Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
nmm_2020_site
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Erik Strand
nmm_2020_site
Commits
aba8edc2
Commit
aba8edc2
authored
Apr 20, 2020
by
Erik Strand
Browse files
Options
Downloads
Patches
Plain Diff
Add jacobian computations
No idea if they're right, since I haven't even printed them yet.
parent
b55f3114
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
_code/notes/diffsim/integrators.h
+23
-0
23 additions, 0 deletions
_code/notes/diffsim/integrators.h
_code/notes/diffsim/n_body.cpp
+63
-12
63 additions, 12 deletions
_code/notes/diffsim/n_body.cpp
_code/notes/diffsim/n_body.h
+25
-5
25 additions, 5 deletions
_code/notes/diffsim/n_body.h
with
111 additions
and
17 deletions
_code/notes/diffsim/integrators.h
+
23
−
0
View file @
aba8edc2
...
...
@@ -11,10 +11,33 @@
//--------------------------------------------------------------------------------------------------
// A single step of Euler integration
// This is commented out since I need to make its interface compatible with diff_euler_step.
/*
template <typename F, typename Vector, typename Scalar>
void euler_step(F const& f, Scalar const delta_t, Scalar& t, Vector& x) {
x += delta_t * f(t, x);
t += delta_t;
}
*/
//--------------------------------------------------------------------------------------------------
// A single step of differentiable Euler integration
template
<
typename
F
,
typename
Vector
,
typename
Scalar
>
void
diff_euler_step
(
F
&
f
,
Scalar
const
delta_t
,
Scalar
&
t
,
Vector
&
state
,
MatrixX
<
Scalar
>&
state_jacobian
)
{
uint32_t
const
rows
=
state_jacobian
.
rows
();
uint32_t
const
cols
=
state_jacobian
.
cols
();
f
(
t
,
state
);
t
+=
delta_t
;
state
+=
delta_t
*
f
.
tangent
();
state_jacobian
=
(
MatrixX
<
Scalar
>::
Identity
(
rows
,
cols
)
+
delta_t
*
f
.
tangent_jacobian
())
*
state_jacobian
;
}
#endif
This diff is collapsed.
Click to expand it.
_code/notes/diffsim/n_body.cpp
+
63
−
12
View file @
aba8edc2
...
...
@@ -13,23 +13,72 @@ void NBodyLaw::set_masses(VectorX<Scalar> const& m) {
}
//..................................................................................................
void
NBodyLaw
::
operator
()(
VectorX
<
Scalar
>
const
&
state
,
VectorX
<
Scalar
>&
gradi
ent
)
{
void
NBodyLaw
::
operator
()(
VectorX
<
Scalar
>
const
&
state
,
VectorX
<
Scalar
>&
tang
ent
)
{
// The derivatives of locations with respect to time are just the velocities, which we know.
gradi
ent
.
segment
(
0
,
n_
*
d
)
=
state
.
segment
(
n_
*
d
,
n_
*
d
);
tang
ent
.
segment
(
0
,
n_
*
d
)
=
state
.
segment
(
n_
*
d
,
n_
*
d
);
// The derivatives of velocities with respect to time are accelerations. Here we use Newton's
// law of universal gravitation to compute forces, then divide out the relevant mass to get
// accelerations (or more literally, we never multiply by it in the first place). This involves
// a sum over all pairs of particles, which could be truncated for distant particles if needed.
gradi
ent
.
segment
(
n_
*
d
,
n_
*
d
).
setZero
();
tang
ent
.
segment
(
n_
*
d
,
n_
*
d
).
setZero
();
for
(
uint32_t
i
=
0
;
i
<
n_
;
++
i
)
{
for
(
uint32_t
j
=
i
+
1
;
j
<
n_
;
++
j
)
{
Eigen
::
Matrix
<
Scalar
,
d
,
1
>
force
=
state
.
segment
<
d
>
(
j
*
d
)
-
state
.
segment
<
d
>
(
i
*
d
);
Scalar
const
distance_squared
=
force
.
squaredNorm
();
Scalar
const
distance
=
std
::
sqrt
(
distance_squared
);
force
*=
G
/
(
distance_squared
*
distance
);
gradient
.
segment
<
d
>
((
n_
+
i
)
*
d
)
+=
m_
[
j
]
*
force
;
gradient
.
segment
<
d
>
((
n_
+
j
)
*
d
)
-=
m_
[
i
]
*
force
;
tangent
.
segment
<
d
>
((
n_
+
i
)
*
d
)
+=
m_
[
j
]
*
force
;
tangent
.
segment
<
d
>
((
n_
+
j
)
*
d
)
-=
m_
[
i
]
*
force
;
}
}
}
//..................................................................................................
void
NBodyLaw
::
operator
()(
VectorX
<
Scalar
>
const
&
state
,
VectorX
<
Scalar
>&
tangent
,
MatrixX
<
Scalar
>&
tangent_jacobian
)
{
// Compute derivatives of displacements w.r.t. time, and initialize deriviatives of velocities
// w.r.t. time.
tangent
.
segment
(
0
,
n_
*
d
)
=
state
.
segment
(
n_
*
d
,
n_
*
d
);
tangent
.
segment
(
n_
*
d
,
n_
*
d
).
setZero
();
// Initialize the jacobian. The upper left and lower right blocks will stay zero; the others are
// set below.
tangent_jacobian
.
setZero
();
// Set the upper right block of the jacobian. These are the derivatives of the tangent terms
// calculated in the first line of this method.
tangent_jacobian
.
block
(
0
,
n_
*
d
,
n_
*
d
,
n_
*
d
)
=
MatrixX
<
Scalar
>::
Identity
(
n_
*
d
,
n_
*
d
);
// This loop fills in the rest of the tangent and the lower left block of the jacobian.
for
(
uint32_t
i
=
0
;
i
<
n_
;
++
i
)
{
for
(
uint32_t
j
=
i
+
1
;
j
<
n_
;
++
j
)
{
// Do some shared temp calculations.
Eigen
::
Matrix
<
Scalar
,
d
,
1
>
const
displacement
=
state
.
segment
<
d
>
(
j
*
d
)
-
state
.
segment
<
d
>
(
i
*
d
);
Scalar
const
distance_squared
=
displacement
.
squaredNorm
();
Scalar
const
distance
=
std
::
sqrt
(
distance_squared
);
Scalar
const
distance_5
=
distance_squared
*
distance_squared
*
distance
;
// Compute the accelerations as before.
Eigen
::
Matrix
<
Scalar
,
d
,
1
>
const
force
=
G
*
displacement
/
(
distance_squared
*
distance
);
tangent
.
segment
<
d
>
((
n_
+
i
)
*
d
)
+=
m_
[
j
]
*
force
;
tangent
.
segment
<
d
>
((
n_
+
j
)
*
d
)
-=
m_
[
i
]
*
force
;
// Compute shared expression in the dim * dim matrix of partial derivatives of the
// accelerations w.r.t. to displacements (of mass i).
Eigen
::
Matrix
<
Scalar
,
d
,
d
>
dforce
;
dforce
.
fill
(
3
*
G
*
displacement
.
prod
()
/
distance_5
);
dforce
.
diagonal
()
=
(
3
*
displacement
.
array
()
-
distance_squared
).
matrix
()
/
distance_5
;
// Just multiply by masses and set sign to complete partial derivatives of the
// accelerations w.r.t. displacement i, and w.r.t. displacement j.
tangent_jacobian
.
block
((
n_
+
i
)
*
d
,
j
*
d
,
d
,
d
)
+=
m_
[
j
]
*
dforce
;
tangent_jacobian
.
block
((
n_
+
j
)
*
d
,
i
*
d
,
d
,
d
)
-=
m_
[
i
]
*
dforce
;
}
}
}
...
...
@@ -45,11 +94,17 @@ void NBody::initialize(
law_
.
set_masses
(
masses
);
delta_t_
=
1e-4
;
// initialize state
t_
=
0
;
state_
=
state
;
state_jacobian_
.
resize
(
state_
.
size
(),
state_
.
size
());
state_jacobian_
.
setIdentity
();
d_state_
.
resize
(
state_
.
size
());
d_state_
.
setZero
();
// initialize working memory
tangent_
.
resize
(
state_
.
size
());
tangent_
.
setZero
();
tangent_jacobian_
.
resize
(
state_
.
size
(),
state_
.
size
());
tangent_jacobian_
.
setZero
();
points_
.
resize
(
law_
.
n
()
*
law_
.
d
);
points_
=
state_
.
segment
(
0
,
law_
.
n
()
*
law_
.
d
);
...
...
@@ -60,11 +115,7 @@ void NBody::initialize(
//..................................................................................................
void
NBody
::
step
()
{
auto
const
f
=
[
this
](
Scalar
,
VectorX
<
Scalar
>
const
&
state
)
->
VectorX
<
Scalar
>
const
&
{
law_
(
state
,
d_state_
);
return
d_state_
;
};
euler_step
(
f
,
delta_t_
,
t_
,
state_
);
diff_euler_step
(
*
this
,
delta_t_
,
t_
,
state_
,
state_jacobian_
);
// hack
points_
=
state_
.
segment
(
0
,
law_
.
n
()
*
law_
.
d
);
...
...
This diff is collapsed.
Click to expand it.
_code/notes/diffsim/n_body.h
+
25
−
5
View file @
aba8edc2
...
...
@@ -25,8 +25,16 @@ public:
void
set_masses
(
VectorX
<
Scalar
>
const
&
m
);
uint32_t
n
()
const
{
return
n_
;
}
// computes the gradient of phase space coordinates w.r.t. time at a give state
void
operator
()(
VectorX
<
Scalar
>
const
&
state
,
VectorX
<
Scalar
>&
gradient
);
// Computes the derivatives of the phase space coordinates w.r.t. time at a given state. This is
// a vector in the tangent bundle of phase space at the specified state, hence the name.
void
operator
()(
VectorX
<
Scalar
>
const
&
state
,
VectorX
<
Scalar
>&
tangent
);
// Computes the derivatives as above, as well as the jacobian of this tangent w.r.t. the phase
// space coordinates at a given state.
void
operator
()(
VectorX
<
Scalar
>
const
&
state
,
VectorX
<
Scalar
>&
tangent
,
MatrixX
<
Scalar
>&
jacobian_tangent
);
static
constexpr
uint32_t
d
=
2
;
static
constexpr
Scalar
G
=
1e-1
;
...
...
@@ -49,6 +57,13 @@ public:
VectorX
<
Scalar
>
const
&
points
()
const
final
{
return
points_
;
}
VectorX
<
Scalar
>
const
&
state
()
const
{
return
state_
;
}
// These methods make NBody compatible with the differentiable integrators.
void
operator
()(
Scalar
,
VectorX
<
Scalar
>
const
&
state
)
{
law_
(
state
,
tangent_
,
tangent_jacobian_
);
}
VectorX
<
Scalar
>
const
&
tangent
()
const
{
return
tangent_
;
}
MatrixX
<
Scalar
>
const
&
tangent_jacobian
()
const
{
return
tangent_jacobian_
;
}
private
:
// configuration
NBodyLaw
law_
;
...
...
@@ -56,11 +71,16 @@ private:
// state
Scalar
t_
;
// Holds the current state (displacements and velocities).
VectorX
<
Scalar
>
state_
;
// Holds the jacobian of current state variables w.r.t. initial state variables.
MatrixX
<
Scalar
>
state_jacobian_
;
// working memory
// Used for evaluation of gradient of state w.r.t time (i.e. velocities and accelerations).
VectorX
<
Scalar
>
d_state_
;
// working memory (temporary)
// Holds the tangent of state w.r.t time (i.e. velocities and accelerations).
VectorX
<
Scalar
>
tangent_
;
// Holds the jacobian of tangent_ w.r.t. state variables (displacements and velocities).
MatrixX
<
Scalar
>
tangent_jacobian_
;
// copy of first half of state_, just to make visualization easy
VectorX
<
Scalar
>
points_
;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment