Skip to content
Snippets Groups Projects
Commit 9b43d300 authored by Amira Abdel-Rahman's avatar Amira Abdel-Rahman
Browse files

small fix structural mechanics model

parent 36d8ff97
No related branches found
No related tags found
No related merge requests found
Pipeline #19773 passed
...@@ -127,17 +127,17 @@ M_t= \sum_{b=1}^{b=n} \vec{M_b} ...@@ -127,17 +127,17 @@ M_t= \sum_{b=1}^{b=n} \vec{M_b}
--- ---
### Integration ### Integration
Double euler integration is used from timestep $t_n$ to $t_{n+1}=t+dt$: Double euler integration is used from timestep $`t_n`$ to $`t_{n+1}=t+dt`$:
$$ ```math
\vec{P}_{t_{n+1}}=\vec{P}_{t_{n}}+F_tdt \\ \vec{P}_{t_{n+1}}=\vec{P}_{t_{n}}+F_tdt \\
\vec{D}_{t_{n+1}}=\vec{D}_{t_{n}}+\frac{\vec{P}_{t_{n+1}}}{m}dt \\ \vec{D}_{t_{n+1}}=\vec{D}_{t_{n}}+\frac{\vec{P}_{t_{n+1}}}{m}dt \\
\vec{\phi}_{t_{n+1}}=\vec{\phi}_{t_{n}}+M_tdt \\ \vec{\phi}_{t_{n+1}}=\vec{\phi}_{t_{n}}+M_tdt \\
\vec{\theta}_{t_{n+1}}=\vec{\theta}_{t_{n}}+\frac{\vec{\phi}_{t_{n+1}}}{I}dt \\ \vec{\theta}_{t_{n+1}}=\vec{\theta}_{t_{n}}+\frac{\vec{\phi}_{t_{n+1}}}{I}dt \\
$$ ```
where $\vec{D}$ is the three dimensional position vector, $\vec{\theta}$ is the three dimensional rotational, $\vec{P}$ is the three dimensional linear momentum, $\vec{\phi}$ is the rotational momentum. Finally, $m$ is the mass and $I$ is the rotational inertia. where $`\vec{D}`$ is the three dimensional position vector, $`\vec{\theta}`$ is the three dimensional rotational, $`\vec{P}`$ is the three dimensional linear momentum, $`\vec{\phi}`$ is the rotational momentum. Finally, $`m`$ is the mass and $`I`$ is the rotational inertia.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment