLEDs(LEDMASK_USB_BUSY);
}
/** Bluetooth stack callback event for a completed Bluetooth disconnection. When this callback is made,
* the connection information in the global \ref Bluetooth_Connection structure is invalidated with the
* exception of the RemoteAddress element, which can be used to determine the address of the device that
* was disconnected.
*/
void Bluetooth_DisconnectionComplete(void)
{
printf_P(PSTR("Disconnection Complete to Device %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
Bluetooth_Connection.RemoteAddress[5], Bluetooth_Connection.RemoteAddress[4],
Bluetooth_Connection.RemoteAddress[3], Bluetooth_Connection.RemoteAddress[2],
Bluetooth_Connection.RemoteAddress[1], Bluetooth_Connection.RemoteAddress[0]);
LEDs_SetAllLEDs(LEDMASK_USB_READY);
}
/** Bluetooth stack callback event for a Bluetooth ACL Channel connection request. When is callback fires,
* the user application must indicate if the channel connection should be rejected or not, based on the
* protocol (PSM) value of the requested channel.
*
* \param[in] PSM Protocol PSM value for the requested channel
*
* \return Boolean true to accept the channel connection request, false to reject it
*/
bool Bluetooth_ChannelConnectionRequest(const uint16_t PSM)
{
/* Only accept connections for channels that will be used for RFCOMM or SDP data */
return ((PSM == CHANNEL_PSM_RFCOMM) || (PSM == CHANNEL_PSM_SDP));
}
/** Bluetooth stack callback event for when a Bluetooth ACL channel has been fully created and configured,
* either at the request of the local device, or the remote device.
*
* \param[in] ACLChannel Bluetooth ACL data channel information structure for the channel that can now be used
*/
void Bluetooth_ChannelOpened(Bluetooth_Channel_t* const ACLChannel)
{
/* Save the RFCOMM channel for later use when we want to send RFCOMM data */
if (ACLChannel->PSM == CHANNEL_PSM_RFCOMM)
SerialChannel_ACL = ACLChannel;
}
/** Bluetooth stack callback event for a non-signal ACL packet reception. This callback fires once a connection
* to a remote Bluetooth device has been made, and the remote device has sent a non-signaling ACL packet.
*
* \param[in] Data Pointer to a buffer where the received data is stored
* \param[in] DataLen Length of the packet data, in bytes
* \param[in] ACLChannel Bluetooth ACL data channel information structure for the packet's destination channel
*/
void Bluetooth_PacketReceived(void* Data, uint16_t DataLen, Bluetooth_Channel_t* const ACLChannel)
{
/* Run the correct packet handler based on the received packet's PSM, which indicates the service being carried */
switch (ACLChannel->PSM)
{
case CHANNEL_PSM_SDP:
/* Service Discovery Protocol packet */
SDP_ProcessPacket(Data, ACLChannel);
break;
case CHANNEL_PSM_RFCOMM:
/* RFCOMM (Serial Port) Protocol packet */
RFCOMM_ProcessPacket(Data, ACLChannel);
break;
}
}
/** RFCOMM layer callback for event for when a RFCOMM logical channel has been fully opened and configured between
* the local and remote device. Once open, this RFCOMM channel can be read from and written to freely until is it
* closed by either end.
*
* \param[in] RFCOMMChannel RFCOMM channel that was opened
*/
void RFCOMM_ChannelOpened(RFCOMM_Channel_t* const RFCOMMChannel)
{
/* Save the serial port RFCOMM logical channel for later use */
SerialChannel_RFCOMM = RFCOMMChannel;
}
/** RFCOMM layer callback event for when a packet is received on an open RFCOMM channel.
*
* \param[in] ACLChannel RFCOMM ACL channel that the data was directed to
* \param[in] DataLen Length of the received data, in bytes
* \param[in] Data Pointer to a buffer where the received data is stored
*/
void RFCOMM_DataReceived(RFCOMM_Channel_t* const ACLChannel, uint16_t DataLen, const uint8_t* Data)
{
/* Write the received bytes to the serial port */
for (uint8_t i = 0; i < DataLen; i++)
putchar(Data[i]);
/* Echo the data back to the sending device */
RFCOMM_SendData(DataLen, Data, SerialChannel_RFCOMM, SerialChannel_ACL);
}
/** RFCOMM layer callback event for when the remote device has updated the channel terminal control signals
* for a particular RFCOMM channel.
*
* \param[in] RFCOMMChannel RFCOMM logical channel whose signals were altered
*/
void RFCOMM_ChannelSignalsReceived(RFCOMM_Channel_t* const RFCOMMChannel)
{
// Currently do nothing in response to the remote device sending new terminal control signals
}
/*
LUFA Library
Copyright (C) Dean Camera, 2012.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for BluetoothEvents.c.
*/
#ifndef _BLUETOOTH_EVENTS_H_
#define _BLUETOOTH_EVENTS_H_
/* Includes: */
#include <avr/io.h>
#include <stdio.h>
#include "BluetoothHost.h"
#include "Lib/BluetoothStack.h"
#include "Lib/SDP.h"
#include "Lib/RFCOMM.h"
#include <LUFA/Drivers/Peripheral/Serial.h>
#include <LUFA/Drivers/Board/LEDs.h>
/* Macros: */
/** LED mask for the library LED driver, to indicate that the USB interface is not ready. */
#define LEDMASK_USB_NOTREADY LEDS_LED1
/** LED mask for the library LED driver, to indicate that the USB interface is enumerating. */
#define LEDMASK_USB_ENUMERATING (LEDS_LED2 | LEDS_LED3)
/** LED mask for the library LED driver, to indicate that the USB interface is ready. */
#define LEDMASK_USB_READY (LEDS_LED2 | LEDS_LED4)
/** LED mask for the library LED driver, to indicate that an error has occurred in the USB interface. */
#define LEDMASK_USB_ERROR (LEDS_LED1 | LEDS_LED3)
/** LED mask for the library LED driver, to indicate that the USB interface is busy. */
#define LEDMASK_USB_BUSY LEDS_LED2
/* External Variables: */
extern Bluetooth_Channel_t* SerialChannel_ACL;
extern RFCOMM_Channel_t* SerialChannel_RFCOMM;
#endif
/*
LUFA Library
Copyright (C) Dean Camera, 2012.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main source file for the BluetoothHost demo. This file contains the main tasks of
* the demo and is responsible for the initial application hardware configuration.
*/
#include "BluetoothHost.h"
/** Bluetooth configuration structure. This structure configures the Bluetooth stack's user alterable settings. */
Bluetooth_Device_t Bluetooth_DeviceConfiguration =
{
Class: (DEVICE_CLASS_SERVICE_CAPTURING | DEVICE_CLASS_MAJOR_COMPUTER | DEVICE_CLASS_MINOR_COMPUTER_PALM),
PINCode: "0000",
Name: "LUFA Bluetooth Demo"
};
/** Main program entry point. This routine configures the hardware required by the application, then
* enters a loop to run the application tasks in sequence.
*/
int main(void)
{
SetupHardware();
puts_P(PSTR(ESC_FG_CYAN "Bluetooth Host Demo running.\r\n" ESC_FG_WHITE));
LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
sei();
for (;;)
{
RFCOMM_ServiceChannels(SerialChannel_ACL);
Bluetooth_Stack_USBTask();
USB_USBTask();
}
}
/** Configures the board hardware and chip peripherals for the demo's functionality. */
void SetupHardware(void)
{
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
wdt_disable();
/* Disable clock division */
clock_prescale_set(clock_div_1);
/* Hardware Initialization */
Serial_Init(9600, false);
LEDs_Init();
USB_Init();
/* Create a stdio stream for the serial port for stdin and stdout */
Serial_CreateStream(NULL);
}
/** Event handler for the USB_DeviceAttached event. This indicates that a device has been attached to the host, and
* starts the library USB task to begin the enumeration and USB management process.
*/
void EVENT_USB_Host_DeviceAttached(void)
{
puts_P(PSTR(ESC_FG_GREEN "Device Attached.\r\n" ESC_FG_WHITE));
LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);
}
/** Event handler for the USB_DeviceUnattached event. This indicates that a device has been removed from the host, and
* stops the library USB task management process.
*/
void EVENT_USB_Host_DeviceUnattached(void)
{
puts_P(PSTR(ESC_FG_GREEN "\r\nDevice Unattached.\r\n" ESC_FG_WHITE));
LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
}
/** Event handler for the USB_DeviceEnumerationComplete event. This indicates that a device has been successfully
* enumerated by the host and is now ready to be used by the application.
*/
void EVENT_USB_Host_DeviceEnumerationComplete(void)
{
puts_P(PSTR("Getting Device Data.\r\n"));
uint8_t ErrorCode;
/* Get and process the configuration descriptor data */
if ((ErrorCode = ProcessDeviceDescriptor()) != SuccessfulDeviceRead)
{
if (ErrorCode == DevControlError)
puts_P(PSTR(ESC_FG_RED "Control Error (Get Device).\r\n"));
else
puts_P(PSTR(ESC_FG_RED "Invalid Device.\r\n"));
printf_P(PSTR(" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
return;
}
puts_P(PSTR("Getting Config Data.\r\n"));
/* Get and process the configuration descriptor data */
if ((ErrorCode = ProcessConfigurationDescriptor()) != SuccessfulConfigRead)
{
if (ErrorCode == ControlError)
puts_P(PSTR(ESC_FG_RED "Control Error (Get Configuration).\r\n"));
else
puts_P(PSTR(ESC_FG_RED "Invalid Device.\r\n"));
printf_P(PSTR(" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
return;
}
/* Set the device configuration to the first configuration (rarely do devices use multiple configurations) */
if ((ErrorCode = USB_Host_SetDeviceConfiguration(1)) != HOST_SENDCONTROL_Successful)
{
printf_P(PSTR(ESC_FG_RED "Control Error (Set Configuration).\r\n"
" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
return;
}
puts_P(PSTR("Bluetooth Dongle Enumerated.\r\n"));
/* Initialize the Bluetooth stack */
Bluetooth_Stack_Init();
LEDs_SetAllLEDs(LEDMASK_USB_READY);
}
/** Event handler for the USB_HostError event. This indicates that a hardware error occurred while in host mode. */
void EVENT_USB_Host_HostError(const uint8_t ErrorCode)
{
USB_Disable();
printf_P(PSTR(ESC_FG_RED "Host Mode Error\r\n"
" -- Error Code %d\r\n" ESC_FG_WHITE), ErrorCode);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
for(;;);
}
/** Event handler for the USB_DeviceEnumerationFailed event. This indicates that a problem occurred while
* enumerating an attached USB device.
*/
void EVENT_USB_Host_DeviceEnumerationFailed(const uint8_t ErrorCode,
const uint8_t SubErrorCode)
{
printf_P(PSTR(ESC_FG_RED "Dev Enum Error\r\n"
" -- Error Code %d\r\n"
" -- Sub Error Code %d\r\n"
" -- In State %d\r\n" ESC_FG_WHITE), ErrorCode, SubErrorCode, USB_HostState);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
}
/*
LUFA Library
Copyright (C) Dean Camera, 2012.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for BluetoothHost.c.
*/
#ifndef _BLUETOOTH_HOST_H_
#define _BLUETOOTH_HOST_H_
/* Includes: */
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/pgmspace.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include "BluetoothEvents.h"
#include "DeviceDescriptor.h"
#include "ConfigDescriptor.h"
#include "Lib/BluetoothStack.h"
#include <LUFA/Version.h>
#include <LUFA/Drivers/Misc/TerminalCodes.h>
#include <LUFA/Drivers/USB/USB.h>
#include <LUFA/Drivers/Peripheral/Serial.h>
#include <LUFA/Drivers/Board/LEDs.h>
/* Macros: */
/** LED mask for the library LED driver, to indicate that the USB interface is not ready. */
#define LEDMASK_USB_NOTREADY LEDS_LED1
/** LED mask for the library LED driver, to indicate that the USB interface is enumerating. */
#define LEDMASK_USB_ENUMERATING (LEDS_LED2 | LEDS_LED3)
/** LED mask for the library LED driver, to indicate that the USB interface is ready. */
#define LEDMASK_USB_READY (LEDS_LED2 | LEDS_LED4)
/** LED mask for the library LED driver, to indicate that an error has occurred in the USB interface. */
#define LEDMASK_USB_ERROR (LEDS_LED1 | LEDS_LED3)
/** LED mask for the library LED driver, to indicate that the USB interface is busy. */
#define LEDMASK_USB_BUSY LEDS_LED2
/* Event Handlers: */
void EVENT_USB_Host_DeviceAttached(void);
void EVENT_USB_Host_DeviceUnattached(void);
void EVENT_USB_Host_DeviceEnumerationComplete(void);
void EVENT_USB_Host_HostError(const uint8_t ErrorCode);
void EVENT_USB_Host_DeviceEnumerationFailed(const uint8_t ErrorCode,
const uint8_t SubErrorCode);
/* Function Prototypes: */
void SetupHardware(void);
#endif
/*
LUFA Library
Copyright (C) Dean Camera, 2012.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Device Configuration Descriptor processing routines, to determine the correct pipe configurations
* needed to communication with an attached USB device. Descriptors are special computer-readable structures
* which the host requests upon device enumeration, to determine the device's capabilities and functions.
*/
#include "ConfigDescriptor.h"
/** Reads and processes an attached device's descriptors, to determine compatibility and pipe configurations. This
* routine will read in the entire configuration descriptor, and configure the hosts pipes to correctly communicate
* with compatible devices.
*
* This routine searches for a BT interface descriptor containing bulk IN and OUT data endpoints.
*
* \return An error code from the \ref BluetoothHost_GetConfigDescriptorDataCodes_t enum.
*/
uint8_t ProcessConfigurationDescriptor(void)
{
uint8_t ConfigDescriptorData[512];
void* CurrConfigLocation = ConfigDescriptorData;
uint16_t CurrConfigBytesRem;
USB_Descriptor_Endpoint_t* DataINEndpoint = NULL;
USB_Descriptor_Endpoint_t* DataOUTEndpoint = NULL;
USB_Descriptor_Endpoint_t* EventsEndpoint = NULL;
/* Retrieve the entire configuration descriptor into the allocated buffer */
switch (USB_Host_GetDeviceConfigDescriptor(1, &CurrConfigBytesRem, ConfigDescriptorData, sizeof(ConfigDescriptorData)))
{
case HOST_GETCONFIG_Successful:
break;
case HOST_GETCONFIG_InvalidData:
return InvalidConfigDataReturned;
case HOST_GETCONFIG_BuffOverflow: