Skip to content
Snippets Groups Projects
Commit 5700b41a authored by Sam Calisch's avatar Sam Calisch
Browse files

Update README.md

parent d85775d6
Branches
No related tags found
No related merge requests found
...@@ -28,11 +28,13 @@ We toolpathed the microspline part at the full ~2" long scale. This would be cut ...@@ -28,11 +28,13 @@ We toolpathed the microspline part at the full ~2" long scale. This would be cut
Given the long machining time, we ultimately decided to do a 1/3-scale test cut from a stack of 0.01" brass sandwiched between 0.25" aluminum. The perimeter of this toolpath measures 17.5 inches. With an expected cut speed of 0.18 inches/minute, the expected cut time is just about 100 minutes or 1 hr 40 mins. Given the long machining time, we ultimately decided to do a 1/3-scale test cut from a stack of 0.01" brass sandwiched between 0.25" aluminum. The perimeter of this toolpath measures 17.5 inches. With an expected cut speed of 0.18 inches/minute, the expected cut time is just about 100 minutes or 1 hr 40 mins.
## Micromachining ## Micromachining using Zund G-3 L-2500
Using a .030" diameter end mill with amorphous diamond coating (<a href='http://www.harveytool.com/ToolTechInfo.aspx?ToolNumber=72030-C4'>Harvey Tool 72030-C4</a>), we machined the flexure from .020" Aluminum 2024 sheet in 2.5 minutes (comparable to the waterjet). Despite being a very large-scale tool, the Zund was surprisingly effective at micromachining with its 50kRPM router spindle. To fixture the stock, we first faced a sheet of aluminum to provide a rigid surface. Then we applied PSA tape to both this surface and the underside of the stock. We burnished the tape using a small stainless rod. Then we applied CA glue to the tape and bonded the stock to the substrate.
Here is a 50% scale flexure (.010" beams, .015" gaps) machined from .020" thick Aluminum 2024 sheet using a .015" diameter end mill with amorphous diamond coating (<a href='http://www.harveytool.com/ToolTechInfo.aspx?ToolNumber=72015-C4'>Harvey Tool 72015-C4</a>). It was fixtured using burnished PSA tape to both the substrate and the stock, with CA superglue applied between the tape layers. Using a .030" diameter end mill with amorphous diamond coating (<a href='http://www.harveytool.com/ToolTechInfo.aspx?ToolNumber=72030-C4'>Harvey Tool 72030-C4</a>), we machined the flexure from .020" Aluminum 2024 sheet in 2.5 minutes (comparable to the waterjet). 300um step down, 20 mm/s, 50kRPM.
Here is a 50% scale flexure (.010" beams, .015" gaps) machined from .020" thick Aluminum 2024 sheet using a .015" diameter end mill with amorphous diamond coating (<a href='http://www.harveytool.com/ToolTechInfo.aspx?ToolNumber=72015-C4'>Harvey Tool 72015-C4</a>). This took about 8 minutes, but I think could be run faster.
<img src='images/flexure-0.5-penny.jpg' width=300px> <img src='images/flexure-0.5-penny.jpg' width=300px>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment